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SINE–GORDON SOLITONS, KINKS AND BREATHERS
AS PHYSICAL MODELS OF NONLINEAR EXCITATIONS
IN LIVING CELLULAR STRUCTURES
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Abstract. Nonlinear space-time dynamics, defined in terms of celebrated ‘soli-

tonic’ equations, brings indispensable tools for understanding, prediction and con-

trol of complex behaviors in both physical and life sciences. In this paper, we re-

view sine–Gordon solitons, kinks and breathers as models of nonlinear excitations

in complex systems in physics and in living cellular structures, both intra–cellular

(DNA, protein folding and microtubules) and inter–cellular (neural impulses and

muscular contractions).
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1. Introduction

In spatiotemporal dynamics of complex nonlinear systems (see [53, 55, 58, 60]),

Sine–Gordon equation (SGE) is, together with Korteweg–deVries (KdV) and non-

linear Schrödinger (NLS) equations, one of the celebrated nonlinear-yet-integrable

partial differential equations (PDEs), with a variety of traveling solitary waves as

solutions (see Fig. 1 and Fig. 2, as well as the following basic references [3, 11,

26, 82, 83, 88, 91]). For a soft SGE–intro, see the popular web-sites [106, 107].

From rigorous geometrical perspective, both KdV and NLS equations are men-

tioned in Subsection 3.5 below as solitary models for muscular contractions on

Poisson manifolds.

Briefly, a solitary wave is a traveling wave (with velocity v) of the form φ(x, t) =
f(x − vt), for a smooth function f that decays rapidly at infinity e.g. a nonlinear

wave equation φtt − φxx = φ(2φ2 − 1) has a family of solitary–wave solutions

φ(x, t) = sech(xcoshμ+tsinhμ), parameterized by μ ∈ R (see [105]). In complex

physical systems, SGE solitons, kinks and breathers appear in various situations,

including propagation of magnetic flux (fluxons) in long Josephson junctions [10,

68], dislocations in crystals [9, 33], nonlinear spin waves in superfluids [68], and

waves in ferromagnetic and anti-ferromagnetic materials [114, 115] – to mention

just a few application areas.

In this paper, we review physical theory of sine–Gordon solitons, kinks and breathers,

as well as their essential dynamics of nonlinear excitations in living cellular struc-

tures, both intra–cellular (DNA, protein folding and microtubules) and inter–cellular

(neural impulses and muscular contractions).

We show that sine–Gordon traveling waves can give us new insights even in such

long–time established and Nobel–Prize winning living systems as the Watson–

Crick double helix DNA model and the Hodgkin–Huxley neural conduction model.
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Figure 1. Basic static examples of kinks tanh(x), arctan(x) and bell–

shaped solitons sech(x), exp(−x2), together with their (absolute) differ-

ences; plotted in Mathematica� .

2. Physical Theory of Sine–Gordon Solitons, Kinks and Breathers

In this section, we give the basic theory of the sine–Gordon equation (and the

variety of its traveling–wave solutions), as spatiotemporal models of nonlinear ex-

citations in complex physical systems.

2.1. Sine–Gordon Equation (SGE)

SGE is a real-valued, hyperbolic, nonlinear wave equation defined on R
1,1, which

appears in two equivalent forms (using standard indicial notation for partial deriva-

tives φzz = ∂2
zφ = ∂2φ/∂z2)

• In the (1+1) space-time (x, t)−coordinates, the SGE reads

φtt = φxx − sinφ or φtt(x, t) = φxx(x, t)− sinφ(x, t) (1)

which shows that it is a nonlinear extension of the standard linear wave equa-

tion φtt = φxx. The solutions φ(x, t) of (1 ) determine the internal Rieman-

nian geometry of surfaces of constant negative scalar curvature R = −2,
given by the line-element

ds2 = sin2
(
φ

2

)
dt2 + cos2

(
φ

2

)
dx2
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where the angle φ describes the embedding of the surface into Euclidean

space R
3 (see [11]). A basic solution of the SGE (1) is

φ(x, t) = 4 arctan

[
exp

(
± x− vt√

1− v2

)]
(2)

describing a soliton moving with velocity 0 ≤ v < 1 and changing the phase

from 0 to 2π (kink, the case of + sign) or from 2π to 0 (anti-kink, the case

of − sign). Each traveling soliton solution of the SGE has the corresponding

surface in R
3 (see [105]).

• In the (1+1) light-cone (u, v)−coordinates, defined by u = (x + t)/2, v =
(x+ t)/2, in which the line-element (depending on the angle φ between two

asymptotic lines u = const, v = const) is given by

ds2 = du2 + 2 cosφ du dv + dv2

the SGE describes a family of pseudo-spherical surfaces with constant Gaus-

sian curvature K = −1, and reads

φuv = sinφ or φuv(u, v) = sinφ(u, v). (3)

SGE (3) is the single Codazzi–Mainardi compatibility equation between the

first (IG) and second (IIC) fundamental forms of a surface, defined by the

Gauss and Codazzi equations, respectively

IG = du2 + 2 cosφ du dv + dv2 and IIC = 2 sinφ du dv.

A typical, spatially-symmetric, boundary-value problem for (1) is defined by

x ∈ [−L,L] ⊂ R, t ∈ R
+ with

φ(x, 0) = f(x), φt(x, 0) = 0, φ(−L, t) = φ(L, t)

where f(x) ∈ R is an axially-symmetric function (e.g. Gaussian or sech, see

Fig. 3).

Bäcklund Transformations (BT) for the SGE (1) were devised in 1880s in Rieman-

nian geometry of surfaces and are attributed to Bianchi and Bäcklund. In 1883, A.

Bäcklund showed that if L : M → M ′ is a pseudo-spherical line congruence be-

tween two surfaces M,M ′, then both M and M ′ are pseudo-spherical and L maps

asymptotic lines on M to asymptotic lines on M ′. Analytically, this is equivalent
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Figure 2. Basic solitary SGE–solutions, simulated in

Mathematica� as systems of spring-coupled torsional

pendula: (a) single soliton φ(x, t)=4 arctan
(
exp x−vt

1−v2

)
,

(b) soliton–soliton collision φ(x, t)=4 arctan

(
v sinh

x

1−v2

cosh
vt

1−v2

)
, (c) soliton–

antisoliton collision φ(x, t)=4 arctan

(
sinh

vt

1−v2

v cosh
x

1−v2

)
, and (d) single breather

φ(x, t)=4 arctan

(
sin

vt

1−v2

v cosh
x

1−v2

)
(modified and adapted from [80]).

to the statement that if φ is a solution of the SGE (1), then so are also the solutions

of the ODE system (4) (see, e.g. [14]).

BT have the form
1

2
(φ+ ϕ)ξ = α sin

φ− ϕ

2
,

1

2
(φ− ϕ)η =

1

α
sin

φ+ ϕ

2
(4)

where both φ and ϕ are solutions of the SGE (1), and can be viewed as a transfor-

mation of the SGE into itself. BT (4) allows one to find a two-parameter family of

solutions, given a particular solution φ0 of (1). For example, consider the trivial

solution φ = 0 that, substituted into (4), gives

ϕξ = −2α sin
ϕ

2
, ϕη = − 2

α
sin

ϕ

2

which, by integration, gives

2αξ = −2 ln(tan
ϕ

4
) + p(η),

2

α
η = −2 ln(tan

ϕ

4
) + p(ξ)

from which the following new solution is generated

ϕ = 4arctan

[
exp(−αξ − 1

α
η + const)

]
.



6 Vladimir G. Ivancevic and Tijana T. Ivancevic

Figure 3. Numerical solution of the SGE (1) in Mathematica� , using

numerical ODE/PDE integrator NDSolve, with the following data (includ-

ing the Gaussian initial state, zero initial velocity and symmetric boundary

condition) x ∈ [−20, 20], t ∈ [0, 30], φ(x, 0) = exp(−x2), φt(x, 0) =
0, φ(−20, t) = φ(20, t). The waves oscillate around the zero plane and

increase their width with time. Both near-periodicity and nonlinearity of the

time evolution are apparent.

The sine–forcing term in the SGE can be viewed as a nonlinear deformation φ →
sinφ, of the linear forcing term in the Klein–Gordon equation (KGE, a vacuum

linearization of the SGE), which is commonly used for describing scalar fields in

(quantum) field theory

φtt = φxx − φ. (5)

This, in turn, implies that (as a field equation) SGE can be derived as an Euler–

Lagrangian equation from the Lagrangian density

LSG(φ) =
1

2
(φ2

t − φ2
x)− 1 + cosφ. (6)

It could be expected that LSG(φ) is a ‘deformation’ of the KG Lagrangian

LKG(φ) =
1

2
(φ2

t − φ2
x)−

φ2

2
· (7)

That can be demonstrated by the Taylor–series expansion of the cosine term

cosφ =
∞∑
n=0

(−φ2)n

(2n)!
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so that we have the following relationship between the two Lagrangians

LSG(φ) = LKG(φ) +
∞∑
n=2

(−φ2)n

(2n)!
·

Figure 4. Numerical solution of the SGE (17) in Mathematica� , with

the following data (including the Gaussian initial state, zero initial velocity

and symmetric boundary condition) x ∈ [−20, 20], t ∈ [0, 30], φ(x, 0) =
exp(−x2), φt(x, 0) = 0, φ(−20, t) = φ(20, t). Under the same boundary

conditions, the SGE with the plus sine gives about 20 times higher ampli-

tude waves, which are all above the zero plane and decrease their width with

time. Again, both near-periodicity and nonlinearity of the time evolution are

apparent.

The corresponding Hamiltonian densities, of kinetic plus potential energy type, are

given in terms of canonically–conjugated coordinate and momentum fields by

HSG(φ, π) = πφt − LSG(φ) =
1

2
(π2 + φ2

x) + 1− cosφ

HKG(φ, π) = πφt − LKG(φ) =
1

2
(π2 + φ2

x) + φ2.
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Both SGE and KGE are infinite–dimensional Hamiltonian systems [104], with

Poisson brackets given by

{F,G} =

∫ ∞

−∞

[
δF

δφ(x)

δG

δπ(x)
− δF

δπ(x)

δG

δφ(x)

]
dx (8)

so that both (1) and (5) follow from Hamilton’s equations with Hamiltonian H and

symplectic form ω

φt = {H,φ}, πt = {H,π} with

H =

∫ ∞

−∞
H(φ, π) dx, ω =

∫ ∞

−∞
(dπ ∧ dφ) dx. (9)

The Hamiltonian (9) is conserved by the flow of both SGE (1) and KGE (5), with

an infinite number of commuting constants of motion (common level sets of these

constants of motion are generically infinite-dimensional tori of maximal dimen-

sion). Both SGE and KGE admit their own infinite families of conserved func-

tionals in involution with respect to their Poisson bracket (8). This fact allows

them both to be solved with the inverse scattering transform (see [26]). For the

Poisson–manifold generalization, see Section 3.5 below.

2.2. Momentum and Energy of SGE Solitons

SGE is Lorentz–covariant, i.e., invariant with respect to special–relativistic Lorentz

transformations. Each SGE–soliton behaves as a relativistic object and contracts

when v → c ≡ the speed of light, and for this fact it has been used in (quantum)

field theory.

In both forms (1) and (3), the SGE has the following symmetries

t → t+ t0, x →x, φ →φ (shift in t)

t → t, x →x+ x0, φ →φ (shift in x)

t → t, x →x, φ →φ+ 2πn (discrete shifts in φ)

t →− t, x →x, φ →φ (reflection in t)

t → t, x →− x, φ →φ (reflection in x)

t → t, x →x, φ →− φ (reflection in φ)

t → t− vx√
1− v2

, x → x− vx√
1− v2

, φ →φ (Lorentz boost)

where e.g. reflection in φ means if φ is a solution then so is −φ, etc.
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In Minkowski (1+1) space-time coordinates (xμ ∈ R
1,1, x0 = t, x1 = x) with

metric tensor ημν (μ, ν = 0, 1, η11 = −η22 = 1, η11 = η11 = 0), the SG–

Lagrangian density has the following ‘massive form’ of kinetic minus potential

energy, with mass m and coupling constant λ (see [91])

LMink
SG (φ) =

1

2
(φ2

t − φ2
x)−

m4

λ

[
1− cos(

√
λ

m
φ)

]
which reduces to the dimensionless form (6) by re-scaling the fields and coordi-

nates √
λ

m
φ → φ, mxμ → xμ. (10)

The SG–Lagrangian density LMink
SG (φ) ≡ m4

λ LSG(φ) obeys the conservation law

and admits topological (i.e., not sensitive to local degrees of freedom) Noether
current with respect to (10)

jμ =
1

2π
εμν∂νφ with zero-divergence ∂μj

μ = 0

where εμν is the R1,1−Levi–Civita tensor. The corresponding topological Noether
charge is given by

Q =

∫ ∣∣∂tj0(x, t)∣∣ dx =
1

2π
|φ(+∞, t)− φ(−∞, t)|

with

Qt =
1

2π
|φt(−∞, t)− φt(+∞, t)| = 0.

The most important physical quality of the SGE is its energy–momentum (EM)

tensor Tμν , which is the Noether current corresponding to spacetime–translation

symmetry xμ → xμ + ξμ and this conserved quantity is derived from the La-

grangian (6) as

Tμν = ∂μφ∂νφ− ημνLSG(φ).

The energy-momentum Tμν has the following components [39, 91]

T00 =
1

2
(φ2

t + φ2
x) + 1− cosφ, T10 = φxt = T01

T11 =
1

2
(φ2

t + φ2
x)− 1 + cosφ.

EM’s contravariant tensor T μν has the following components

T 00 = T00, T 11 = T11, T 10 = −T01
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obtained by raising the indices of Tμν using the inverse metric tensor ημν =
1/(η)μν .

EM’s conserved quantities are momentum P =
∫
T 10dx, which is the Noether

charge with respect to space–translation symmetry, and energy E =
∫
T 00dx,

which is the Noether charge with respect to time–translation symmetry. Energy

and momentum follow from EM’s zero divergence

∂μT
μν = 0 =⇒

{
∂tT

00 − ∂xT
10 = 0

∂tT
01 − ∂xT

11 = 0
=⇒

{
∂tE = ∂t

∫
T 00dx = 0

∂tP = ∂t
∫
T 10dx = 0.

2.3. SGE Solutions and Integrability

2.3.1. SGE Solitons, Kinks and Breathers

The first 1-soliton solution of the SGE (1) was given by [2, 4] in the form

φ(x, t) = 4 arctan

[ √
1− ω2 cos(ωt)

ω cosh(x
√
1− ω2)

]

which, for ω < 1, is periodic in time t and decays exponentially when moving

away from x = 0.

There is a well-known traveling solitary wave solution with velocity v (see [102]),

given by the following generalization of (2)

φ(x, t) = 4 arctan

[
exp

±2(z − z0)√
1− v2

]
, with z = μ(x+ vt) (11)

and the center at z0. In (11), the case +2 describes kink, while the case −2 corre-

sponds to antikink.

The stationary kink with the center at x0 is defined by

φ(x) = 2 arctan [exp(x− x0)]

(in which the position of the center x0 can be varied continuously −∞ < x0 < ∞)

and represents the solution of the first-order ODE φx(x) = sinφ(x).

Regarding solutions of the slightly more general, three-parameter SGE

φtt = aφxx + b sin(λφ) (12)

the following cases were established in the literature (see [88] and references

therein)



Sine–Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear... 11

1. If a function w = φ(x, t) is a solution of (12), then so are also the following

functions

w1 =
2πn

b
± φ(C1 ± x,C2 ± t) for n = 0,±1,±2, ...

w2 = ±φ

(
x coshC3 + t

√
a sinhC3, x

sinhC3√
a

+ t coshC3

)
where C1, C2, and C3 are arbitrary constants.

2. Traveling-wave solutions

φ(x, t) =
4

λ
arctan

[
exp

(
±bλ(C1x+ C2t+ C3)√

bλ(C2
2 − aC2

1 )

)]
(13)

if bλ(C2
2 − aC2

1 ) > 0

φ(x, t) = −π

λ
+

4

λ
arctan

[
exp

(
±bλ(C1x+ C2t+ C3)√

bλ(aC2
1 − C2

2 )

)]
if bλ(C2

2 − aC2
1 ) < 0

where the first expression (for bλ(C2
2 − aC2

1 ) > 0) represents another one-

soliton solution, which is kink in case of exp

(
bλ(C1x+C2t+C3)√

bλ(C2

2
−aC2

1
)

)
and an-

tikink in case of exp

(
− bλ(C1x+C2t+C3)√

bλ(C2

2
−aC2

1
)

)
. In case of the standard SGE (1),

this kink–antikink expression specializes to the Lorentz-invariant solution

similar to (11)

φK(x, t) = 4 arctan

[
exp

(±(x− xc)− vt√
1− v2

)]
(14)

where the velocity v (0 < v < 1) and the soliton-center xc are real-valued

constants. The kink solution has the following physical (EM) characteristics

i) Energy

E[φK(x, t)] =

∫
T 00dx =

8√
1− v2

and

ii) Momentum

P [φK(x, t)] =

∫
T 10dx = − 8v√

1− v2
·
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3. Functional separable solution

w(x, t) =
4

λ
arctan [f(x)g(t)]

where the functions f = f(x) and g = g(t) are determined by the first-order

autonomous separable ODEs

f2
x = Af4 +Bf2 + C, g2t = −aCg4 + (aB + bλ)g2 − aA

where A, B, and C are arbitrary constants. In particular, for A = 0, B =
k2 > 0, and C > 0, we have the two-soliton solution [87]

w(x, t) =
4

λ
arctan

[
η sin(kx+A1)

k
√
a cosh(ηt+B1)

]
, η2 = ak2 + bλ > 0

where k, A1, and B1 are arbitrary constants.

The only stable traveling wave SGE-solutions for a scalar field φ are 2π-kinks

[16, 85] (localized solutions with identical boundary conditions φ = 0 and φ =
2π). However, easier to follow experimentally are non-localized π-kinks [67] (sep-

arating regions with different values of the field φ), see also [114] and references

therein.

On the other hand, a breather is spatially localized, time periodic, oscillatory SGE–

solution (see, e.g. [45]). It represents a field which is periodically oscillating in

time and decays exponentially in space as the distance from the center x = 0 is

increased. This oscillatory solution of (1) is characterized by some phase that de-

pends on the breather’s evolution history. This could be, in particular, a bound state

of vortex with an antivortex in a Josephson junction. In this case, breather may ap-

pear as a result of collision of a fluxon (a propagating magnetic flux-quantum) with

an antifluxon, or even in the process of measurements of switching current char-

acteristics. Stationary breather solutions form one-parameter families of solutions.

An example of a breather–solution of (1) is given by [40]

φ = 4arctan

(
sinT

u cosh (g(u)x)

)
with parameters u = u(t) and T = T (t), such that

g(u) = 1/
√
1 + u2 and T (t) =

∫ t

0
g(u(t′))u(t′) dt′.
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Figure 5. Numerical solution of the damped, unforced SGE (18) in

Mathematica� , with the following data (including the Gaussian ini-

tial state, zero initial velocity and symmetric boundary condition) x ∈
[−20, 20], t ∈ [0, 30], φ(x, 0) = exp(−x2), φt(x, 0) = 0, φ(−20, t) =
φ(20, t), γ = 0.2, F (x, t) = 0. Damping of the waves is apparent.

2.3.2. Lax–Pair and General SGE Integrability

In both cases (1) and (3), the SGE admits a Lax–pair formulation

L̇ = [L,M ] (15)

where overdot means time derivative, L and M are linear differential operators and

[L,M ] ≡ LM −ML is their commutator (Lie bracket).

Historically, the first Lax-pair for a nonlinear PDE was found by P. Lax in 1968

consisting of the following two operators [71]

L =
d2

dx2
− u, M = 4

d3

dx3
− 6u

d

dx
− 3ux

such that their Lax formulation (15) gives the KdV equation

ut − 6uux + uxxx = 0 by

Lt = −ut, LM −ML = uxxx − 6uux .

The Lax-pair form of the KdV–PDE immediately shows that the eigenvalues of L
are independent of t. The key importance of Lax’s observation is that any PDE



14 Vladimir G. Ivancevic and Tijana T. Ivancevic

that can be cast into such a framework for other operators L and M , automatically

obtains many of the features of the KdV–PDE, including an infinite number of local

conservation laws.

Figure 6. Numerical solution of the damped and spatially-forced SGE

(18) in Mathematica� , with the following data (including the Gaussian

initial state, zero initial velocity and symmetric boundary condition) x ∈
[−20, 20], t ∈ [0, 30], φ(x, 0) = exp(−x2), φt(x, 0) = 0, φ(−20, t) =
φ(20, t), γ = 0.2, F (x) = 0.5sech(x). We can see the central sech-forcing

along all time axis. Damping of the SG-waves is also apparent.

For example, it was shown in [74] that the SGE (1) is integrable through the fol-

lowing Lax pair

φt = Lφ, φx = Mφ, where (16)

L =

(
i
4(φx + φt) − 1

16λe
iφ + λ

1
16λe

−iφ − λ − i
4(φx + φt)

)
, i =

√
−1

M =

(
i
4(φx + φt)

1
16λe

iφ + λ

− 1
16λe

−iφ − λ − i
4(φx + φt)

)
, λ ∈ R.

The Lax pair (16) possesses the following complex-conjugate symmetry if φ =(
φ1

φ2

)
solves the Lax pair (16) at (λ, φ), then

(
φ2

φ1

)
solves the Lax pair (16) at
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(−λ̄, φ). In addition, there is a Darboux transformation for the Lax pair (16) as

follows, let

u = φ+ 2i ln

[
iφ2

φ1

]
, u ∈ R.

If φ = φ|λ=ν for some ν ∈ R, then

ψ =

(
−νφ2/φ1 λ

−λ νφ1/φ2

)
φ

solves the Lax pair (16) at (λ, u). Also, from its spatial part φx = Mφ, a com-

plete Floquet theory can be developed. See [74] for the proofs and more technical

details.

Figure 7. Numerical solution of the damped and temporally-forced SGE

(18) in Mathematica� , with the following data (including the Gaussian

initial state, zero initial velocity and symmetric boundary condition) x ∈
[−20, 20], t ∈ [0, 30], φ(x, 0) = exp(−x2), φt(x, 0) = 0, φ(−20, t) =
φ(20, t), γ = 0.2, F (x) = 0.1sin(t/2). We can see the sine-forcing along

all time axis. Damping of the SG-waves is also apparent.
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2.4. SGE Modifications

2.4.1. SGE with Positive Sine Term

The simplest SGE modification is to replace the minus sine term with the plus sine

φtt = φxx + sinφ or φtt(x, t) = φxx(x, t) + sinφ(x, t). (17)

Again, a typical, spatially-symmetric, boundary-value problem for (17 ) is defined

by

x ∈ [−L,L] ⊂ R, t ∈ R
+

φ(x, 0) = f(x), φt(x, 0) = 0, φ(−L, t) = φ(L, t)

where f(x) ∈ R is an axially-symmetric function (see Fig. 4).

2.4.2. Perturbed SGE and π–Kinks

As we have seen above (and it was proved by [3, 91]), the (1+1) SGE is inte-

grable. In general though, the perturbations to this equation associated with the

external forces and inhomogeneities spoil its integrability and the equation can not

be solved exactly. Nevertheless, if the influence of these perturbations is small,

the solution can be found perturbatively [40]. The perturbation theory for soli-

tons was developed by [65] and subsequently applied by [79] to dynamics of

vortices in Josephson contacts. Perturbed SGEs come in a variety of forms (see,

e.g. [63–65, 79]).

One common form is a damped and driven SGE

φtt + γφt − φxx + sinφ = F (18)

where γφt is the damping term and F (x, t) is the spatiotemporal forcing. Special

cases of the forcing term F = F (x, t) in (18) are i) purely temporal F = F (t)
(e.g. periodic, see Fig. 6) ii) purely spatial F = F (x) (e.g. central-symmetric, see

Fig. 7) and iii) spatiotemporal F = F (x, t) (e.g. temporally-periodic and spatially

central-symmetric, see Fig. 8).

Considering (for simplicity) purely spatial forcing F (x, t) = F (x), it has been

shown in [36, 37] that if F (x0) = 0 for some point x0 ∈ R, this can be an equilib-

rium position for the soliton. If there is only one zero, in case of a soliton this is

a stable equilibrium position if
(
∂F (x)
∂x

)
x0

> 0. In case of an antisoliton, this is a

stable equilibrium position if
(
∂F (x)
∂x

)
x0

< 0.
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Figure 8. Numerical solution of the damped and both spatially and tempo-

rally forced SGE (18) in Mathematica� , with the following data (includ-

ing the Gaussian initial state, zero initial velocity and symmetric boundary

condition) x ∈ [−20, 20], t ∈ [0, 30], φ(x, 0) = exp(−x2), φt(x, 0) =
0, φ(−20, t) = φ(20, t), γ = 0.2, F (x, t) = 0.1sin(t/2) + 0.5sech(x).
We can see both temporal sine-forcing and spatial sech-forcing along all time

axis. Damping of the SG-waves is still visible.

In particular if

F (x) = 2(β2 − 1) sinh(βx)/ cosh2(βx), β ∈ R

the exact stationary kink–solution of (18) is

φk = 4arctan [exp (βx)] .

The stability analysis, which considers small amplitude oscillations around

φk

[
φ(k, x) = φk(x) + f(x)eλt

]
, leads to the following eigenvalue problem

L̂f = Γf, where L̂ = −∂2
x +

[
1− 2 cosh−2(βx)

]
and Γ = −λ2 − γλ.

The eigenvalues of the discrete spectrum are given by the formula

Γn = β2(Λ + 2Λn− n2)− 1

where Λ(Λ + 1) = 2/β2. The integer part of Λ, yields the number of eigenvalues

in the discrete spectrum, which correspond to the soliton modes (this includes the
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translational mode Γ0, and the internal or shape modes Γn with n > 0 (see [36,

37]).

In case of a function F defined in such a way that it possesses many zeroes, max-

ima and minima, perturbed SGE (18) describes an array of inhomogeneities. For

example,

F (x) =

q∑
n=−q

4
(
1− β2

) eβ(x+xn) − e3β(x+xn)(
e2β(x+xn) + 1

)2
where xn = (n+2) log

(√
2 + 1

)
/β (n = −q,−q+1 · · · , q− 1, q), and q+2 is

the number of extrema points of F (x). When the soliton is moving over intervals

where
dF (x)
dx < 0, its internal mode can be excited. The points xi where F (xi) = 0

and
dF (xi)

dx < 0, are ‘barriers’ which the soliton can overcome due to its kinetic

energy (for more details, see [36, 37]).

Study of non-localized π-kinks in parametrically forced SGE (PSGE)

φtt = φxx − a(t/ε) sinφ (19)

(over the fast time scale ε, where a is a mean-zero periodic function with a unit

amplitude), has been performed by [114, 115], via 2π-kinks as approximate solu-

tions. In particular, a finite-dimensional counterpart of the phenomenon of π-kinks

in PSGE is the stabilization of the inverted Kapitza pendulum by periodic vibra-

tion of its suspension point. Geometrical averaging technique of [72] was applied

as a series of canonical near-identical transformations via Arnold’s normal form

technique [6], as follows. Note that here the averaged forces in a rapidly forced

system (e.g. inverted Kapitza pendulum) are the constraint forces of an associated

auxiliary non-holonomic system and the curvature of these constraints enters the

expression for the averaged system.

Starting with the Hamiltonian of PSGE (19), given by

H(φ) =

∫ +∞

−∞

(
p2

2
+

φ2
x

2
− a cosφ

)
dx where p ≡ φt ≡ φ̇

a series of canonical transformations was performed in [114] with the aim to kill

all rapidly-oscillating terms, the following slightly-perturbed Hamiltonian was ob-

tained

Hper =

∫ +∞

−∞

(
p23
2

+
φ2
3x

2
+

1

2
ε2〈a2−1〉 sin2 φ3

)
dx+O(ε3)

which, after rescaling X = εx, T = εt, P = 2ε−1p3, Φ = 2φ3, gave the follow-

ing system of a slightly perturbed SGE with 2π-kinks as approximate solutions

ΦT = P +O(ε2), PT = ΦXX − 〈a2−1〉 sinΦ +O(ε)
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where a−1 is an anti-derivative with zero average. Finally, after rescaling back to

variables (φ3, p3), approximate solutions φ3 ≈ ψ(x, t) in the form of π-kinks were

obtained, with

ψ(x, t) = 2 arctan

[
exp

(
ε
√
〈a2−1〉

x− ct√
1− c2

)]
where c is the wave-propagation velocity. For more technical details, see [114].

In addition, the following two versions of the perturbed SGE have been studied

in [115]

1. Directly forced SGE

φtt − φxx + sinφ = Mf(ωt).

After shifting to the oscillating reference frame by the transformation

φ = θ +Mω−2F (ωt) (20)

where F has zero mean and F ′′(τ) = f(τ), the parametrically forced ODE

is obtained

θ̈ = − sin (θ +Mω−2F (ωt)) with
(21)

H =
p2

2
−A(ωt) cos(θ) +B(ωt) sin(θ)

where p is the momentum canonically conjugate to θ, and

A(ωt) = cos(Mω−2F (ωt)), B(ωt) = sin(Mω−2F (ωt)).

From (21), the corresponding evolution PDE (in canonical form) is obtained

for a new phase θ on top of a rapidly oscillating background field

θt = p, pt = θxx − sin (θ +Mω−2F (ωt)).

After retracing the identical transformation (20), the so-obtained (approxi-

mate) solutions become π-kinks (see [115] for technical details).

2. Damped and driven SGE

φtt − φxx + sinφ = Mf(ωt)− αφt + η (22)

which is frequently used to describe long Josephson junctions [79]. In (22),

φ represents the phase-difference between the quantum-mechanical wave
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functions of the two superconductors defining the Josephson junction, t is

the normalized time measured relative to the inverse plasma frequency, x is

space normalized to the Josephson penetration depth, while Mf(ωt) repre-

sents tunneling of superconducting Cooper pairs (normalized to the critical

current density).

Starting with a homogeneous transformation to the oscillating reference frame,

analogous to (20) and designed to remove the free oscillatory term φ =
θ + G(t), and substituting this transformation to (22), while choosing the

function G so that it solves the following ODE

G̈+ αĠ = Mf(ωt)

the following evolution PDE is obtained (in canonical form) [115]

θt = p, pt = θxx − αp+ η − sin(θ +G(ωt)). (23)

For the particular case of f(τ) = sin τ, the function G is found to be

G(τ) = −α

ω

M

α2 + ω2
cos τ − M

α2 + ω2
sin τ.

After a series of transformations (related to a directly-forced pendulum), in

zeroth order in α, η, the evolution PDE (23) reduces (after neglecting terms

∼ ω−3) to SGE, which has π-kink solutions. Therefore, slightly perturbed

π-kinks are approximate solutions of the original equation (22) (on top of

the rapidly oscillating background field, see [115] for technical details).

2.4.3. SGE in (2+1) Dimensions

The (2+1)D SGE with additional spatial coordinate (y) is defined on R
2,1 as

ϕtt = Δϕ− sinϕ = ϕxx + ϕyy − sinϕ. (24)

In the case of a long Josephson junction, the soliton solutions of (24) describe

Josephson vortices or fluxons. These excitations are associated with the distortion

of a Josephson vortex line and their shapes can have an arbitrary profile, which is

retained when propagating. In (24), ϕ denotes the superconducting phase differ-

ence across the Josephson junction. The coordinates x and y are normalized by

the Josephson penetration length λJ , and the time t is normalized by the inverse

Josephson plasma frequency ω−1
p (see [41] and references therein).

A special class of solutions of (24) can be constructed by generalization of the

solution of (1) which does not depend on one of the coordinates, or, obtained by
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Lorentz transforming the solutions of a stationary 2D SGE. However, there are

numerical solutions of (24) which cannot be derived from the (1) or (3), e.g. radial

breathers (pulsons) [41].

A more general class of solutions of the (2+1)D SG equation has the following

form

ϕ(x, y, t) = 4 arctan exp [y − f(x± t)] (25)

which exactly satisfies (24) with an arbitrary real-valued twice-differentiable func-

tion f = f(x± t).

Because of the arbitrariness of f , solution (25) describes a variety of excitations of

various shapes. Choosing f localized in a finite area, e.g. f = A/ cosh(x − t),
solution (25) describes an excitation, localized along x that keeps its shape when

propagating, i.e., a solitary wave (in the sense of [91]). For each solitary wave

of this type, there exists an anti-partner with an f of opposite sign in (25). For

solitary waves to be solitons, there is an additional important criterion restoring

their shapes after they collide.

Consider a trial function

ϕ(x, y, t) = 4 arctan exp [y − f(x+ t)± f(x− t)]

that, when t → −∞, describes the propagation of two solitary shape waves toward

each other (minus sign) or a solitary wave and its anti-partner (plus sign). One can

see that (25) can only approximately satisfy (24) when |f ′(x + t)f ′(x − t)| � 1
for all values of x and t. This suggests that, in general, the condition for restoring

the shapes may not be satisfied. In general case, (24) can not be satisfied, that

prompts that the collision of two solitary waves leads to distortion of the original

excitations [41].

The excitations, described by f in (25) are similar to elastic shear waves in solid

mechanics [34]. Since the equation (24) is Lorentz-covariant, we can obtain other

solutions performing Lorentz transformations on (25), which leads to a class of

solutions of the form [41]

ϕ(x, y, t) = 4 arctan exp

[
y − v t√
1− v2

− f

(
x± t− v y√

1− v2

)]
.

2.4.4. Two Coupled SGEs

The following two-parameter system of two coupled SGEs was introduced by [66]

φtt − φxx = −β2 sin(φ− ψ) (26)

ψtt − α2ψxx = sin(φ− ψ), with constants α, β > 0.



22 Vladimir G. Ivancevic and Tijana T. Ivancevic

Figure 9. Numerical solution of the SGE-system (26) in Mathematica�,
with the following data x ∈ [−10, 10], t ∈ [0, 5], α = 0.5, β =
0.3, φ(x, 0) = 0.3 exp(−x2), ψ(x, 0) = 0.7 exp(−x2), φt(x, 0) =
0, φ(−10, t) = φ(10, t), ψt(x, 0) = 0, ψ(−10, t) = ψ(10, t).

For numerical solution, see Fig. 9.

The SGE-system (26) has been exactly solved by [92], where (using a series of

substitutions) it was first reduced to the nonlinear second-order ODE

ϕ′′(ξ) =

[
1 + α2β2 − c2

(
1 + β2

)
(c2 − 1) (c2 − α2)μ2

+
2ϕ′2

ϕ(ξ)2 + 1

]
ϕ(ξ) (27)

equivalent to the following autonomous system in the (X,Y )− plane

dX

dξ
= Y,

dY

dξ
=

[
1 + α2β2 − c2

(
1 + β2

)
(c2 − 1) (c2 − α2)μ2

+
2Y 2

X2 + 1

]
X. (28)

System (28) has an equilibrium point at the origin (X,Y ) = (0, 0), in which the

Jacobian matrix is

J(0,0) =

(
0 1
λ 0

)
with λ =

α2β2 − c2
(
1 + β2

)
+ 1

(c2 − 1) (c2 − α2)μ2
·

The phase portraits from this system show that there exist periodic solutions of the

coupled SGEs (26).

Using the exponential ansatz

ϕ(ξ) =
p exp(ξ) + q exp(−ξ)

r exp(ξ) + s exp(−ξ)
, with constants p, q, r, s ∈ R
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four pairs of analytic solutions of the system (27), and therefore of the system (26),

were found in [92]. We present here only the first two (simpler) solution pairs

φ1(x, t) =
β2

4 (c2 − 1)μ2
sin(2ξ) + c1ξ + c2

ψ1(x, t) =
β2

4 (c2 − 1)μ2
sin(2ξ) + c1ξ + c2− 2 arctan(tan(ξ))

ξ = μ(x− ct), c =

√
1− α2β2

1− β2

and

φ2(x, t) =
β2

4 (c2 − 1)μ2
sin(2ξ) + c1ξ + c2

ψ2(x, t) =
β2

4 (c2 − 1)μ2
sin(2ξ) + c1ξ + c2− 2 arctan(cot(ξ))

ξ = μ(x− ct), c =

√
1− α2β2

1− β2
·

For more technical details, see [92].

2.5. Sine–Gordon Chain and Discrete Breathers

2.5.1. Frenkel–Kontorova Model

The original Frenkel–Kontorova model [9,10,33] of stationary and moving crystal

dislocations, was formulated historically decades before the continuous SGE. It

consists of a chain of harmonically coupled atoms in a spatially periodic potential,

governed by the set of differential-difference equations

φ̈n +
1

Δx2
[φn+1 − 2φn + φn−1] + sinφn = 0 (29)

where φn denotes the position of the nth atom in the chain. Alternatively, system

(29) represents a chain of torsionally-coupled pendula (see Fig. 2), where φn is the

angle which the nth pendulum makes with the vertical.

2.5.2. Sine–Gordon Chain

To derive dynamical equations of the sine–Gordon chain (SGC), consisting of an-

harmonic oscillators with the coupling constant μ, we start with the three-point,
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central, finite-difference approximation of the spatial derivative term φxx in the

SGE

φxx ≈ 1

Δx2
[φn+1 − 2φn + φn−1] +O(x2)

= − 1

Δx2
[(φn − φn−1)− (φn+1 − φn)] +O(x2).

Applying this finite-difference approximation to the SGE (1), and also performing

the corresponding replacements φ → φn, φtt → φ̈n and μ = 1/Δx2, we obtain

the set of difference ODEs defining the SGC

φ̈n + μ [(φn − φn−1)− (φn+1 − φn)] + sinφn = 0. (30)

The system (30) describes a chain of interacting particles subjected to a periodic

on-site potential V (x) = sin(x). In the continuum limit, (30) becomes the standard

SGE (1) and supports stable propagation of a kink-soliton of the form (14).

Figure 10. Simple sine–Gordon chain (SGC) with the coupling constant μ
and the periodic on-site potential V (x) = sin(x).

The linear-wave spectrum of (30) around a kink has either one or two localized

modes (which depends on the value of μ) [90]. The frequencies of these modes lie

inside the spectrum gap. The linear spectrum, with the linear frequency ω and the

wave number k, is given by

ω2 = 1 + 4μ sin2
k

2
(31)

while the gap edge frequency is ω = 1.

The simplest example of (30), containing only two oscillators, is defined by [90]

φ̈1, 2 + μ(φ1, 2 − φ2, 1) + sinφ1, 2 = 0. (32)

It was demonstrated in [38], using the method of averaging in fast oscillations, that

a perturbed SGC, damped and driven by a large-amplitude ac-force, might support

localized kink solitons. Specifically, they considered the perturbed SGC

φ̈n − μ [φn+1 − 2φn + φn−1] + sinφn = χ+ α sinωt− γφ̇n (33)

where χ is a dc-force, α and ω are the normalized (large) amplitude and frequency

of a periodic force, respectively, while γ is the normalized dissipative coefficient.

Without the forcing on the right-hand side, (33) reduces to (30).
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2.5.3. Continuum Limits

Perturbed SGEs have their corresponding perturbed SGCs. The following 0-π SGC

was proposed in [20]

φ̈n =
φn−1 − 2φn + φn+1

a2
− sin(φn + θn) + γ (34)

as an equation of a phase φn-motion (of a 0-π array of Josephson junctions). Here,

a is the lattice spacing parameter, γ > 0 is the applied bias current density, and

θn = (0 if n ≤ 0 and −π if n > 0) is the phase jump of π in φn. The SGC

equation (34) is derived from the following discrete Lagrangian

LD =

∫ ∑
n∈Z

[
1

2

(
dφn

dt

)2

− 1

2

(
φn+1 − φn

a

)2

− 1 + cos(φn + θn) + γφn

]
dt.

(35)

In the continuum limit a � 1 Lagrangian (35) becomes

LC =

∫∫ ∞

−∞

[
1

2
(φt)

2 − 1

2

(
L̃aφx

)2
− 1 + cos(φ+ θ) + γφ

]
dx dt

from which, the continuum limit of (34) gives the following perturbed SGE

φtt = Laφxx − sin(φ+ θ) + γ

where θ = (0 if x ≤ 0 and −π if x > 0), while the differential operators Laφxx

and L̃aφx are given by the following Taylor expansions

Laφxx =
φn−1 − 2φn + φn+1

a2
= 2

∞∑
k=0

a2k

(2k + 2)!
∂k
xxφxx(na)

L̃aφx =
φn+1 − φn

a
=

∞∑
k=0

ak

(k + 1)!
∂k
xφ(na).

For more technical details, including several other continuum limits, see [20].

2.5.4. Discrete Breathers

Generally speaking, it is a well-known fact (see, e.g. [30] and references therein)

that different types of excitations, most notably phonons (propagating linear waves)

and discrete breathers (DBs for short which are time-periodic spatially localized

excitations, also labeled intrinsic localized modes or discrete solitons) can oc-

cur as solutions of spatially-discrete nonlinear lattices. According to S. Flach et
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al [28, 30, 32] DBs are caused by a specific interplay between the nonlinearity and

discreteness of the lattice. The lattice nonlinearity provides with an amplitude-

dependent tunability of oscillation or rotation frequencies of DBs, while its spatial

discreteness leads to finite upper bounds of the frequency spectrum of small am-

plitude waves. DBs are not sensitive to specific types of nonlinearities in the lattice

nor are they confined to any lattice dimensions. They are (usually) dynamically and

structurally stable and emerge in a variety of physical systems (ranging from lat-

tice vibrations and magnetic excitations in crystals to light propagation in photonic

structures and cold atom dynamics in periodic optical traps, see [31]). Although

DBs present complex dynamical objects, experimental measurements can (in many

cases) be well understood by using their time-averaged properties (see [78]). In

addition, nonlinear discrete lattices admit different types of DBs depending on the

spectrum of linear waves propagating in the lattice [7,28,29,32], including acoustic

breathers, rotobreathers and optical breathers (see Fig. 11).

Figure 11. Different types of discrete breathers (DBs): acoustic breather

(top), rotobreather (middle), and optical breather (bottom). Modified and

adapted from [7, 28, 29, 32]).

A particular system studied in [28,31] has been characterized by the lattice Hamil-

tonian

H =
∑
n

[
1

2
ẋ2n +W (xn − xn−1) + V (xn)

]
(36)

=
∑
n

[
1

2
p2n +W (xn − xn−1) + V (xn)

]
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where xn = xn(t) are time-dependent coordinates with canonically-conjugate

momenta pn = ẋn(t), W (xn) = W (x) is the nearest neighbor interaction, and

V (xn) = V (x) is an optional on-site (substrate) potential. From (36) the follow-

ing equations of motion are derived

ẍn = −W ′(xn − xn−1) +W ′(xn+1 − xn)− V ′(xn) or

ẋn = ẋn, ṗn = −W ′(xn − xn−1) +W ′(xn+1 − xn)− V ′(xn)

where (for simplicity) the following zero initial conditions are assumed

V (0) = W (0) = V ′(0) = W ′(0) = 0, V ′′(0) ≥ 0, W ′′(0) > 0.

Hamiltonian (36) supports the excitation of small amplitude linear waves

xn(t) ∼ exp [i(ωqt− qn)]

with the wave number q and the corresponding frequency spectrum ω2
q which, due

to the underlying lattice, depends periodically on q

ω2
q = V ′′(0) + 4W ′′(0) sin2

(q
2

)
and its absolute value has always a finite upper bound. The maximum (Debye)

frequency of small amplitude waves is

ωq =
√

V ′′(0) + 4W ′′(0) .

DBs exist for different types of potentials W (x) and V (x). DB solutions are [28]

i) time-periodic x̂n(t + Tb) = x̂n(t), and ii) spatially localized x̂|n|→∞ → 0. In

addition, if the Hamiltonian H is invariant under a finite translation/rotation of

any xn → xn + λ, then discrete rotobreathers may exist (see [103]), which are

excitations characterized by one or several sites in the breather center evolving in

a rotational state x̂0(t + Tb) = x̂0(t) + λ, while outside this center the lattice is

governed again by time periodic spatially localized oscillations.

3. Sine–Gordon Solitons, Kinks and Breathers in Living
Cellular Structures

In this section, we give the applications of the sine–Gordon equation (and the va-

riety of its traveling–wave solutions), as spatiotemporal models of nonlinear exci-

tations in living cellular structures.



28 Vladimir G. Ivancevic and Tijana T. Ivancevic

3.1. SGE Solitons in DNA

In this subsection, we review the first three papers describing SGE–solitary exci-

tations in DNA. The idea that it is possible that soliton excitations may suggest

a discovery of a new mechanism in the duplication of DNA and the transcription

of messenger ribonucleic acid (mRNA) goes back to [25], who demonstrated the

existence of transiently open states in DNA and synthetic polynucleotide double–

helices, by hydrogen exchange measurements.

The first two papers in this domain were published by [110] and [113] – inciden-

tally, under the same title, in the same journal (PRA), using two slightly-different

modifications of the same coupled SGE–system (26).

Note that, in the same period, Yakushevich et al performed their SGE–solitary

studies of DNA (see [108, 109] and references therein), focusing on the effects

of weak inhomogeneities in simple DNA fragments (consisting of uniform base

sequences of a given type followed by uniform base sequence of the other type),

which were described in terms of a parametrically–perturbed SGE.

Note that, according to the standard Watson–Crick double–helix B−form DNA

model, the two polynucleotide strands forming a double helix are held together

by hydrogen H-bonds. Yomosa was assuming that the H-bonding and the stack-

ing energies (consisting of the electrostatic, the exchange, the charge-transfer, as

well as the induction and dispersion interactions), were roughly proportional to the

overlaps of molecular orbitals.

Firstly, Yomosa considered in [110] (see also [111]) the Watson–Crick B−form

model, in which the zero-level of the energies EB and ES are taken for the B−form

of DNA and polynucleotide duplexes, while the mean energy of distorted double

and triple H-bonds in A − T (adenine–thymine) and G − C (guanine–cytosine)

base pairs is approximately represented (by the formula for molecular association

in liquids by [89]) for the energy of a distorted single H-bond. In this model the

conformation and stability of DNA and the polynucleotide double helices are de-

termined by

1. The energy EB of the hydrogen H-bonds between inter-strand complemen-

tary base pairs, given by

EB =
∑
n

B[1− cos(θn − θ′n − π)]

where B is a parameter associated with the H-bond energy, while θn =
�(Bn, Pn) and θ′n = �(B′

n, P
′
n) denote angles between horizontal projec-

tions of the complementary base pairs and their corresponding axes, and
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2. The stacking energy ES between intra-strand adjacent bases, given by

ES =
∑
n

S[1− cos(θn − θn−1 − α0)] + S[1− cos(θ′n − θ′n−1 − α0)]

where S is a parameter associated with the stacking energy of DNA chains

and α0 = 36◦.

Next, by adding the rotational kinetic energy

Trot =
1

2

∑
n

I[θ̇2n + θ̇′2n ]

(where I is the mean value of the moments of inertia In of the bases for the ro-

tations around the axes P ) to the potential energies EB and ES , the following

SG–chain Hamiltonian for DNA and synthetic polynucleotide double–helices was

formulated

H = Trot + EB + ES =
1

2

∑
n

I[θ̇2n + θ̇′2n ] +
∑
n

B[1− cos(θn − θ′n − π)]

(37)
+
∑
n

{
S[1− cos(θn − θn−1 − α0)] + S[1− cos(θ′n − θ′n−1 − α0)]

}
.

From the Hamiltonian (37), via canonical Hamiltonian formalism, the following

two sets of coupled SGC–equations of motion were derived in [110]

Iθ̈n +B sin(θn − θ′n−π) + S[sin(θn − θn−1 − α0)− sin(θn+1 − θn − α0)] = 0

Iθ̈′n +B sin(θn − θ′n−π) + S[sin(θ′n − θ′n−1 − α0)− sin(θ′n+1 − θ′n − α0)] = 0.

Further, by linearizing this coupled ODE-system (assuming the smallness of the

angles θn − θn−1 − α0 and θ′n − θ′n−1 − α0) and subsequently performing the

continuum limit

θn(t) → θ(x, t), θ′n(t) → θ′(x, t). (38)

Yomosa derived the following system of two coupled SGEs, of the (slightly-modi-

fied) form of (26)

Iθtt − Sθxx = −B sin(θ − θ′ − π)
(39)

Iθ′tt − Sθ′xx = B sin(θ − θ′ − π).

Unfortunately, in his time, Yomosa was not able solve the coupled system (39),

so he took the difference of the two SGEs and obtained the following single SGE

representing a dynamic (plane) base-rotator model

1

v20
φtt = φxx −

1

l2
sinφ, where v0 =

√
S/I, l =

√
S/2B. (40)
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Finally, by imposing the following boundary condition

cosφ = 1 for φ = 2πn, n = 0,±1, ...

at ξ = ±∞ at x = ±∞ for all t

the following traveling solitary-wave solutions of (40) were obtained in the form

(11) of a kink–antikink pair

φ(x, t) = 4 arctan exp

[
± (ξ − ξ0)√

1− v/v20l

]
.

Secondly, Zhang clarified in [113] the pioneering (and therefore somewhat-messy)

approach of Yomosa and proposed the following modified SGC–Hamiltonian for

the B−form DNA double–helix (rewritten here in above Yomosa’s notation for

consistency)

H =
1

2

∑
n

I[θ̇2n + θ̇′2n ] +
∑
n

V (θn, θ
′
n)

(41)

+
1

2

∑
n

[
S(θn − θn−1)

2 + S(θ′n − θ′n−1)
2
]

where V (θn, θ
′
n) is the inter-strand interaction energy in nth base pair, given by

V (θn, θ
′
n) = B[1− cos(θn − θ′n)] + λ(1− cos θn) + λ(1− cos θ′n)

+β
{
3(1− cos θn cos θ

′
n)− [1− cos(θn − θ′n)]

}
where the zero-level of the energy is taken for the B−form DNA, the same way as

Yomosa did. From the Hamiltonian (41), the following SGC–equations of motion

were derived in [113]0

Iθ̈n +B sin(θn − θ′n) + β[3 sin θn cos θ
′
n − sin(θn − θ′n)] + λ sin θn

= S(θn+1 − 2θn + θn−1) (42)

Iθ̈′n −B sin(θn − θ′n) + β[3 cos θn sin θ
′
n + sin(θn − θ′n)] + λ sin θ′n

= S(θ′n+1 − 2θ′n + θ′n−1).

By performing the approximation (38), Zhang introduced the continuum variables

θ and θ′. Subsequently, by introducing new variables φ = θ + θ′, ψ = θ − θ′, he

obtained the following system of two perturbed and coupled SGEs

φxx − (1/c20)φtt = (1/l2) sinφ+ (2/α2) sin(φ/2) cos(ψ/2)

ψxx − (1/c20)ψtt = (1/l2) sinψ + (2/α2) sin(ψ/2) cos(φ/2)

where c0 =
√
S/I, l =

√
S/(3β), α =

√
S/λ
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which cannot be solved analytically. So, by setting λ = 0 in (42), Zhang arrived at

the following system of two independent SGEs (with Q = (2B + β)/(3β)

φxx − (1/c20)φtt = (1/l2) sinφ
(43)

ψxx − (1/c20)ψtt = (Q/l2) sinψ

with the simple solution of a single soliton with velocity c,

φ±
0 (x, t) = 4 arctan exp (±z) , ψ±

0 (x, t) = 4 arctan exp
(
±
√
Qz

)
(44)

where

z = (γ/l)(ξ − ξ0), ξ = x− ct, γ = 1/
√
1− c2/c20.

Finally, by returning to original continuum variables θ and θ′, from (44), Zhang

obtained a set of π-kink/antikink and 2π-kink/antikink solutions (see [113] for

more technical details).

The third (and most-cited) paper in this domain (of SGE–solitary excitations in

DNA) was Salerno [93] (see also [94, 95] ), who proposed a discrete SGC model

for DNA-promoter dynamics. He introduced the following SGC–Hamiltonian

(slightly refined from Yomosa’s and Zhang’s Hamiltonians)

H =
1

2

N∑
n=1

I[ψ̇2
n + θ̇2n] +

N∑
n=1

K
[
(ψn+1 − ψn)

2 + (θn+1 − θn)
2
]

(45)

+
N∑

n=1

ηn[1− cos(ψn − θn)]

where N is the number of base-pairs in the SGC and K is the backbone spring

constant along both DNA–helices. ηn is a nonlinear parameter used to model the

strength of H-bonds between complementary bases, chosen according to the fol-

lowing rule ηn = λnβ with λn = 2 if it refers to A − T or T − A pairs, λn = 3
otherwise, with β a free parameter. From the Hamiltonian (45), the following

SGC–equations of motion were derived

Iψ̈n = K(ψn+1 − 2ψn + ψn−1)−
β

2
λn sin(ψn − θn)

(46)

Iθ̈n = K(θn+1 − 2θn + θn−1)−
β

2
λn sin(θn − ψn).

Further, from (46), the following SGC–equation of motion is obtained for the angle

difference φn = ψn − θn, between complementary bases

φ̈n = φn+1 − 2φn + φn−1 −
β

K
λn sinφn. (47)
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We remark that the ODE (47) has the standard form of (30) and from it, in the

continuum limit, the standard SGE (1) is obtained, with exact soliton solutions (as

described in the Subsection 2.3.1.before). Salerno used the ODE–model (47) to

study nonlinear wave dynamics of the T7A1−DNA promoter (see [93] for further

technical details).

3.2. SGE Solitons in Protein Folding

For over a decade, it has been known that nonlinear excitations can influence con-

formational dynamics of biopolymers. E.g. the effective bending rigidity of a

biopolymer chain could lead to a buckling instability [77]. Subsequently, several

models have been proposed to explain such protein transition (see, e.g. [101] and

references therein).

In this subsection, we review two protein–folding dynamics papers. Firstly, it was

suggested in [12] that protein folding may be mediated via interaction of the pro-

tein (molecular) chain with SGE–solitons which propagate along the chain. Local

potential energy of the chain is modeled by an asymmetric double-well potential

V (ϕ) = ε(ϕ+ δ)2(ϕ2 − 2

3
ϕδ +

1

3
ϕ2 − 2)

where the scalar variable ϕ represents local conformation of the protein, ε is a

small positive parameter, while δ is the asymmetry parameter (ranging from −1
to +1). The two minima of the potential, corresponding to the local α- and β-

conformations of the chain, are positioned at ϕ = ±1 and the energy-difference

between them is ΔE = 16
3 εδ.

Solitonic excitations are realized in [12] by an additional, dissipative SGE–field

φ(x), where x is the position along the protein. The following interaction potential

(with the positive parameter Λ) is used to mediate interaction between the two

fields

u(φ, ϕ) =
Λ

Λ + 1
(1− cosφ)ϕ2.

The following dissipative equations of motion are derived [12]

φtt = φxx −
1 + Λϕ2

1 + Λ
sinφ− γφφt

(48)

mϕtt = −4ε(ϕ+ δ)(ϕ2 − 1)− 2Λ

1 + Λ
ϕ(1− cosφ)− γϕϕt

where γφφt and γϕϕt are dissipative terms. In the small interaction limit (ignoring

γφφt), it is chosen

φ(x, t) = f(x− vt) + Δθ(x, t), ϕ(x, t) = 1 +Δϕ(x, t)



Sine–Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear... 33

where f(z) = 4 arctan(e−z) is the usual SGE–kink, moving with velocity v. For

ϕ(x, t), the following approximate sech–soliton solution is obtained

Δϕ � − 4Λ/m

v2 + (ω/2)2
1

cosh2(x− vt)
·

So, near the center of the φ kink, ϕ is pushed away from its local minima ϕ = 1
towards the other local minima. A localized static solution of (48) is found to be

φ = 4tan−1 1

q +
√
1 + q2

, ϕ2 = 1− Λ

ε(1 + Λ)

1

1 + q2

where q ≡
√
1− a sinh(x−x0), a = Λ2/[2ε(1+Λ)2] (for more technical details,

see [12]).

More recently, a Lagrangian field–theory based modeling approach to protein fold-

ing has been proposed in [62]. They proposed the protein Lagrangian including

three terms

i) nonlinear unfolding φ4−protein at the initial state

Lunf =
1

2
(∂μφ)

† (∂μφ) +
m4

φ

λφ

[
1− cos(

√
λφ

mφ
|φ|)

]

ii) nonlinear sources injected into the backbone, modeled by ψ4 self-interaction

Lsrc =
1

2
(∂μψ)

† (∂μψ) +
λψ

4!
(ψ†ψ)2

iii) the interaction term (with the coupling constant Λ)

Lint = −Λ (φ†φ)(ψ†ψ).

The total potential (from all three terms) reads

Vtot(φ, ψ) =
m4

φ

λφ

[
1− cos(

√
λφ

mφ
|φ|)

]
+

λψ

4!
(ψ†ψ)2 − Λ (φ†φ)(ψ†ψ).

Assuming that λφis small enough to be approximately at the same order with λψ,

the first term can be expanded in term of
√
λψ, giving (up to the second order

accuracy)

Vtot(φ, ψ) ≈
m2

φ

2
φ†φ− λφ

4!
(φ†φ)2 +

λψ

4!
(ψ†ψ)2 − Λ (φ†φ)(ψ†ψ)
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from which the total Lagrangian Ltot = Lunf+Lsrc+Lint can be (up to the second

order accuracy) approximated by

Ltot(φ, ψ) =
1

2

[
(∂μφ)

† (∂μφ) + (∂μψ)
† (∂μψ)

]
(49)

+
m2

φ

2
φ†φ− λφ

4!
(φ†φ)2 +

λψ

4!
(ψ†ψ)2 − Λ (φ†φ)(ψ†ψ).

From the Euler–Lagrangian PDEs for the total Lagrangian (49)

∂Ltot

∂|φ| − ∂μ
∂Ltot

∂(|∂μφ|)
= 0,

∂Ltot

∂|ψ| − ∂μ
∂Ltot

∂(|∂μψ|)
= 0

the following coupled and perturbed SGE and (nonlinear) KGE with cubic forcing

are derived

φtt = φxx −
m3

φ√
λφ

sin(

√
λφ

mφ
|φ|) + 2Λ |φ||ψ|2 (50)

ψtt = ψxx −
λψ

6
|ψ|3 + 2Λ |ψ||φ|2 (51)

where λφ− and λψ−terms determine nonlinearities of backbone and source, re-

spectively.

Numerical solution of the two coupled (1+1) PDEs, (50)–(51), with the following

boundary conditions

φ(0, t) = φ(L, t) = 0 and ψ(0, t) = ψ(L, t) = 0 for 0 ≤ t ≤ b
φ(x, 0) = p(x) and ψ(x, 0) = f(x) for 0 ≤ x ≤ L
φt(x, 0) = q(x) and ψt(x, 0) = g(x) for 0 < x < L

(52)

(where p(x), q(x), f(x) and g(x) are auxiliary functions), would describe the

contour of conformational changes for protein folding. It was performed in [62]

using the following forward finite differences

φi,j+1 = 2φi,j − φi,j−1 +Δt2(
φi+1,j − 2φi,j + φi−1,j

Δx2
+ 2Λψ2

i,jφi,j

−
m3

φ

�3
√
λφ

sin(

√
λφ

mφ
φi,j))

ψi,j+1 = 2ψi,j − ψi,j−1

+ Δt2(
ψi+1,j − 2ψi,j + ψi−1,j

Δx2
+ 2Λw2

i,jψi,j −
λψ

6
ψ3
i,j)
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where the values at the first time-step t1 are given by the boundary conditions (52),

while the values at the second time-step t2 are determined by the 2nd-order Taylor

expansion

φi,2 = pi −Δtqi +
1

2
Δt2(

pi+1 − 2pi + pi−1

Δx2
+ 2Λf2

i pi

−
m3

φ

�3
√

λφ

sin(

√
λφ

mφ
pi)) for i = 2, 3, · · · , N − 1

ψi,2 = fi −Δtgi +
1

2
Δt2(

fi+1 − 2fi + fi−1

Δx2
+ 2Λp2i fi −

λψ

6
f3
i ).

For more technical details, see [62].

3.3. SGE Solitons in Microtubules

In this subsection, we review two most-significant papers describing SGE–solitary

excitations in microtubules (MTs) and then point-out to some related quantum

studies of neural MTs.

MTs are major cytoskeletal proteins assembled from the tubulin protein that plays

a crucial role in all eukaryotic cells. MT functions include cellular orientation,

structure and guidance of membrane and cytoplasmic movement, which are cru-

cial effects to cell division, morphogenesis, and embryo development. MT struc-

ture is a hollow cylinder that typically involves 13 protofilaments (of protein dimers

called tubulins). Each protofilament is formed from tubulin molecules arranged in

a ‘head-to-tail joint’ fashion. The inner and the outer diameters of the cylinder

are 15nm and 25nm, while its length may span dimensions from the order of mi-

crometer to the order of millimeter. Each dimer is an electric dipole whose length

and longitudinal component of the electric dipole moment are 8nm and 337Debye,

respectively. The constituent parts of the dimers are α and β tubulins, correspond-

ing to positively and negatively charged sides, respectively (see [22], as well as

references in [96–98, 112]).

3.3.1. Soliton Dynamics in MTs

To the best of our knowledge, the first paper describing soliton dynamics in MTs

was [96] (cf also [97, 98, 112], for a recent review, see [54]), in which Satarić et al
developed a ferroelectric model of neural MTs where the motion of MT subunits

is reduced to a single longitudinal DOF per dimer at a position n, denoted by φn.
The overall effect of the surrounding dimers on a dipole at a chosen site n can be
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qualitatively described by the following double-well quartic potential

V (φn) = −1

2
Aφ2

n +
1

4
Bφ4

n (53)

where A and B are real parameters (A is a linear function of temperature). As

an electrical dipole, a dimer in the intrinsic electric field of the MT acquires the

additional potential energy given by

Vel = −qEφn

where q = 18× 2e (e = electron charge) denotes the effective mobile charge of a

single dimer and E is the magnitude of the intrinsic electric field. In addition, two

more MT–related energies can also be defined

i) the potential energy of restoring strain–forces between adjacent dimers in

the protofilament (with a unique spring/stiffness constant k)

Vstr =
1

2
k(φn+1 − φn)

2 and

ii) the (velocity φ̇n−dependent) kinetic energy associated with the longitudinal

displacements of constituent dimers with unique mass m

T (φ̇n) =
1

2

N∑
n=1

mφ̇2
n

where N is the total number of constituent dimers in the microtubular chain
(MTC).

The full MTC–Hamiltonian is now given by

H = T (φ̇n) + Vstr + V (φn) + Vel
(54)

=

N∑
n=1

[
1

2
mφ̇2

n +
1

2
k(φn+1 − φn)

2 − 1

2
Aφ2

n +
1

4
Bφ4

n − qEφn

]
.

Also, in order to derive a realistic equation of motion for the MTC, it is indispens-

able to include the viscous force Fv(φ̇n)=−γφ̇n, with the damping coefficient γ.

We remark here that the friction γ should be viewed as an environmental effect,

which does not lead to energy dissipation which is a well-known result, relevant to

energy transfer in biological systems [69].
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Using the Hamiltonian (54) together with the damping force Fv(φ̇n), and sub-

sequently performing the continuum limit (with equilibrium spacing r0 between

adjacent dimers)

φn(t) → φ(x, t)

φn+1(t) → φ(x, t) + r0φx(x, t) +
1

2
r20φxx(x, t) + ...

– Satarić et al finally derived their nonlinear (forced and damped) wave equation

mφtt + γφt − kr20φxx = Aφ−Bφ3 + qE. (55)

The importance of the electric force term qE lies in the fact that the PDE (55)

admits soliton solutions with no energy loss, which acquires the form of a traveling

wave, and can be expressed by defining a normalized displacement field [69]

ψ(ξ) =
φ(ξ)√
A/B

with ξ = α(x− vt), α =

√
|A|

m(v20 − v2)

where v0 =
√
k/mr0 is the sound velocity and v is the soliton–propagation ve-

locity. In terms of the ψ(ξ) variable, the wave equation (55) reduces to a damped

anharmonic oscillator ODE

ψ′′ + ρψ′3 + ψ + σ = 0 where (56)

ρ = γv[m|A|(v20 − v2)]−
1

2 , σ = q
√
B|A|−3/2E

which has a unique bounded solution [96]

ψ(ξ) = a+
b− a

1 + exp
(
b−a√

2
ξ
) such that (57)

(ψ − a)(ψ − b)(ψ − d) = ψ3 − ψ −
(

q
√
B

|A|3/2E
)
. (58)

So the kink propagates along the protofilament axis with fixed velocity

v = v0/
√
1 + 2γ2/(9d2m|A|)

which depends on the strength of the electric field E via (58). The total conserved
energy of the kink (57) is given by

E =
2
√
2

3

A2

B
+

√
2

3
k
A

B
+

1

2
m∗v2 where

(59)

m∗ =
4

3
√
2

mAα

r0B
is kink’s effective mass.
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The first term of (59) expresses the binding energy of the kink and the second the

resonant transfer energy (note that in realistic biological models, the sum of these

two terms dominate over the third term, being of order of 1eV).

For the further development of the theory, with kink-antikink waves traveling in

opposite directions along the MTC, see [75, 96–98, 112].

Now, from our general SGE perspective, Satarić model (55) can be approximated

by the perturbed SGE (18), rewritten here for our readers’ convenience

φtt + γφt − φxx + sinφ = F

and if we apply the following assumptions

i) normalized units m = k = r0 = 1

ii) electrical force qE = F ≡ F (x, t)

iii) using the (first two terms of the) Taylor–series expansion of the sine term

sinφ = φ− 1

6
φ3 +O(φ4) ≈ Aφ−Bφ3. (60)

Using assumptions i)–ii) and approximation (60), all results of the Section 2.4.2.

(illustrated with the simulation Figures 4–8) are ready to be employed for the fur-

ther SGE analysis of solitary excitations in microtubules.

The second paper describing soliton dynamics in MTs was [13]. Under similar as-

sumptions as [96], they proposed the same expresions for the kinetic energy T (φ̇n)
and potential energy Vstr of restoring strain–forces between adjacent dimers. How-

ever, in contrast to the quartic potential (53), Chou et al followed the recipes from

solid state physics [21] and expressed the interaction for the nth tubulin molecule

of a protofilament by the following periodic (effective) potential

V (φn) = V0

[
1− cos(

2πφn

a0
)

]
where V0 is the half-height of the potential energy barrier, φn is the displacement

of the nth tubulin molecule within a particular protofilament and a0 = 8nm is

the distance between the centers of two neighboring tubulin molecules along a

protofilament. In this way, they defined the following MTC–Hamiltonian

H = T (φ̇n) + Vstr + V (φn)
(61)

=
N∑

n=1

[
1

2
mφ̇2

n +
1

2
k(φn+1 − φn)

2 + V0(1− cos
2πφn

a0
)

]
.
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Using canonical Hamilton’s equations, from (61) they derived the MTC–equations

of motion for the nth tubulin molecule within a protofilament (for n = 1, 2, ...N )

mφ̈n = k(φn+1 − 2φn + φn−1)−
2πV0

a0
sin

2πφn

a0
· (62)

In the continuum limit φn(t) → φ(x, t), the MTC–equations of motion (62) reduce

to the SGE

mφtt = ka20φxx − (
2π

a0
)2V0 sinφ or

(63)

φtt =
1

c2
φxx −

1

l2
sinφ with c2 =

ka20
m

,
1

l2
=

4π2V0

ka40

which is the same SGE as (43) that was used by [113] for DNA–solitons, with

kink–antikink solutions (44). Using (63), Chou et al showed that there was a

very high and narrow peak at the center of the kink width, implying that a tubu-

lin molecule would have its maximum momentum when it reaches the top of the

periodic potential (for more technical details, see [13]).

In particular, in the case of neural MTs, possibility for sub-neuronal processing of

information by cytoskeletal tubulin tails has been proposed by [35], by showing

that local electromagnetic field supports information that could be converted into

specific protein tubulin-tail conformational states. Long-range collective coherent

behavior of the tubulin tails could be modeled in the form of sine-Gordon kinks,

antikinks or breathers that propagate along the microtubule outer surface, and the

tubulin-tail soliton collisions could serve as elementary computational gates that

control cytoskeletal processes. The authors of [35] have used the results of [1],

combined with the elastic ribbon SGE–model of [21]. Applying Bäcklund trans-

formations (4) they found two- and three-soliton solutions, as well as their elastic

collisions. They developed Maple�-based animations of a whole ‘zoo’ of collid-

ing solitons, including kink/antikink pairs and three types of breathers i) a standing

breather, ii) a traveling large amplitude breather and iii) a traveling small amplitude

breather.

We remark that standing breather soliton could be obtained in vivo in experiments

in which the electric-field vector acts perpendicular to the microtubule z− axis. If

a local vortex of the electromagnetic field is created somewhere in the neuron, then

the exerted action of the electric field vector along the z-axis will be zero and no

traveling soliton would be born. This standing breather, swinging at certain tubulin

tail could catalyze attachment/detachment of microtubule associated proteins and

promote or inhibit the kinesin walk.
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3.3.2. The Liouville Stringy Arrow of Time in Neural MTs

Now, recall that the term cubic in ψ in the equation of motion (56) was responsible

for the appearance of a kink-like classical solution. Let us formulate a Liouville

(1 + 1)−string theory of the neural MT–complex, following [75], and consider a

general polynomial in T equation of motion for a static tachyon

T ′′(ξ) + ρT ′(ξ) = P (T ) (64)

(where ξ is some space-like coordinate and P (T ) is a polynomial of degree n), in

which the ‘friction’ term T ′ expresses a Liouville derivative. In this interpretation

of the Liouville field as a local scale on the world-sheet it is natural to assume that

the single-derivative term expresses the non-critical string β-function, and hence is

itself a polynomial R of degree mT ′(ξ) = R(T ) . Such equations lead to kink-like

solutions [86]

T (ξ) =
1

2a4
{sgn(a2a4)a2tanh[

1

2
a2(x− vt)]− a2} (65)

where

v =
A3 − 3a2a4

a4
is the velocity

which is a universal behavior for biological systems [69], showing the existence of

a scheme which admits kink–like solutions for energy transfer without dissipation

in cells. The structure of the equation (64), which leads to kink-like solutions (65),

is generic for Liouville strings in non-trivial background space-times.

According to the conventional Liouville theorem (which is usually derived from the

continuity equation ρt+ div(ρ ẋ) = 0 ) written here in terms of Poisson brackets

{. , .}
ρt = −{ρ,H} (66)

the phase-space density of the field theory associated with the matter DOF of

the MT–complex evolves with time as a consequence of phase-space volume-

preserving symmetries. More generally, statistical description of the temporal evo-

lution of the MT–complex using classical density matrices ρ(φi, t) [24]

ρt = −{ρ,H}+ βiGij∂pjρ (67)

where pi are momenta canonically-conjugate to the fields φi, and Gij is the metric

in the space of fields {φi}. The non-Hamiltonian term in (67) leads to a violation of
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the Liouville theorem (66) in the classical phase space {φi, pj}, and constitutes the

basis for a dissipative quantum-mechanical description of the system [24], upon

density-matrix quantization. In string theory, summation over world sheet surfaces

will imply quantum fluctuations of the string target-space background fields φi.

Using Dirac’s quantization rule {. , .} −→ −i [ . , .], the quantum version of (67)

reads (in terms of the quantum commutator [. , .], see [24])

ρ̂t = i[ρ̂, Ĥ] + iβiGij [φ̂
i, ρ̂] (68)

where the hat denotes quantum operators, and appropriate quantum ordering (in

the sense of [73]) is understood. In (68), Ĥ is the Hamiltonian evolution operator,

while

ρ̂ =
∑
a

P (a) |Ψa〉 〈Ψa| with Tr(ρ̂) = 1

is von Neumann’s density matrix operator, in which each quantum state |Ψa〉 oc-

curs with probability P (a) and von Neumann’s entropy is defined as

S = −Tr(ρ̂[ln ρ̂]).

The very structure of the quantum Liouville equation (68) implies the following

properties of the MT–complex [23, 24, 84]

i) conservation of probability P

Pt = Trt(ρ̂) = 0

ii) conservation of average energy 〈E〉, 〈E〉t ≡ Trt(ρ̂E) = (piβ
i)t = 0 and

iii) monotonic increase in entropy S

St ≡ −Trt(ρ̂ ln ρ̂) = S(βiGijβ
j) ≥ 0

which naturally implies a microscopic arrow of time within the MT–complex

[84].

However, the quantum energy fluctuations

δE ≡ [〈〈H2〉〉 − (〈〈H〉〉)2] 12

are time-dependent and actually decrease with time [75]

∂t(δE)2 = −i〈〈[βi,H]βjGji〉〉 = 〈〈βjGji
dβi

dt
〉〉

= −〈〈Q2βiGijβ
j〉〉 = −〈〈Q2∂tC〉〉 ≤ 0.



42 Vladimir G. Ivancevic and Tijana T. Ivancevic

3.4. SGE Solitons in the Conduction of Neural Impulse

Recently, two biophysicists from the Niels Bohr Institute in Copenhagen, Heim-

burg and Jackson (see [43, 44]), challenged the half-a-century old electrical theory

of neural impulse conduction, proposed by A. Hodgkin and A. Huxley in the form

of their celebrated HH equations (1963 Nobel Prize in Physiology or Medicine).

The HH model, which relies on ionic currents through ion channel proteins and

the membrane capacitor, is the presently accepted textbook model for the nerve

impulse conduction.

For our readers’ reference, here is a brief on the HH model, which (in its ba-

sic form) consists of four coupled nonlinear first-order ODEs, including the cable

equation for the neural membrane potential V , together with m,h and n equations

for the gating variables of Na and K channels and leakage (cf [47,48] and for recent

reviews, see [42, 61])

CmV̇ = −gNam
3h(V − VNa)− gKn

4(V − VK)− gL(V − VL) + Iextj

ṁ = −(am + bm)m+ am, ḣ = −(ah + bh)h+ ah (69)

ṅ = −(an + bn)n+ an

where

am =0.1 (V + 40)/[1− e−(V+40)/10], bm =4 e−(V+65)/18

ah =0.01 (V + 55)/[1− e−(V+55)/10], bh =0.125 e−(V+65)/80

an =0.07 e−(V+65)/20, bn =1/[1 + e−(V+35)/10].

Here the reversal potentials of Na, K channels and leakage are VNa = 50 mV,

VK = −77 mV and VL = −54.5 mV. The maximum values of corresponding

conductivities are gNa = 120 mS/cm2, gK = 36 mS/cm2, gL = 0.3 mS/cm2

and the capacity of the membrane is Cm = 1 μF/cm2. The external, input current

is given by

Iextj = gsyn(Va − Vc)
∑
n

α(t− tin) (70)

which is induced by the pre-synaptic spike-train input applied to the neuron i, given

by Ui(t) = Va
∑

n δ(t − tin). In (70), tin is the nth firing time of the spike-train

inputs, gsyn and Vc denote the conductance and the reversal potential, respectively,

of the synapse, τs is the time constant relevant to the synapse conduction, and

α(t) = (t/τs) e
−t/τsΘ(t) (where Θ(t) is the Heaviside function).

In addition, Hodgkin and Huxley assumed that the total current is the sum of the

trans-membrane current and the current along the axon and that a propagating so-

lution exists that fulfills a wave equation, so the simple cable ODE figuring in the
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basic HH model (69) was further expanded into the following PDE for the propa-

gating nerve impulse depending on the axon radius a

a

2Ri
Vxx = CmVt + gK(V − EK) + gNa(V − ENa)

where Ri is the resistance of the cytosol within the nerve (see [44] for technical

review).

The HH model was originally proposed to account for the property of squid giant

axons [47,48] and it has been generalized with modifications of ion conductances.

More generally, the HH–type models have been widely adopted for a study on ac-

tivities of transducer neurons such as motor and thalamus relay neurons, which

transform the amplitude-modulated input to spike-train outputs. For attempts to

relate the HH model (as well as its simplified form, Fitzhugh–Nagumo model

(FHN) [27, 81]) with propagation of solitons in neural cell membranes see [15]

and references therein.

Among several forms of the FHN–model, the simplest one (similar to the Van der

Pol oscillator) is suggested by FitzHugh himself in [27]

ε
dx

dτ
= εẋ = x− x3 − y

dy

dτ
= ẏ = γx− y + b

where x is voltage (the fast variable), y is the slow recovery variable and γ, b, ε
(0 ≤ ε � 1) are parameters.

However, the HH model fails to explain a number of features of the propagating

nerve pulse, including the reversible release and reabsorption of heat. Electrical

currents through resistors generate heat, independent of the direction of the ion

flux; the heat production in the HH–model should always be positive, while the

heat dissipation should be related to the power of a circuit through the resistor,

i.e., Q̇ = P = V.I > 0 (for each of the conducting objects in all phases of the

action potential, see [43, 44]). Similar case is with the accompanying mechanical,

fluorescence, and turbidity changes [43, 44]

“The most striking feature of the isothermal and isentropic com-

pression modulus is its significant undershoot and striking recovery.

These features lead generically to the conclusions i) that there is a

minimum velocity of a soliton and ii) that the soliton profiles are re-

markably stable as a function of the soliton velocity. There is a max-

imum amplitude and a minimum velocity of the solitons that is close

to the propagation velocity in myelinated nerves...”
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Earlier work of Hill [5] (the previous English Nobel laureate for physiology and

the president of the Royal Society London during the II World War), on heat pro-

duction in nerves (which was based on his previous work on heat production in

contracted muscles [46]) is actually reviewed in [48], where it is noted that the

heat release and absorption response during the action potential is important ‘but

is not understood’.

Based on thermodynamic relation between heat capacity and membrane area com-

pressibility, Heimburg and Jackson considered in [43, 44] a (1+1) hydrodynamic

PDE for the dispersive sound propagation in a cylindrical membrane of a density-

pulse, governing the changes ΔρA (along the x-axis) of the lateral membrane den-

sity ρA, defined by ΔρA(x, t) = ρA(x, t) − ρA0 , where ρA0 = 4.035.10−3 g/m2

is the equilibrium lateral area density in the fluid phase of the membrane slightly

above the melting point. The related sound velocity c can be expanded into a power

series (close to the lipid melting transition) as

c2 = c20 + p(ΔρA) + q(ΔρA)2 + . . . (71)

where c0 = 176.6 m/s is the velocity of small amplitude sound, while p and q are

parameters (p = −16.6 c20/ρ
A
0 and q = 79.5 c20/(ρ

A
0 )

2).

In our standard φ−notation, with φ(x, t) ≡ ΔρA(x, t), the dispersive wave equa-
tion of [43, 44] can be written as

φtt = c2φxx − f(φ). (72)

Here, we need to make two remarks regarding the dispersive wave equation (72)

1. If the compressibility is approximately constant and if ΔρA � ρA0 , then the

dispersive force f(φ) is zero and (72) reduces to the standard wave equation

(depending only on the small amplitude sound c20)

φtt = c20φxx .

2. If higher sound frequencies (resulting in higher propagation velocities as

the isentropic compressibility is a decreasing function of frequency) become

dominant, the dispersive forcing function f(φ) in (72) needs to be defined,

or ad-hoc chosen [43, 44] to mimic the linear frequency–dependence of the

sound velocity with a positive parameter h as f(φ) = hφxxxx . In this case,

the expansion (71) needs to be explicitly included into PDE (72), resulting in

the equation governing dispersive sound propagation, which reads (in origi-

nal notation of [43, 44])

∂2

∂t2
ΔρA =

∂

∂x

[(
c20 + p(ΔρA) + q(ΔρA)2

) ∂

∂x
ΔρA

]
−h

∂4

∂x4
ΔρA. (73)
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Furthermore, by introducing the sound propagation velocity v, after the co-

ordinate transformation z = x− v · t, the dispersive PDE (73) can be recast

into a time-independent form, describing the shape of a propagating density

excitation

v2
∂2

∂z2
ΔρA =

∂

∂z

[(
c20 + p(ΔρA) + q(ΔρA)2

) ∂

∂z
ΔρA

]
− h

∂4

∂z4
ΔρA.

This one-dimensional PDE has a localized (stationary) solution [70]

ΔρA(z) =
p

q
·

1−
(
v2−v2min

c2
0
−v2

min

)
1 +

(
1 + 2

√
v2−v2

min

c2
0
−v2

min

cosh
(
c0
h z
√
1− v2

c2
0

))
which is a sech-type soliton, a typical solution for KdV and NLS equations.

Now, without arguing either pro- or contra- Heimburg–Jackson theory of neural
sound propagation, as an alternative to Hodgkin–Huxley electrical theory, we will

simply accept the natural solitary explanation of the nerve impulse conduction, re-

gardless of the physical medium that is carrying it (sound, or heat, or electrical,

or smectic liquid crystal [15], or possibly quantum-mechanical [75]). However,

we are free to chose a different form for the dispersive force term f(φ) in the

perturbed wave equation (72). For example, instead of the Heimburg–Jackson’s

ad-hoc choice of the forth-derivative term, following [96] and subsequent stud-

ies of neural MTs, we can choose a double-well quartic dispersive potential (53),

which will, combined with the approximation (60), result in the standard SGE (1),

generating analytical solutions of the traveling soliton, kink-antikink and breather

form (as described in the Subsection 2.3.1. above).

3.5. Muscular Contraction Solitons on Poisson Manifolds
NLS, KdV and SGE

For geometrical analysis of nonlinear PDEs, instead of using common symplectic

structures arising in ordinary Hamiltonian mechanics, the more appropriate ap-

proach is a Poisson manifold (g∗, {·, ·}), in which g
∗ is a chosen Lie algebra with

a (±) Lie–Poisson bracket {F,G}±(μ)) and carries an abstract Poisson evolution
equation Ḟ = {F,H}. This approach is well–defined in both the finite– and the

infinite–dimensional case (see [51, 52, 59, 76]).

Let E1 and E2 be Banach spaces. A continuous bilinear functional 〈 , 〉 : E1 ×
E2 → R is nondegenerate if 〈x, y〉 = 0 implies x = 0 and y = 0 for all x ∈ E1

and y ∈ E2. We say E1 and E2 are in duality if there is a nondegenerate bilinear
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functional 〈 , 〉 : E1×E2 → R. This functional is also referred to as an L2−pairing
of E1 with E2.

Recall that a Lie algebra consists of a vector (e.g. Banach) space g carrying a

bilinear skew–symmetric operation [ , ] : g × g → g, called the commutator or Lie

bracket. This represents a pairing [ξ, η] = ξη − ηξ of elements ξ, η ∈ g and

satisfies Jacobi identity

[[ξ, η], μ] + [[η, μ], ξ] + [[μ, ξ], η] = 0.

Let g be a (finite– or infinite–dimensional) Lie algebra and g
∗ its dual Lie algebra,

that is, the vector space L2 paired with g via the inner product 〈 , 〉 : g∗ × g → R.

If g is finite–dimensional, this pairing reduces to the usual action (interior product)

of forms on vectors. The standard way of describing any finite–dimensional Lie

algebra g is to provide its n3 structural constants γk
ij , defined by [ξi, ξj ] = γkijξk,

in some basis ξi, (i = 1, . . . , n).

The (±) Lie–Poisson bracket (75) is a bilinear and skew–symmetric operation. It

also satisfies the Jacobi identity

{{F,G}, H}±(μ) + {{G,H}, F}±(μ) + {{H,F}, G}±(μ) = 0

(thus confirming that g∗ is a Lie algebra), as well as the Leibniz rule

{FG,H}±(μ) = F{G,H}±(μ) + G{F,H}±(μ). (74)

Also, for any two smooth functions (F,G) : g
∗ → R, we define the Fréchet

derivative D on the space L(g∗,R) of all linear diffeomorphisms from g
∗ to R as

a map DF : g∗ → L(g∗,R), μ �→ DF (μ). Further, we define the functional
derivative δF/δμ ∈ g by

DF (μ) · δμ = 〈δμ, δF
δμ

〉

with arbitrary ‘variations’ δμ ∈ g
∗.

Now, for any two smooth functions F,G : g∗ → R, we define the (±) Lie–Poisson
bracket by

{F,G}±(μ) = ±〈μ,
[
δF

δμ
,
δG

δμ

]
〉. (75)

Here μ ∈ g
∗, [ξ, μ] is the Lie bracket in g and δF/δμ, δG/δμ ∈ g are the functional

derivatives of F and G.

Given a smooth Hamiltonian function H : g
∗ → R on the Poisson manifold

(g∗, {F,G}±(μ)), the time evolution of any smooth function F : g∗ → R is given

by the abstract Poisson evolution equation

Ḟ = {F,H}. (76)
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Now, the basis of Davydov’s molecular model of muscular contraction (for general

overview of muscular contraction physiology and mechanics, see [50,55]) is oscil-

lations of Amid I peptide groups with associated dipole electric momentum inside

a spiral structure of myosin filament molecules (see [17–19]). There is a simulta-

neous resonant interaction and strain interaction generating a collective interaction

directed along the axis of the spiral. The resonance excitation jumping from one

peptide group to another can be represented as an exciton, the local molecule strain

caused by the static effect of excitation as a phonon and the resultant collective in-

teraction as a soliton.

Davydov’s own model of muscular solitons was given by the nonlinear Schrödinger
equation (NLS) [17, 18]

iψt = −ψxx + 2χ|ψ|2ψ (77)

for −∞ < x < +∞. Here ψ = ψ(x, t) is a smooth complex-valued wave function

with initial condition ψ(x, t)|t=0 = ψ(x) and χ is a nonlinear parameter. In the

linear limit (χ = 0) equation (77) becomes the standard Schrödinger equation for

the wave ψ-function of the free 1D particle with mass m = 1/2 [18].

For a different (financial) application, with a variety of traveling-wave solutions

of the NLS (77), including both sech- and tanh-solitons, solved in terms of Jacobi

elliptic functions, see [56, 57] and references therein.

To put this muscular–contraction model into a rigorous geometrical settings, we

can define the infinite-dimensional phase-space manifold P = {(ψ, ψ̄) ∈ S(R,C)},

where S(R,C) is the Schwartz space of rapidly-decreasing complex-valued func-

tions defined on R). We define also the algebra χ(P) of observables on P con-

sisting of real-analytic functional derivatives δF/δψ, δF/δψ̄ ∈ S(R,C). The

Hamiltonian function HP → R is given by

H(ψ) =

∫ +∞

−∞

(
|ψx|2 + χ|ψ|4

)
dx

and is equal to the total energy of the soliton, which is a conserved quantity for

(77) (see, e.g. [99, 100]).

The Poisson bracket on χ(P) represents a direct generalization of the classical

finite–dimensional Poisson bracket [49]

{F,G}+(ψ) = i

∫ +∞

−∞

(
δF

δψ

δG

δψ̄
− δF

δψ̄

δG

δψ

)
dx. (78)

It manifestly exhibits skew–symmetry and satisfies Jacobi identity. The functional

derivatives are given by

δF/δψ = −i{F, ψ̄} and δF/δψ̄ = i{F, ψ}.



48 Vladimir G. Ivancevic and Tijana T. Ivancevic

Therefore the algebra of observables χ(P) represents the Lie algebra and the Pois-

son bracket is the (+) Lie–Poisson bracket {F,G}+(ψ). The nonlinear Schrödinger

equation (77) for the solitary particle–wave is a Hamiltonian system on the Lie al-

gebra χ(P) relative to the (+) Lie–Poisson bracket {F,G}+(ψ) and Hamiltonian

function H(ψ). Therefore the Poisson manifold (χ(P), {F,G}+(ψ)) is defined

and the abstract Poisson evolution equation (76), rewritten here as ψ̇ = {ψ,H},
which holds for any smooth function ψχ(P) →R, is equivalent to (77).

An alternative model of muscular soliton dynamics is provided by the Korteweg–
deVries equation (KdV, see [49])

ft − 6ffx + fxxx = 0, fx = ∂xf (79)

where x ∈ R and f is a real–valued smooth function defined on R. This equation

is related to the ordinary Schrödinger equation by the inverse scattering method

(see [99, 100]). Note that the most common traveling-wave solutions of the KdV

(79) are sech-solitons with the velocity c, of the form [105]

f(x, t) =
c

2
sech2

[√
c

2
(x− ct)

]
.

We may define the infinite–dimensional phase–space manifold V = {f ∈ S(R)},

where S(R) is the Schwartz space of rapidly decreasing real–valued functions R.

Further, we define χ(V) to be the algebra of observables consisting of functional

derivatives δF/δf ∈ S(R). The Hamiltonian H : V → R is given by

H(f) =

∫ +∞

−∞
(f3 +

1

2
f2
x) dx

and provides the total energy of the soliton, which is a conserved quantity for (79)

(see [99, 100]).

As a real–valued analogue to (78), the (+) Lie–Poisson bracket on χ(V) is given

via (74) by

{F,G}+(f) =

∫ +∞

−∞

δF

δf

d

dx

δG

δf
dx.

Again it possesses skew–symmetry and satisfies Jacobi identity. The functional

derivatives are given by δF/δf = {F, f}. The KdV equation (79), describing

the behavior of the muscular molecular soliton, is a Hamiltonian system on the Lie

algebra χ(V) relative to the (+) Lie–Poisson bracket {F,G}+(f) and the Hamil-

tonian function H(f). Therefore, the Poisson manifold (χ(V), {F,G}+(f)) is

defined and the abstract Poisson evolution equation (76), rewritten here as ḟ =
{f,H}, which holds for any smooth function f : χ(V) →R, is equivalent to (79).
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Another alternative model of muscular soliton dynamics is provided by our SGE

(1) φtt = φxx − sinφ. Again, we may define the infinite–dimensional phase–

space manifold V = {φ ∈ S(R)}, where S(R) is the Schwartz space of rapidly

decreasing real–valued functions R). Further, we define χ(V) to be the algebra of

observables consisting of functional derivatives δF/δφ ∈ S(R). The Hamiltonian

H : V → R is given by

H(φ) =

∫ ∞

−∞

[
1

2
(π2 + φ2

x) + 1− cosφ

]
dx

and provides the total energy of the soliton, which is a conserved quantity for the

SGE (1). The (+) Lie–Poisson bracket on χ(V) is given via (74) by

{F,G}+(φ) =

∫ ∞

−∞

(
δF

δφ

δG

δπ
− δF

δπ

δG

δφ

)
dx.

Again it possesses skew–symmetry and satisfies Jacobi identity. The functional

derivatives are given by δF/δφ = {F, φ} ∈ S(R). The SGE (1), describing the

behavior of the molecular muscular soliton, is a Hamiltonian system on the Lie

algebra χ(V) relative to the (+) Lie–Poisson bracket {F,G}+(φ) and the Hamil-

tonian function H(φ). Therefore, the Poisson manifold (χ(V), {F,G}+(φ)) is

defined and the abstract Poisson evolution equation (76), rewritten here as φ̇ =
{φ,H}, which holds for any smooth function φχ : (V) →R, is equivalent to (1).

4. Conclusion

In this paper, we have reviewed sine–Gordon equation and its traveling wave so-

lutions. These solitary spatiotemporal processes can serve as realistic models of

nonlinear excitations in complex systems in physical sciences as well as in vari-

ous living cellular structures, including intra–cellular ones (DNA, protein folding

and microtubules) and inter–cellular ones (neural impulses and muscular contrac-

tions). We have showed that sine–Gordon solitons, kinks and breathers can give us

new insights even in such long–time established and Nobel–Prize winning living

systems as the Watson–Crick double helix DNA model and the Hodgkin–Huxley

neural conduction model.
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