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Abstract. Various many-body models are treated, which describe N points con-

fined to move on a plane circle. Their Newtonian equations of motion (“acceler-

ations equal forces”) are integrable, i. e. they allow the explicit exhibition of N
constants of motion in terms of the dependent variables and their time-derivatives.

Some of these models are moreover solvable by purely algebraic operations, by (ex-

plicitly performable) quadratures and, finally, by functional inversions. The tech-

niques to manufacture these models are not new; some of these models are them-

selves new; others are reinterpretations of known models.

1. Introduction

The investigation of the time evolution of an arbitrary number N of point-particles

the dynamics of which is determined by Newtonian equations of motion (“accel-

erations equal forces”) is of course a fundamental topic in physics and mathemat-

ics. The identification in this context of models amenable to exact treatments is

a major area of research in mathematical physics and applied mathematics, hav-

ing a centuries-old history and having been boosted by developments in the last

few decades, which also impacted several areas of physics beyond mechanics and

many fields of pure mathematics. An interesting related development which is

now becoming of interest is the study of such models in which the motion is re-

stricted to lie on an a priori prescribed manifold: see for instance [1, 5, 6, 8]. In

this paper we make some initial, simple steps in this direction by focussing on

various many-body models describing the evolution of N points whose positions

on a plane are characterized by N unit two-vectors, thereby forcing their motion

to be confined to a circle of unit radius centered at the origin. All these models

are characterized by Newtonian equations of motion: accelerations equal forces,

which in these models are of one-body, two-body or, in some cases, many-body
type, and might depend on the velocities of the moving particles in addition to

their positions. All these models are autonomous: their equations of motion are

time-independent. They are all amenable to exact treatments: in particular they all
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allow the explicit identification of N constants of motion in terms of the N depen-

dent variables and their N time-derivatives (for terminological simplicity we here-

after call such models integrable). In some cases their initial-value problems can

be moreover solved by (explicitly performable) quadratures and subsequent func-

tional inversions, preceded by purely algebraic operations, such as solving systems

of linear constant-coefficients ODEs, or (equivalently) evaluating the N eigenval-
ues of known (time-dependent) N × N matrices or (equivalently) the N zeros of

known (time-dependent) polynomials of degree N (for terminological simplicity

we hereafter call such models solvable). The techniques to manufacture these mod-

els are not new. Some of these models are themselves new, others are essentially

reinterpretations of known models. The dynamics of these models are not analyzed

in detail; but in some cases the main features of their behavior are ascertained, for

instance for isochronous models the time evolution of which is isochronous (i.e.,

completely periodic with a fixed period independent of the initial data), or for mod-

els all motions of which are multiply periodic.

The equations of motion of the N -body problems treated below are listed with

minimal comments in the following Section 2, to facilitate the hasty reader wish-

ing to get an immediate idea of the findings reported in this paper. These results

are then proven in the subsequent Section 3. The titles of its subsections indicate

case-by-case the techniques employed to arrive at the relevant results. Finally, a

terse Section 4 entitled “Outlook” outlines possible developments, to be eventually

reported in other papers. Some mathematical details are confined to two Appen-

dices.

2. Many-Body Models on a Circle Amenable to Exact Treatments

In the following subsections we display, with minimal comments, various N -body

problems of Newtonian type (“accelerations equal forces”) describing motions on

a circle and amenable to exact treatments (detailed in the following Section 3). But

we provide firstly a terse subsection devoted to notation.

2.1. Notations

The models under consideration generally feature N points moving in a plane. We

identify these N points by three-vectors �rn, n = 1, 2, ..., N for which we use the

following three-dimensional notation:

�rn ≡ (cos θn, sin θn, 0) ≡ (xn, yn, 0) . (1)
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Hereafter N is an arbitrary positive integer (generally N ≥ 2) and indices such

as n, m, � run over the positive integers from 1 to N (unless otherwise explicitly

indicated).

Clearly these vectors �rn have unit length

�rn · �rn = 1. (2a)

Throughout this paper the dot sandwiched among two vectors denotes the standard

scalar product, so that for instance

�rn · �rm = cos (θn − θm) . (2b)

It is moreover convenient to introduce the unit vector ẑ orthogonal to the xy-plane,

ẑ ≡ (0, 0, 1) (3)

and to denote by the “wedge” symbol ∧ the standard (three-dimensional) vector
product, so that

ẑ ∧ �rn = −�rn ∧ ẑ = (− sin θn, cos θn, 0) (4a)

(ẑ ∧ �rm) · �rn = (�rm ∧ �rn) · ẑ = sin (θn − θm) . (4b)

Hereafter we deal with time-dependent vectors

�rn (t) ≡ (cos θn (t) , sin θn (t) , 0) (5)

and superimposed dots indicate derivatives with respect to the time variable t so

that, for instance

�̇rn = θ̇n (− sin θn, cos θn, 0) = θ̇n ẑ ∧ �rn (6a)

�̈rn= θ̈n(− sin θn, cos θn, 0)− θ̇2n(cos θn, sin θn, 0) = θ̈n ẑ ∧ �rn − θ̇2n �rn. (6b)

Note that here we omitted, for notational simplicity, to indicate explicitly the time-

dependence of the quantities appearing in these N equations; we will often do this

below without repeating this warning.

Several other identities are reported in Appendix A: they are useful to obtain the

results reported below, but are not necessary to understand the findings reported in

the following subsections.
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2.2. Two Models Obtained via Techniques of Generalized Lagrangian
Interpolation

First model

μn �̈rn = −μn

(
�̇rn · �̇rn

)
�rn

+ẑ ∧ �rn

⎧⎨
⎩
[
μn

(
�̇rn · �̇rn

)
+ ηn

(
�rn ∧ �̇rn

)
· ẑ
] N∑

�=1, ��=n

[
(�r� · �rn)

(�r� ∧ �rn) · ẑ
]

+
[(

�rn ∧ �̇rn

)
· ẑ
] N∑
�=1, ��=n

⎡
⎣σn (�r)
σ� (�r)

μ�

(
�r� ∧ �̇r�

)
· ẑ + η�

(�r� ∧ �rn) · ẑ

⎤
⎦
⎫⎬
⎭ (7a)

σn (�r) =
N∏

�=1, ��=n

[(�r� ∧ �rn) · ẑ] . (7b)

Second model

μn �̈rn = −μn

(
�̇rn · �̇rn

)
�rn

+
N∑

�=1, ��=n

{
[(�r� ∧ �rn) · ẑ]−1

{[(
�rn ∧ �̇rn

)
· ẑ
][
μ�

(
�r� ∧ �̇r�

)
· ẑ + η�

]

+
[
μn

(
�rn ∧ �̇rn

)
· ẑ + ηn

][(
�r� ∧ �̇r�

)
· ẑ
]}

(�r� ∧ �rn)
}
. (8)

In these Newtonian equations μn and ηn are 2N arbitrary constants, and for the rest

of the notation see Subsection 2.1. Note in particular the property (2a), implying

that the N vectors �rn have unit modulus, hence that the N points whose time

evolution is determined by these equations of motion are constrained to move on

the circle of unit radius centered at the origin of the Cartesian plane.

These equations of motion are covariant, implying that the corresponding N -body

problems are rotation-invariant.

These two N -body problems are both integrable: they possess N constants of
motion, the explicit expressions of which in terms of the vectors �rn and their time-

derivatives �̇rn are displayed in the following Subsection 3.1. The equations of

motion of the first, (7a), of these two models feature many-body forces due to the

presence in their right-hand (“forces”) sides of the quantities σn (�r), see (7b), but

their initial-value problem is solvable by purely algebraic operations. Nevertheless

their time evolution can be quite complicated (detailed analyses are not performed

in this paper. The fact that solvable models can exhibit quite complicated dynamics
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is of course well known, see for instance the papers where a three-body model is

studied the time evolution of which is highly nontrivial in spite of the fact that its

Aristotelian equations of motion–velocity equal forces–are quite neat and that its

initial-value problem can be reduced to solving a single algebraic equation [3], [4],

[7]).

2.3. Two Solvable Models Obtained via a Reinterpretation of Known Models

The first model is merely a transcription of the solvableSutherland model, see Sub-

section 3.2. It reads as follows

�̈rn = −
(
�̇rn · �̇rn

)
�rn + g2 ẑ ∧ �rn

N∑
�=1, ��=n

{
�rn · �r�

[(�r� ∧ �rn) · ẑ]3
}
. (9)

Here g is an arbitrary “coupling constant”, and the rest of the notation is, we trust,

clear (see Subsection 2.1).

The second model is also merely a transcription of a well-known solvable model

(of goldfish type), see Subsection 3.2. It reads as follows

�̈rn = −
(
�̇rn · �̇rn

)
�rn + g0 ẑ ∧ �rn + g1 �̇rn

(10)

+ẑ ∧ �rn

N∑
�=1, ��=n

⎧⎨
⎩
2 �̇rn · �̇r� + g2

[(
�̇rn ∧ �r� + �̇r� ∧ �rn

)
· ẑ
]
+ g3 �rn · �r�

(�r� ∧ �rn) · ẑ

⎫⎬
⎭ .

Here the four constants g0, g1, g2 and g3 are arbitrary constants, and the rest of the

notation is, we trust, clear (see Subsection 2.1).

These equations of motion are covariant, implying that the corresponding N -body

problems are rotation-invariant.

2.4. Two N -body Problems on a Circle Obtained by Changes of Dependent
Variables

These two solvable models are merely transcriptions of two well-known one-dimen-

sional solvable models, see Subsection 3.3. The first model reads as follows

�̈rn = −
(
�̇rn · �̇rn

)
�rn − ẑ ∧ �rn

{
2

[(
�̇rn · �̇rn

) yn
xn

]

+4 xn yn − x5n

N∑
�=1, ��=n

[
y�

(�r� ∧ �rn) · ẑ
]3⎫⎬
⎭ . (11a)
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Here xn ≡ cos θn and yn ≡ sin θn are the two Cartesian components in the plane

of the vector �rn, see (1).

This model is isochronous with period π

�rn (t± π) = �rn (t) . (11b)

The second model reads as follows

�̈rn = −
(
�̇rn · �̇rn

)
�rn − ẑ ∧ �rn

{
2

[(
�̇rn · �̇rn

) yn
xn

]

+xn yn − xn

N∑
�=1, ��=n

{
2 + x2n x2�

x� [(�r� ∧ �rn) · ẑ]
}⎫⎬
⎭ . (12)

Here xn ≡ cos θn and yn ≡ sin θn are again the two Cartesian components in the

plane of the vector �rn, see (1).

All solutions of this model are multiply periodic, see Subsection 3.3.

Note that–in contrast to the equations of motions reported in the two preceding

subsections–those displayed herein, (11a) and (12), are not written in covariant
fashion, i.e., without any explicit appearance of the Cartesian components xn ≡
cos θn and yn ≡ sin θn of the vector �rn. Indeed these equations of motion are not
rotation-invariant, or equivalently, they are not invariant for translations along the

circle (on which the motions take place due to the constraint (2a)).

3. Proofs

In the following subsections we substantiate the findings reported in the preceding

Section 2.

3.1. Solvable and Integrable Models on the Circle Manufactured via
Techniques of Generalized Lagrangian Interpolation

In this subsection we employ the technique to manufacture many-body models

amenable to exact treatments introduced in [2] (see in particular Chapter 3 of this

book, entitled “N -body problems treatable via techniques of exact Lagrangian in-

terpolation in spaces of one or more dimensions”). We begin with a terse review

of this method, in the specific case of one-dimensional space with an appropriate

choice of the set of “seeds” (namely, of the N functions providing the point of

departure for the generalized Lagrangian interpolation approach).
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The set of seeds we conveniently take as basis for our treatment are the N functions

{sn (θ)}Nn=1 = {exp [i (2 n−N − 1) θ]}Nn=1

= {exp [i (1−N) θ] , exp [i (3−N) θ] , ...

... exp [i (N − 3) θ] , exp [i (N − 1) θ]}. (13)

Remark 1. These exponential functions with imaginary argument are complex,
but clearly this set of seeds could be replaced without significant changes by an
equivalent set featuring instead sines and cosines of real arguments. The use of
exponentials merely facilitates some of the following developments. Likewise the
factor two in the argument of these functions has been introduced merely to yield
neater versions of the equations of motions that will be obtained, see below. The
fact that these seeds are invariant under the transformation θ ⇒ θ + 2π suggests
to interpret the variable θ as an angle in the plane.

We then consider a function f (θ) representable as a linear superposition of these

N seeds

f (θ) =

N∑
n=1

[hn sn (θ)] (14a)

where the N coefficients hn are a priori arbitrary numbers. And we denote with

fn the N values that this function takes at the N (arbitrarily assigned) “nodes”

θ = θn
fn = f (θn) (14b)

and we display the representation of this function in terms of these N values, via

the (“generalized Lagrangian interpolation”) formula

f (θ) =
N∑

n=1

[
fn q(n) (θ |θ )

]
. (14c)

The N “interpolational functions” q(n) (θ |θ ) depend on the variable θ and on the

N nodes θn (hence on the N -vector having these nodes as its components, here-

after denoted as θ ≡ (θ1, θ2, ..., θN )). They are themselves linear superpositions

of the seeds sn (θ), to insure consistency among (14c) and (14a); and they feature

the property

q(n) (θm |θ ) = δnm (15)

to insure consistency among (14c) and (14b) (here and hereafter δnm is the Kro-

necker symbol: δnm = 1 if n = m, δnm = 0 if n �= m).
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The explicit representation of these interpolational functions q(n) (θ |θ ) in terms

of the N seeds sn (θ) and the N nodes θn reads [2]

q(n)(θ |θ ) = Δ(θ1, . . . , θn−1, θ, θn+1, . . . , θN )

Δ(θ1, . . . , θN )
(16a)

where

Δ(θ) =

∣∣∣∣∣∣∣∣∣

s1(θ1) s2(θ1) . . . sN (θ1)
s1(θ2) s2(θ2) . . . sN (θ2)

...
...

. . .
...

s1(θN ) s2(θN ) . . . sN (θN )

∣∣∣∣∣∣∣∣∣
. (16b)

This determinant–with the set of seeds (13)–is of Vandermonde type hence it can

be explicitly evaluated, yielding for the interpolational functions the expression

q(n) (θ |θ ) = s1 (θ − θn)
∏N

�=1, ��=n

[
exp (2 i θ)− exp (2 i θ�)

exp (2 i θn)− exp (2 i θ�)

]
. (17)

The next step is to introduce the time variable t. As in [2], we assume hereafter

that the N seeds sn (θ) are time-independent. We moreover assume the function

f (θ) to be also time-independent (thereby simplifying the more general treatment

of [2]). A time-dependence is only introduced for the nodes θn ≡ θn (t). Indeed

they shall be the dependent variables of the dynamical systems we manufacture.

Of course the fact that the nodes θn (t) evolve over time entails that the values fn
taken by the function f (θ) at these nodes (see (14b)) also evolve over time

fn ≡ fn (t) = f [θn (t)] . (18)

We then posit a convenient relation among the time evolution of the N nodes θn (t)
and the time evolution of the N quantities fn (t), by setting

fn (t) = ρn [θ (t)] θ̇n (t) + γn [θ (t)] . (19)

Here we introduced the 2N functions ρn (θ) and γn (θ) of the N nodes θn, that

will be assigned later at our convenience (but note that we forsake–again, for

simplicity–the possibility to assign an explicit time-dependence to these functions,

in addition to their dependence on the N nodes).

The next step is to ascertain the time dependence of the N nodes θn ≡ θn (t)
implied by these assignments. To this end we time-differentiate the relation (19),

getting the following expressions for the second time-derivatives of the N nodes

θn ≡ θn (t)

ρn (θ) θ̈n = ḟn −
N∑

m=1

{[
∂ γn (θ)

∂ θm
+

∂ ρn (θ)

∂ θm
θ̇n

]
θ̇m

}
. (20)
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Our next step is to evaluate the quantity ḟn, which (see (18)) reads

ḟn =
∂ f (θn)

∂ θn
θ̇n. (21)

To evaluate this quantity we can use the finite-dimensional representation of the

differential operator, yielding (for functions which are linear superpositions of the

seeds sn (θ), see (14)), the exact formula [2]

∂ f (θn)

∂ θn
=

N∑
m=1

[Dnm (θ) fm] (22a)

with the N ×N matrix D defined componentwise as follows [2]

Dnm (θ) =
∂ q(m)(θ |θ )

∂ θ
evaluated at θ = θn (22b)

hence in our case (see (13) and (16)) reading

Dnm (θ) = δnm

N∑
�=1, ��=n

cot (θn − θ�) +
σn (θ)

σm (θ)

1− δnm
sin (θn − θm)

(23a)

σn (θ) =

N∏
�=1, ��=n

[sin (θn − θ�)] . (23b)

Note that this definition coincides, via (4b), with (7b).

We therefore conclude that system (20) yields the following set of N Newtonian

equations of motion for the dependent variables θn ≡ θn (t)

ρn (θ) θ̈n = θ̇n

[
ρn (θ) θ̇n + γn (θ)

] N∑
�=1, ��=n

[cot (θn − θ�)]

+θ̇n

N∑
�=1, ��=n

⎧⎨
⎩σn (θ)

σ� (θ)

[
ρ� (θ) θ̇� + γ� (θ)

]
sin (θn − θ�)

⎫⎬
⎭ (24)

−
N∑

m=1

{[
∂ ρn (θ)

∂ θm
θ̇n +

∂ γn (θ)

∂ θm

]
θ̇m

}
.

Of course to obtain this system of N second-order ODEs we also used (19).

Let us now emphasize that, as a consequence of the way these N -body problems

have been manufactured, they are integrable. It is indeed plain that the time in-

dependence of the function f (θ) entails (via (14a), (14b) and (19)) the relations
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N∑
m=1

{hm sm [θn (t)]} = ρn [θ (t)] θ̇n (t) + γn [θ (t)] . (25a)

Here we have displayed the time-dependence of the various quantities, in order

to emphasize the time-independence of the N coefficients hm, which can actually

be evaluated by solving this system of N linear equations, thereby obtaining (via

(16)) the following formulas

hm = q(m) (ϑm |θ ) , ϑm ≡
i log

[
ρm (θ) θ̇m + γm (θ)

]
2m−N − 1

(25b)

where of course the N nodes θm ≡ θm (t) and their N time derivatives θ̇m ≡
θ̇m (t) can be evaluated at any arbitrary time t. It is thus plain that the N -body sys-

tems (25) are integrable for any arbitrary assignment of the 2N functions ρm (θ)
and γm (θ) of the N dependent variables θn, with these N quantities hm providing

N constants of motion given by explicit (generally nontrivial) expressions in terms

of the N nodes θn and their N time-derivatives θ̇n.

We are still free to assign the 2N functions ρn (θ) and γn (θ) . There are two natural

choices.

The first one reads simply

ρn (θ) = μn, γn (θ) = ηn (26)

with μn and ηn arbitrary constant parameters. It clearly yields (see (25)) an N -

body system characterized by the following set of Newtonian equations of motion

μn θ̈n = θ̇n

(
μn θ̇n + ηn

) N∑
�=1, ��=n

[cot (θn − θ�)]

(27)

+θ̇n

N∑
�=1, ��=n

⎡
⎣σn (θ)
σ� (θ)

(
μ� θ̇� + η�

)
sin (θn − θ�)

⎤
⎦ .

Here the functions σn (θ) of the N nodes θm are of course defined by (23b).

The second assignment of the 2N functions ρn (θ) and γn (θ) is suggested by the

structure of system (25). It reads

ρn (θ) = μn σn (θ) , γn (θ) = ηn σn (θ) (28)



Solvable and/or Integrable Many-Body Models on a Circle 11

where again μn and ηn are arbitrary constant parameters and the functions σn (θ)
are defined as above, see (23b), implying (by logarithmic differentiation)

∂γn (θ)

∂θm
= γn (θ)

⎧⎨
⎩δnm

N∑
�=1,��=n

[cot (θn − θ�)]− (1− δnm) cot (θn − θm)

⎫⎬
⎭
(29a)

and likewise

∂ρn (θ)

∂θm
= ρn (θ)

⎧⎨
⎩δnm

N∑
�=1,��=n

[cot (θn − θ�)]− (1− δnm) cot (θn − θm)

⎫⎬
⎭ .

(29b)

Thereby the N -body system gets characterized by the following, simpler set of

Newtonian equations of motion

μnθ̈n =
N∑

�=1,��=n

⎡
⎣ θ̇n

(
μ�θ̇� + η�

)
+
(
μnθ̇n + ηn

)
θ̇� cos (θn − θ�)

sin (θn − θ�)

⎤
⎦ . (30)

The differences among these two N -body systems, (28) and (30), deserve to be em-

phasized: the N -body model (28) involves many-body forces, due to the presence

of the functions σn (θ) and σ� (θ) in its right-hand (forces) side; while the N -body

model (30) only involves two-body forces. Both systems can be integrated once,

corresponding to the transition from their N second-order Newtonian equations of

motion to the corresponding N first-order ODEs (25a). On the other hand, as we

show below, only the first of these two integrable systems is solvable.

Indeed, for the first system (but not for the second!), the N first-order ODEs (25a)

are uncoupled, reading simply, via (26)

μn θ̇n = −ηn +
N∑

m=1

[hm sm (θn)] (31a)

or, equivalently (see (13))

μn exp [(N + 1) i θn] θ̇n = −ηn exp [(N + 1) i θn] +
N∑

m=1

[hm exp (2m i θn)]

(31b)

where the N quantities hn are explicitly known in terms of the 2N initial data

θn (0), θ̇n (0) (via (25b), (26) and (17), see Appendix B).

These first-order ODEs can be integrated, we confine the relevant developments to

Appendix B.
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Although the technique to manufacture these two solvable and integrable N -body

problems, (28) and (30), is not new [2], these models are, to the best of our knowl-

edge, themselves new. And therefore a detailed discussion of the actual behavior of

these systems has not yet been done. In the present paper we limit our considera-

tion to pointing out how these models can be reformulated to describe the evolution

of N points whose positions on a plane are characterized by N unit two-vectors

�rn (t), see the notation introduced in Subsection 2.1. To this end one utilizes the

formulas (6b), (2b), (4b) and the relevant ones among those conveniently collected

in Appendix A. And it is plain that one thereby obtains the two models (7) and (8).

3.2. Solvable Models on the Circle Manufactured by Reinterpreting Known
Solvable Models

In this section we tersely indicate how to obtain the two models (9) and (11).

The first model obtains from the N -body system characterized by the following

Newtonian equations of motion (with velocity-independent two-body forces)

θ̈n = g2
N∑

�=1, ��=n

[
cos (θn − θ�)

sin3 (θn − θ�)

]
. (32)

Here g is an arbitrary “coupling constant”, and the rest of the notation is, we trust,

clear.

This is a well-known solvable many-body problem, generally associated with the

name of Bill Sutherland, who was the first to show the possibility to treat this N -

body problem by exact methods (originally in a quantal context [10], [11]). Its

treatment in a classical (Hamiltonian) context is provided in several textbooks, see

for instance [9] [2] [12].

It is plain that the model (9) is merely the transcription of this model via the nota-

tion of Subsection 2.1.

The second model obtains from the N -body system characterized by the following

Newtonian equations of motion (with velocity-dependent one-body and two-body

forces)

θ̈n = g0 + g1θ̇n +
N∑

�=1,��=n

{[
2θ̇nθ̇� + g2

(
θ̇n + θ̇�

)
+ g3

]
cot (θn − θ�)

}
. (33)

Here g0, g1, g2 and g3 are 4 arbitrary coupling constants, and we again trust the

rest of the notation to be clear.

This is also a well known solvable model, see for instance equation (2.3.5-12) on

page 199 of [2].
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And it is again plain that the model (11) is merely the transcription of this model

via the notation of Subsection 2.1 and Appendix A.

3.3. How to Manufacture N -Body Problems with Angles as Dependent
Variables

In the preceding subsection we have shown how certain N -body models with de-

pendent variables naturally interpretable as angles can be reformulated as N -body

models describing the time evolution on a plane of particles constrained to move
on a circle. In this subsection we indicate how, via a simple change of dependent

variables, essentially any N -body model can be reformulated so that its dependent

variables can be interpreted as angles, hence subsequently it can also be reformu-

lated (in fact in many ways) so that it describes the time evolution of particles

constrained to move on a plane circle.

The trick to achieve this goal is quite elementary and general; we illustrate it below

via two examples.

Consider an N -body model in which the positions of the N point-particles–moving

in one-dimensional space–are identified by N coordinates zn ≡ zn (t) , and per-

form the change of dependent variables by positing, say

zn (t) = tan [θn (t)] . (34)

Remark 2. Of course this assignment defines θn (t) only mod (π) and clearly
many other assignments could be instead made–different but having an analogous
effect, such as zn = 1/ sin (2θn), or zn = tan3θn, etc.

In the first example we take as point of departure the N -body problem character-

ized by the Newtonian equations of motion

z̈n = −4 zn + g2
N∑

�=1, ��=n

[
(zn − z�)

−3
]
. (35a)

Here g is an arbitrary (real) coupling constant. This is a well-known solvable model

(see for instance [2]); it is isochronous, all its solutions being completely periodic
with period π

zn (t± π) = zn (t) . (35b)

Via the change of dependent variables (34) the equations of motion (35a) become

(as the diligent reader will easily verify, utilizing if need be the identities reported
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in the last part of Appendix A)

θ̈n = −2θ̇2n tanθn − 4 sin θn cos θn + g2
N∑

�=1,��=n

[
cos5 θn sin3 θ�

sin3 (θn − θ�)

]
. (36a)

Remark 3. This model of course hereditates the property of isochrony of the model
(35a) it has been obtained from

θn (t± π) = θn (t) mod (π) . (36b)

The next task is to transform these equations of motion, (36a), into equations of

motion for points moving in the plane but constrained to stay on a circle of unit
radius centered at the origin. To realize this goal one may now use the change of

dependent variables from the angles θn to the vectors �rn described in Subsection

2.1, using if need be the identities reported in the first part of Appendix A. And it

is plain that in this manner one arrives at the equations of motion (11a).

In the second example we take as point of departure the well-known solvable N -

body problem characterized by the following Newtonian equations of motion (see

equation (2.3.4.2-1) on page 188 of [2])

z̈n = −zn +
N∑

�=1, ��=n

(
2 żn ż� + 1

zn − z�

)
. (37)

All solutions of this model are multiply periodic, being (generally nonlinear) su-

perpositions of the N functions bm (t) = cos (
√
m t+ βm) , m = 1, ..., N (with

the N phases βm depending on the initial data). For special initial data only func-

tions bm (t) with m a squared-integer contribute [2], yielding solutions completely
periodic with period 2π.

Via the change of dependent variables (34) equations of motion (37) become (as the

diligent reader will easily verify, utilizing again, if need be, the identities reported

in the last part of Appendix A)

θ̈n = −2 θ̇2n tanθn − sin θn cos θn
(38)

+cos θn

N∑
�=1, ��=n

[
2 θ̇n θ̇� + cos2 θn cos2 θ�

cos θn sin (θn − θ�)

]
.

Then we transform these equations of motion into equations of motion for points

moving in the plane but constrained to stay on a circle of unit radius centered at

the origin, by using again the change of dependent variables from the angles θn to

the vectors �rn described in Subsection 2.1 via–if need be–the identities reported in

the first part of Appendix A. And it is plain that in this manner one arrives at the

equations of motion (12).
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4. Outlook

Our original motivation to undertake this line of research was the intention to man-

ufacture N -body problems amenable to exact treatments describing motions on a

sphere, or more generally on manifolds. We consider the results reported in this

paper as a modest first step in that direction. We also believe that the actual be-

havior of the new models reported in this paper–see (7) and (8)–shall eventually

deserve a more detailed scrutiny than that provided in Subsection 3.1.

Appendix A. Identities

It is plain that the notation introduced in Subsection 2.1 entails the following addi-

tional identities

�̇rn · �rn = 0, �̇rn · �̇rn = θ̇2n,
(
�rn ∧ �̇rn

)
· ẑ = θ̇n (39a)

�̈rn · �rn = −θ̇2n, �̈rn · (ẑ ∧ �rn) = θ̈n (39b)

�̇rn · �rm = −θ̇n sin (θn − θm) (39c)

�̇rn · �̇rm = θ̇n θ̇m cos (θn − θm) (39d)

ẑ ∧ �̇rn = −θ̇n �rn, ẑ ∧ �̈rn = −θ̈n �rn − θ̇2n ẑ ∧ �rn (40)

(
�̇rn ∧ �rm

)
·ẑ = −θ̇n cos (θn − θm) ,

(
�̇rn ∧ �̇rm

)
·ẑ = −θ̇n θ̇m sin (θn − θm) .

(41)

We also display here some relations among the time-dependent “coordinates”

zn ≡ zn (t) = tanθn (t) (42a)

and the “angles” θn ≡ θn (t)

zn − zm =
sin (θn − θm)

cos θn cos θm
,

1

zn − zm
=

cos θn cos θm
sin (θn − θm)

(42b)

żn =
θ̇n

cos2 θn
, żn zm =

θ̇n sin θm
cos2 θn cos θm

, żn żm =
θ̇n θ̇m

cos2 θn cos2 θm
(43)



16 Oksana Bihun and Francesco Calogero

żn + żm
zn − zm

=
θ̇n cos2 θm + θ̇m cos2 θn

cos θn cos θm sin (θn − θm)

żnzm + żm zn
zn − zm

=
θ̇n sin θm cos θm + θ̇m sin θn cos θn

cos θn cos θm sin (θn − θm)
(44)

żn żm
zn − zm

=
θ̇n θ̇m

cos θn cos θm sin (θn − θm)

z̈n =
θ̈n

cos2 θn
+

2 θ̇2n sin θn
cos3 θn

=
θ̈n + 2 θ̇2n tanθn

cos2 θn
· (45)

Appendix B. Solution of the System (31)

In this Appendix we indicate how the initial-value problem of the system of N
(decoupled) first-order ODEs (31) is solved.

Let us, for notational convenience, make here the following change of variables

ζn (t) = exp [i θn (t)] (46a)

entailing

ζ̇n (t) = i θ̇n (t) exp [i θn (t)] . (46b)

We then use the relation (46a) to rewrite the equations of motion (31) as follows:

μ ζN ζ̇ = i

[
−η ζN+1 +

N∑
m=1

(
hm ζ2m

)]
. (47)

Remark 4. Let us emphasize that, in the last formula and below (in this Ap-
pendix B), as a notational simplification, we omit to indicate explicitly the time-
dependence of the dependent variable ζn ≡ ζn (t), as well as its dependence on
the index n; and likewise the dependence on this index n of the parameters μn and
ηn.

The ODE (47) can clearly be solved by the following quadrature

ζ(t)∫
ζ(0)

dξ ξN−2

{
−η ξN−1 +

N∑
m=1

[
hm ξ2(m−1)

]}−1

=
i t

μ
· (48)
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To perform the integration it is convenient to introduce the 2 (N − 1) zeros ξj of

the polynomial of degree 2 (N − 1) appearing in the denominator of the integrand,

−η ξN−1 +
N∑

m=1

[
hm ξ2(m−1)

]
= hN

2(N−1)∏
j=1

(ξ − ξj) (49a)

and then the 2 (N − 1) “residues” φj defined by setting{
−η ξN−1 +

N∑
m=1

[
hm ξ2(m−1)

]}−1

= h−1
N

2(N−1)∑
j=1

(
φj

ξ − ξj

)
. (49b)

Note that these formulas imply that the computation of, firstly, the 2 (N − 1) zeros

ξj , and, secondly, the 2 (N − 1) residues φj , is a purely algebraic task (although

not one that can be analytically performed for N ≥ 3) and hence these quantities

can in principle be considered known functions of the parameter η (from which

they inherit a dependence on the index n, see Remark 4 and of the N constants

of motion hm. As for these N quantities hm (which are of course independent of

the index n) they are–in the context of the initial-value problem for the dynamical

system (28)–explicitly given by the formulas (25b) at t = 0 (let us reiterate that

these expressions of the N constants of motion hm are valid throughout the time

evolution, and of course, in particular, at the initial time t = 0).

The final step is to perform the integration in the left-hand side of (48). Via (49b)

the key ingredient to do so is the formula

ζ∫
ζ0

dξ
ξN−2

ξ − ξ0
=

ζ−ξ0∫
ζ0−ξ0

dξ
(ξ + ξ0)

N−2

ξ

=

ζ−ξ0∫
ζ0−ξ0

dξ
N−2∑
k=0

[(
N − 2

k

)
ξk−1 ξN−2−k

0

]
(50)

= ξN−2
0 log

(
ζ − ξ0
ζ0 − ξ0

)

+
N−2∑
k=1

{(
N − 2

k

)
ξN−2−k
0

k

[
(ζ − ξ0)

k − (ζ0 − ξ0)
k
]}

.
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