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Abstract. We show that the two orbits in the coadjoint representation of the group
SO(4,2), the one, related with the Kepler’s problem, and the other - modelling the
phase space of a conformal particle with zero mass and spirality zero, coincide.

1. Introduction

The the idea for the present work arose naturally in the development of two im-
portant trends in the Classical Mechanics and Differential Geometry. The first
one is related with the so-called Kirillov-Kostant-Souriau theorem, that allows to
identify connected symplectic spaces having sufficiently large dynamical group
with orbits in the coadjoint representation of these groups, [12, 21]. The second
is the circle of ideas related to the geometric quantization [13, 21]. If the sym-
plectic manifold is given, we expect to quantize some subalgebra of functions
(usually finite dimensional) and naturally such a subalgebra is associated with
some Lie group. Then the idea of the Kirillov-Kostant-Souriau theorem can be
developed in somewhat opposite direction, that is, to start with certain Lie algebra
G, to which corresponds a connected Lie group G, and then using it, to find a
phase space having G as dynamical group. Natural candidate for it will be some
orbit in the coadjoint representation of G. One usually imposes also the condi-
tion that such G must contain the Poincaré or the Galilean group in order to be
able to give physical interpretations. It is clear that the above procedure can be
performed even for quantum systems that have no classical counterparts in the
usual sense. The phase space (symplectic manifold) will be simply an orbit in
the coadjoint representation of the group, picked up by fixing the values of some
important physical observables (such as mass for example), [21]. It is natural to
expect, that some of the spaces, obtained in this way may coincide with some
classical phase spaces. The Hydrogen atom problem (Kepler’s problem) turned
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out to be an example of that situation. On the first place, the group SO(4, 2) and
its coadjoint orbit has been applied already in the geometric quantization of the
Hydrogen atom problem for negative energies, see [13, 19]. Then in [15, 23] it
was remarked that on the quantum level, the representation describing conformal
particle with m = 0, λ = 0 (mass zero and spirality zero), is the well known
ladder representation of the group SU(2, 2) (the dynamical group of the quantum
problem). As SU(2, 2) and SO(4, 2) locally coincide (SU(2, 2) is the universal
cover of SO(4, 2)) one can ask if both problems coincide at the classical level,
that is, if they have identical phase spaces. In the present work we shall prove that
this is indeed the case. As the classical problems for the Hydrogen atom and the
Kepler’s problem are identical, we use both these names as synonyms. Also, in
both cases it is enough to consider the connected component of the unity, that is
SOe(4, 2), since we want the resulting phase spaces to be connected.

Some words about the terminology and notation. Let G be a Lie group acting
canonically and transitively on the left on the symplectic manifold (M, ω), where
ω is the symplectic form. We call usually (M, ω) phase space and we denote the
action of G by G � g �→ lg , where lg is a symplectic diffeomorphism of M, that is
l∗gω = ω. Such a group is called a dynamical group. If we have dynamics defined
by a Hamiltonian function H and the dynamical group preserves the Hamiltonian
l∗gH = H , for g ∈ G, we call it a symmetry group.

As well known, see for example [1, 20], if G is a dynamical group then the mo-
mentum map (or simply momentum) is a function µ : M → G∗ having the
property

d〈µ(x), ξ〉 = i
ξ̃
ω (1)

for arbitrary ξ ∈ G, where G is the Lie algebra, corresponding to G, ξ̃ is the funda-
mental field defined by the element ξ ∈ G and the action of G and 〈 , 〉 denotes the
canonical pairing between the algebra G and the co-algebra G∗. The existence of
momentum is equivalent to the existence of m scalar functions µi, i = 1, 2, . . . ,m
such that

d〈µi(x), ξ〉 = i
ξ̃i
ω (2)

where {ξi}m
i=1 is some fixed basis of G. Of course, when G is a symmetry group,

all µi are integrals of motion. If M is connected and if certain cohomology class
for the algebra G, constructed through the action of of G, is trivial, x �→ µ(x)
is an equivariant map between the space (M, ω) and an orbit in the coadjoint
representation of G. In this case

{µi, µj} = ckijµk (3)
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where [ξi, ξj ] = ckijξk. We shall always assume that this is the case, because all
our Lie algebras will be semisimple. For such algebras, according to the classical
Whitehead’s lemma the first and second cohomology spaces are zero in arbitrary
representation. Since the cohomology class, we were speaking about in above,
belongs to the second cohomology space with respect to the trivial representation,
see [20], it will be trivial. Besides, the question about this class will not appear
at all, as we shall use (3) reversely, that is we shall find explicitly such functions
µi having the same Poisson brackets as the generators of the algebra G of some
connected Lie group G, specifying the orbit and hence the action of G.

The fact that SOe(4, 2) is a dynamical group for the Kepler’s problem (i.e., the
Hydrogen atom problem) and symplectic imbedding into orbits of the coadjoint
representation of SOe(4, 2) (or its universal cover SU(2, 2)) is in fact well known
and the properties of generators of so(4, 2) ∼ su(2, 2) relative to the Kepler’s
problem has been extensively studied, both on classical and quantum level, [3,
6, 7, 10, 16, 24]. The group aspects of the Kepler’s problem can be found in
[9, 21] while a review and exposition of both classical results and the most recent
ones can be found in [4]. In [14] the group SU(2, 2) has been used to study the
perturbations of the Kepler’s dynamics, the same group is applied also to the study
of a related dynamics (the so-called MIC-Kepler Problem) in [17] and [26], see
also [11] and the references therein.

The SOe(4, 2) orbit, as a manifold defined by some relations, usually is found in-
directly. There can be some variations, but usually the first step is to consider the
famous symplectic immersion F into the space (T+

S
3, ωS), which can be found

using the O(4) momentum function. Here T+
S

3 is the tangent bundle of the 3-
dimensional sphere S

3, with the zero section removed and the symplectic structure
ωS is obtained restricting the symplectic structure of R

6 where T+
S

3 is canoni-
cally embedded. The map F was found and applied to regularize the Hamiltonian
flow of the Kepler’s problem [18], and there are some different variants of that
result, see [4, 5]. Then one uses the symplectic immersion of (T+

S
3, ωS) into an

orbit of the coadjoint representation of SOe(4, 2) (or its universal cover SU(2, 2)).
Finally, as a result, the phase space for the Kepler’s problem is symplectically im-
mersed into the corresponding orbit. We show how all this can be done directly. In
this we follow some of the calculations of [2], where it has been found an algebra
of functions on M, identical to the algebra so(4, 1) (with respect to the Poisson
bracket). We follow closely the method of [2] and do the same for so(4, 2) (the
result is known, but we want to sketch the method, besides there are some in-
structive points in the calculation). This we do in Section 2. Next we find the
orbit directly and hope that the way we obtained it is new. Finally, in Section 4
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we calculate another orbit, corresponding to a conformal particle of zero mass
and spirality zero and show that it is identical to that, obtained for the Kepler’s
problem. We believe that this result is also original.

2. The Group SOe(4, 2) as a Dynamical Group for the Kepler’s
Problem. The Momentum Map

In what follows we fix the constants for the Hydrogen atom (Kepler’s problem)
be equal to one. Thus, the Hamiltonian function will be

H =
1
2
p2 − 1

r
, r,p ∈ R

3, r = ||x||, p = ||p||. (4)

Also, we consider the Kepler’s problem for negative energies, that is by definition
the phase space (M, ω3) is

M = {(x,p) ∈ R
6 ; H(x,p) < 0}, ω3 = dpi ∧ dqi. (5)

(In the above formulae summation over repeated indices is implied). One canon-
ical action of a Lie group on M is well known – the action of the group of ro-
tations SOe(3): lg(x,p) = (gx, gp), g ∈ SOe(3). If we choose in so(4) the
basis (Ii)kl = εijk, where εijk is the Levi-Cevita symbol, then the momentum
functions µi are the components of the angular momentum Li = (x × p)i. Of
course, SOe(3) is a symmetry group for the Kepler’s problem.

The above symmetry group can be extended to SOe(4), as suggested by the exis-
tence of another vector first integral – the so-called Runge-Lenz-Laplace vector

A = (−2H)− 1
2

[(1
r
− p2

)
x+ up

]
, u = 〈x,p〉 = xipi. (6)

The momentum map µij = −µji of SOe(4) is also well known

(µ14, µ24, µ34) = (A1, A2, A3), (µ32, µ13, µ21) = (L1, L2, L3) (7)

where the functions µij , 1 ≤ i, j ≤ 4 correspond to the standard basis Iij =
eij − eji, (here and below (eij)nm = δm

i δn
j ). As so(4) ∼ so(3) ⊕ so(3), the first

summand gives rise to the angular momentum L and the second to A.

We shall take the functions we have already and shall try to add to them other ones
in order to obtain the algebra of the group SOe(4, 2), (the connected component
of the linear group preserving the symmetric bilinear form with signature ++++
−− ). Thus we find a larger (dynamical) group, that will be no more a symmetry
group.
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Let us cast the commutation relations of so(4, 2) in the form

[L,L] = L, [A,A] = L, [B,B] = −L, [L,A] = A, [L,B] = B

[L,C] = C, [C,C] = −L, [A,C] = R, [A,B] = Q, [C,B] = S

[L, Q] = 0, [L, R] = 0, [L, S] = 0 [R,A] = C, [S,A] = 0
[Q,A] = B, [Q,B] = A, [Q,B] = 0, [S,B] = C, [Q,C ] = 0
[R,C] = A, [S,C] = −B, [R,Q] = S, [R,S] = Q, [S,Q] = R

(8)

where
L = (I32, I13, I21), Q = I54

A = (I14, I24, I34), R = I64

B = (I15, I25, I35), S = I56

C = (I16, I26, I36),

Iij = γieij − γjeji, γi =

{
1 i = 1, 2, 3, 4.
−1 i = 5, 6.

(9)

In the above we have used the notations

[A,B] = C means [Ai, Bj ] = εijkCk

[A,B] = Q means [Ai, Bj ] = δijQ

[S,B] = C means [S,Bi] = Ci.

(10)

(No summation over repeated indices for the formulae for the generators).
The above form is chosen for the following reason. It is known that the condition
{L, f} = 0 (here and below we use the same letters for the generators of the
algebra and the corresponding momentum functions) is necessary and sufficient
in order that the function f be a scalar function (transforms as scalar with respect
to the rotational group) and {L,A} = A is is necessary and sufficient in order
that the function A ≡ (A1, A2, A3) be a vector function (transforms as vector).
Thus those relations which contain L will be satisfied automatically if A,B,C
are vector functions and Q,R, S are scalar functions. A SOe(3)-scalar function
depends on x and p only through r = ||x||, ||p|| and u = 〈x,p〉. We find it more

convenient to assume that this dependence is through r, u and H =
1
2
p2 − 1

r
.

From the other side, every vector function can be written into the form

B = fx+ gp+ h(x × p)

where f, g, h are some scalar functions. But, if we assume the above general form
it can be checked that in general {B,B} �= wL, (with some scalar function w).
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On the contrary, when h = 0 the bracket is proportional to L. For that reason we
assume that A,B,C have the form

A = fx+ gp, B = Fx+Gp, C = F ′x+G′p. (11)

For example, if A is the Runge-Lenz-Laplace vector, we have

f = N(r−1 − p2), g = uN, N = (−2H)− 1
2 .

We can pass now to our task. If we look into the commutation relations of so(4, 2)
it is not difficult to see that the algebras, spanned by the sets (L,A,B, Q) and
(L,A,C, R) are isomorphic, that is (if we write instead of commutators the Pois-
son brackets) we obtain two identical sets of equations

1) {L,L} = L 1′) {L,L} = L

2) {L,A} = A 2′) {L,A} = A

3) {L,B} = B 3′) {L,B} = B

4) {A,A} = L 4′) {A,A} = L

5) {A,B} = Q 5′) {A,C} = R

6) {A, Q} = −B 6′) {A, R} = −C

7) {B,B} = −L 7′) {C,C} = −L

8) {B, Q} = −A 8′) {C, R} = −A

9) {L, Q} = 0 9′) {L, R} = 0.

(12)

It follows that if we find a solution for the system 1) − 9) it can be used also
for the second system – 1′) − 9′). As we have mentioned, if A,B are vector
functions and Q scalar function, then 1), 2), 3), 9) are satisfied. Therefore, we
need to satisfy only the rest of the equations. It turns out however that only a part
of them are independent.

Proposition 1. The equations 6) and 8) from the system (12) are satisfied identi-
cally if the rest of the equations are satisfied.

(The proof is quite straightforward, but long and cumbersome and we omit it).

Let us consider now the equations 4), 5) and 7) in (12). We want to obtain an
algebra larger than so(4) and for that reason we assume that L is the angular
momentum and A is the Runge-Lenz-Laplace vector. Then we must find F,G
and F ′, G′. It can be shown that 4), 5) and 7) force the following form of F,G

F = r−1a1 sin
u

N
+ r−1b1 cos

u

N
G = −(N−1rb1 + a1) sin

u

N
+ (N−1ra1 + ub1) cos

u

N

(13)
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where a1, b1 depend on (x,p) only through H . Quite analogously, we get C
= F ′x+G′p, where

F ′ = r−1a2 sin
u

N
+ r−1b2 cos

u

N
G′ = −(N−1rb2 + a2) sin

u

N
+ (N−1ra2 + ub2) cos

u

N
.

(14)

Let us substitute what we have obtained in the equations {B,B} = −L. After
some calculations we get that they are equivalent to a single equation: a2

1 + b21 =
c1 +N2, where c1 is some constant. Naturally, we have also a2

2 + b22 = c2 +N2

with some constant c2. The equations that rest to be satisfied are

1) {C,B}= S

2) {S,B} =C

3) {C, S} =B

4) {C, Q} = 0
5) {B, R} = 0
6) {R,Q} = S

7) {S,Q} = R

8) {A, S} = 0.

(15)

The proof of the following proposition, though cumbersome, is proved by direct
calculations and we give only the result.

Proposition 2. In the system (15) only the equations 1), 2), 3) are independent,
that is, if they are satisfied, the rest are satisfied identically.

Thus we must consider only the equations (15, 1), 2), 3)). Skipping again most of
the details, we get that

a1 = κb2, a2 = −κb1, b1 = −κa2, b2 = κa1 (16)

where κ = ±1. We can choose the particular solution of these equations:
κ = 1; a1 = N ; b1 = 0 and finally can get the expressions we wanted

1) B= r cos
u

N
p+N sin

u

N

(x

r
− up

)
2) C =N

(x

r
− up

)
cos

u

N
− rp sin

u

N

3) A=N
(1
r
− p2

)
x+ uNp

4) L =x × p

5) Q =N(1− rp2) cos
u

N
− u sin

u

N
6) R =−u cos

u

N
−N(1− rp2) sin

u

N
7) S =N.

(17)
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Let us recapitulate. We have found functions µij , such that their Poisson brackets
can be considered as generators of the Lie algebra so(4, 2). More precisely, µij

are the functions

µi5 =Bi i = 1, 2, 3

µ45=−Q

µi6 =Ci i = 1, 2, 3

µ46=−R

µij = pixj − pjxi i, j = 1, 2, 3

µi4 =Ai i = 1, 2, 3

µ56=S = N.

(18)

If we choose the parameters in different way, for example if we put a1 = N ,
b1 = 0, κ = −1 we shall get

B = r cos
u

N
p+N sin

u

N

(x

r
− up

)
C = −N cos

u

N

(x

r
− up

)
+ r sin

u

N
p

Q = −N(1− rp2) cos
u

N
− u sin

u

N

R = u cos
u

N
−N(1− rp2) sin

u

N
.

(19)

(We have written here only those expressions differing from the previous ones).
If we make the choice a1 = N , b1 = 0, κ = −1, then it can be checked that the
corresponding µλν satisfy the relations

µλ5µν6 − µν5µλ6 = µ56µλν λ, ν = 1, 2, 3, 4

µλ5µλ5 = µλ6µλ6 = µ2
56

µλ5µλ6 = 0, µ56 < 0

(20)

(summation over repeated indeces assumed). It can be shown, that these relations
determine the orbit, that is the orbit is defined by them as submanifold. We have
put the proof of this fact in the next section.

The functions (µλ5, µλ6) ≡ (Q̂λ, P̂λ) are the so-called Bacry-Györgyi variables
and we can recover here some classical results about the Kepler’s problem. For
example, it can be checked that the map

ψ : (x,p) −→ (µλ5, µλ6) = (Q̂(x,p), P̂ (x,p)) (21)
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is an inclusion of M into a submanifold N ⊂ R
8, defined by

N = {(Q̂, P̂ ) ; 〈Q̂, Q̂〉 − 〈P̂ , P̂ 〉 = 〈Q̂, P̂ 〉 = 0, P̂ �= 0} (22)

where Q̂, P̂ are 4-dimensional vectors, Q̂ ≡ (Q, Q4) and 〈Q̂, P̂ 〉 stands for the
standard scalar product in R

4, defining the usual norm || ||. From here one can
obtain the famous result of Moser [18], as a matter of fact, the map

ϕ : (x,p) −→
(

P̂ (x,p)
||P̂ (x,p)|| , Q̂(x,p)

)
(23)

is exactly the so called Lignon-Schaaf regularization map, see [5], which defines
a symplectic immersion of M into T+

S
3. It is clear that if ψ regularizes the flow,

ϕ also has this property. This is easy to show for the map ψ. First of all however,
recall that the flow of the Kepler’s problem is not complete, since the trajectories
with initial velocities directed to the center “fall” on it for finite time. This flow
is avoided assuming that the phase space M is symplectically immersed in some
other phase space, very lucidly it these ideas are discussed in the report [27] on [5]
and also in [22]. In our case we have a natural immersion of M into N and the
Hamiltonian flow is immersed into a complete flow. Indeed, for the Hamiltonian
vector field ξH

(dQ̂λ(ξH),dP̂λ(ξH)) = ({Qλ,H}, {Pλ,H}), iξH
ω = −dH (24)

we can write the evolution equations in terms of (Q̂, P̂ ) and check our statement.
But it is easier to calculate the evolution, defined not by the ξH but by the field η,
corresponding to Hamiltonian function equal to −S = −N

(dQ̂λ(η),dP̂λ(η)) = −({Qλ, S}, {Pλ, S}), iηω = dN. (25)

Since N depends only on H , it is constant of motion and the integral curves for
H and −N differ by a change of the parameter. We have

{S, Q̂} = ({S,B},−{S,Q}) = (C,−R) = P̂

{S, P̂} = ({S,C},−{S,R}) = (−B, Q) = −Q̂.
(26)

Thus the equations of motion are

d
dt
Q̂ = P̂ (t),

d
dt
P̂ = −Q̂(t). (27)

The solutions exist for every t and on N the flow is the flow of a four-dimensional
oscillator.
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3. The Orbit Corresponding to the Hydrogen Atom
(Kepler’s Problem)

We shall show now how one can find the orbit in an explicit way, that is as a
submanifold, defined by some equalities and inequalities.

We have already the components µij of the momentum map, corresponding to the
group SOe(4, 2). Let us now write it into the form

µ =
1
2

∑
ij

µijI
∗
ij (28)

where I∗ij is the dual basis of the basis Iij for so(4, 2) we have introduced in
(9). Since so(4, 2) is semisimple, there exists an invariant scalar product 〈 , 〉
with the help of which one can identify the adjoint and coadjoint representation.

We choose it to be 〈X,Y 〉 = −1
2
Tr(XY ) and of course it is proportional to the

Killing form of the algebra, [8]. Then

〈gXg−1, Y 〉 = 〈Ad(g)X,Y 〉 = 〈X,Ad(g−1)Y 〉 = 〈Ad∗(g)X,Y 〉. (29)

Using the equivalence between so(4, 2) and so∗(4, 2) we find for the dual basis
Iij

∗ = γiγjIij . Here γi are the same as in (9). Thus we can assume that

µ =
1
2

∑
i,j

µijγiγjIij. (30)

However, the equations (20) preserve their form if we put instead of µij the ex-
pressions σij = γiγjµij – the coordinates of µ in the basis Iij . Thus one must
prove that these equations define unique orbit Oµ0 ⊂ so(4, 2) (µ0 will be specified
later) in the adjoint representation, that is

µ =
∑
i<j

σijIij ∈ Oµ0

exactly when σij satisfy (20). The element µ0 is obtained if we fix some values
of x0, p0:

µ0 =
∑
i<j

σ0
ijIij, σ0

ij = γiγjµij(x0,p0). (31)

We choose x0 = (1, 0, 0), p0 = (0, 1, 0). Then

µ0 = −(e12 − e21) + (e16 + e61)− (e25 + e52) + (e56 − e65) (32)
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and by definition
Oµ0 = {gµ0g

−1 ; g ∈ SOe(4, 2)}. (33)

An arbitrary element from the orbit defines it uniquely, but to find a set of relations
(equalities and inequalities) that determine the orbit orbit is by no means an easy
task, as far as we know it is not known even if this is always possible. Here
however we are quite lucky: it is easy to check that the matrix µ0 is idempotent,
that is µ2

0 = 0. This property is obviously invariant under the coadjoint action, in
other words all the elements X from the orbit satisfy X2 = 0. Let us put

X =
(

L M
M t N

)
(34)

where

• L is 4× 4 matrix with components lµν : lµν = −lνµ, µ, ν = 1, 2, 3, 4
• M is 4× 2 matrix with components Mν1 = aν , Mν2 = bν (35)
• N is 2× 2 matrix with components N11 = N22 = 0, N12 = −N21 = c

We shall write also X = (lµν , aν , bν , c). The condition X2 = 0 is equivalent to
the equations

1) aνaν = bνbν = c2

2) lνρaρ = c bρ
3) lνρbρ = −c aρ

4) aνaµ + bνbµ + lνρlρµ = 0

(36)

(summation over repeated indices is assumed).

Note also that c �= 0. Indeed, if the opposite is true then X = 0. It is not hard to
prove

Proposition 3. The system (36) is equivalent to the system

1) aνaν = bνbν = c2

2) lνρaρ = c bρ

3) lνρbρ = −c aρ

4) c lρν + aρbµ − bρaµ = 0.

(37)

Proof. Consider the linear operator L : C
4 �→ C

4 and defined by the matrix
(lµν)1≤µ,ν≤4. It is anti-Hermitian and hence semisimple. If a = (aµ)1≤µ≤4, b =
(bµ)1≤µ≤4 are treated as column vectors, the system (36) implies that e1 = b+ ia
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and e2 = b − ia are the unique eigenvectors with eigenvalues ±ic and that there
are no other nonzero eigenvalues. From this the fourth equation in (37) follows
immediately.

Proposition 4. The equations (37) define exactly two orbits of SOe(4, 2), one for
c > 0 and the other for c < 0. The orbit Oµ0 corresponds to c < 0.

The proof is quite elementary, one uses the one-parametric subgroups of SOe(4, 2)
in order to show that if X1,X2 are two points satisfying (37) with c > 0 there
exists an element g ∈ SOe(4, 2) such that X2 = gX1g

−1.

Let us make one final remark. If we change the signature, that is if instead of
+ + + + −− we choose − − − − ++ we need just to change Iij into −Iij .
Then µij must be changed to −µij and finally one can remark that the orbit is the
same but now µ56 > 0.

4. The Orbit Corresponding to the Conformal Particle
with Mass Zero, Spirality Zero

In this section we shall choose the opposite signature for so(4, 2), that is −−−−
++ . The point is that we want the usual signature for the Poincaré group. Let us
put

Zµ = I13+µ, Wµ = I23+µ, Lµν = I3+µ3+ν , S = I12 (38)

µ, ν = 0, 1, 2, 3.

Then the commutation relations can be cast in the following form:

[S,Zµ] = −Wµ, [Zµ, Zν ] = −Lµν

[Wµ,Wν ] = −Lµν , [S,Wµ] = Zµ

[Zµ,Wν ] = δµνS, [Wµ, Lλν ] = δµνWλ − δµλWν

[S,Lµν ] = 0, [Zµ, Lλν ] = δνµZλ − δµλZν

[Lµν , Lκλ] = δµκLνλ + δνλLµκ −δµλLνκ − δνκLµλ.

(39)

A basis in the same algebra form also the vectors

Xµν = I2+µ,2+ν , Tµ = I1,2+µ − I2+µ,6

D = I16, Kµ = I1,2+µ + I2+µ,6

(40)

ν, µ = 1, 2, 3, 4.
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One can check that the set of generators {Xµν , Tµ)}1≤µ,ν≤4 span the algebra of
the Poincaré group and the same holds true for the generators {Xµν ,Kµ)}1≤µ,ν≤4.
The commutation relations between the generators (40) run as follows

[D,Tµ] = −Tµ, [D,Kµ] = Kµ, [D,Xµν ] = 0
[Kµ,Kν ] = 0, [Tµ, Tν ] = 0, [Kµ, Tν ] = −2(Xµν + γµνD)
[Tλ,Xµν ] = γλµTν − γλνTµ, [Kλ,Xµν ] = γλµKν − γλνKµ

[Xκλ,Xµν ] = γκνXλµ + γλµXκν − γκµXλν − γλνXκµ.

Our task is to describe the phase space of the conformal particle with mass zero
and spirality zero with respect to the connected component of the Poincaré group,
considered as a subgroup of the group SOe(4, 2). According to our concepts the
phase space of a particle with a given dynamical group can be considered as an
orbit in the coadjoint representation of this group. Then the values of such quan-
tities as mass, spirality and so on must be equal to the values of some invariants
of the coadjoint action, these specific invariants are discussed later. So the in-
variants are of primary importance for our approach and we must say something
about how given a Lie algebra G one can find orbits, for which there will be some
polynomial invariants (a polynomial functions in µ ∈ G∗ that are constant on the
orbit). A class of polynomial invariants can be constructed using the universal
enveloping algebra U of G. Recall that U is defined as factor T/I of the tensor
algebra T of G over the two-side ideal I , generated by the elements of the type
ξ⊗η−η⊗ξ− [ξ, η]; ξ, η ∈ G. The multiplication sign in U is usually omitted and
if ξ1, ξ2, . . . , ξn is some basis of G then the Poincaré-Birkhoff-Witt theorem states
that U is generated by the products ξm1

1 ξm2
2 . . . ξmn

n , where mi are nonnegative
integers. There is canonical isomorphism between U (as vector spaces, but not as
algebras) and the algebra H[x] of the homogeneous polynomials on the variables
(x1, x2, . . . , xn). Let ξj , 1 ≤ j ≤ n be some fixed basis in G and ξj , 1 ≤ j ≤ n
be the dual basis. Let xj , 1 ≤ j ≤ n, be the coordinates of the vectors from G∗ in
the dual basis. The elements S(η1, η2, . . . , ηk), where by the symbol S we denote
the symmetrization with respect to all the indices of the product η1η2 . . . ηk and
each ηj is one of the elements of the basis of G, also form a basis in U . Then the
isomorphism we are speaking about takes an the element X ∈ U of the form

X =
∑

i1,i2,...,ik

ai1i2...ikS(ξi1 , ξi2 , . . . , ξik) (41)

into the polynomial

PX =
∑

i1,i2,...,ik

ai1i2...ikxi1xi2 . . . xik . (42)
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The above correspondence does not depend on the choice of the basis of the al-
gebra so the isomorphism between U and H[x] is canonical. The isomorphism,
as remarked already, is only between vector spaces, not between the algebras, but
nevertheless it can be used when we are looking for equations, satisfied by the
elements of the orbits as it allows to define an action Tg of G on H[x], [25]. If
µ = xiξ

i ∈ G∗ (here and below summation over repeated index is assumed), then
Ad∗(g)µ = yi(g, x)ξi, where yi = yi(g, x) are some functions of xi and g. More
specifically

yi(x, g) = 〈ξi,Ad∗(g)µ〉 = 〈Ad(g)ξi, µ〉 = [Ad(g)]jixj

where Ad(g)ξi = [Ad(g)]ji ξj . Then we set

PX −→ Tg(PX) =
∑

i1,i2,...,ik

ai1i2...ikyi1(x, g)yi2(x, g) . . . yik(x, g). (43)

If ξ ∈ G then ξ �→ d
dt
Texp tξ(PX)|t=0 ≡ Aξ(PX ) is an operator acting in the space

of polynomials, defining a representation ξ �→ Aξ of G. If the polynomial PX is
invariant, then Aξ(PX) = 0 for ξ ∈ G. The action of G and the representation of
G can be defined also in U (we shall denote them by the same letters) due to the
canonical isomorphism between the two spaces. If X is as in (42) then

Aξ(X) =
∑

i1,i2,...,ik

ai1i2...ik [ξ, S(ξi1 , ξi2 , . . . , ξik)] (44)

where the bracket denotes the commutator. If the group is connected, the poly-
nomial PX is invariant with respect to the above action of the group if and only
if

[ξ,X] = ξX −Xξ = 0, ξ ∈ G, X ∈ U. (45)

In other words, X must be a Casimir operator. In what follows we identify the
elements from U and from H[x], that is X ∈ U and PX ∈ H[x] and denote them
by the same letter – in each case it is easy to see what we have on mind.

As well-known, for the algebra of the Poincaré group there are two Casimir oper-
ators

T 2 = TµT
µ, ω2 = ωµω

µ (46)

where ωλ = ελρµνTρXµν .(Here the usual rule for rising the indices is assumed,
as well as a summation over repeated index). Then the orbits, for which T 2 =
m2 �= 0, ω2 = s(s + 1) can be interpreted as the phase spaces of particles with
mass m and spin s. When T 2 = 0 the additional invariant is the spirality λ which
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is introduced by the relation ωµ = λTµ. Therefore, if we are looking for the orbit
corresponding to a particle with zero mass zero and spirality zero, its points must
satisfy the equations

T 2 = 0, ω2 = 0. (47)

However, when we have the Poincaré group realized as subgroup of the conformal
group SO(4, 2), the expressions T 2 and ω2 are no more Casimir operators for the
algebra so(4, 2) and the equations (47) generally speaking are not invariant. In
more general setting, suppose we have some Lie group G with algebra G and
we have elements li ∈ U , (not necessarily Casimir operators), but we want the
equations

li = 0, li ∈ U, i = 1, 2 . . . s (48)

to be invariant, and the set of points that satisfy them to be union of orbits. It will
certainly be so if li ∈ U satisfy the requirements

[ξk, li] =
∑

j

aj
kilj , aj

ki ∈ U. (49)

(In our case T 2 and ω2 must be among the elements li.) Our idea is now to
find elements with the above property. Suppose we start with some elements
lj , 1 ≤ j ≤ s0, and require that the equations li = 0 (we remind here that
we mean of course the corresponding polynomial equations) to be invariant (in
our case these elements will be T 2 and ω2). Then we calculate commutators
with the generators and obviously have two possibilities: i) the commutators are
expressed through {lj}1≤j≤s0 . Then we already have the situation we are looking
for and we stop. ii) the commutators cannot be expressed through the elements
lj but are expressed through lj and another linearly independent elements mh,
1 ≤ h ≤ s1. Now, since the equations li = 0 are invariant, then the equations
mh = 0 will be invariant too. We must add those mh to our system and check
again if the new system {li,mh}1≤i≤s0;1≤h≤s1 is closed under the commutators
with the generators. The process must continue until we obtain a closed system
(of course, if it is possible). This program does not seem very encouraging as it
means a good deal of calculations. However, in our case it can be performed, so
let us start with it.

Using the standard generators we have introduced, the operator T 2 can be ex-
pressed as follows

T 2 = S2 +W 2
3 + Z2

3 + L3µL3µ − ZµZµ − {S,W3} (50)

where the summation over the repeated indices is assumed and the brackets { , }
denote the anti-commutator.
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We start by the commutators of T 2 with the generators and we have

[T 2, S] = F, [T 2, Zν ] = Fν + δ3νG

[T 2,Wν ] = δ3νF, [T 2, Lνλ] = δ3λFν − δ3νFλ

where

F = {Wµ, Lµ3}+ {S,Z3} − {Zµ,Wµ}
Fν = {Zµ, Lµν} − {S,Wν}+ {Lµν , Lµ3}+ {Zν , Z3}+ {Wν ,W3} (51)

G = {Lµ3, Zµ} − {W3, S}+ {S, S} − {Zµ, Zµ}.
So the elements F , Fν (ν �= 3) and G + F3 must be included in our system
too. Next, calculating [F3 +G,S], [F3 +G,Zν ], [F3 +G,Lκλ], [Fµ, S], [Fµ, Zν ]
(µ �= 3), [Fµ,Wν ] and [Fµ, Lκλ] (µ �= 3), we add the elements

{Lµν ,Wµ}+ {S,Zν}, ν = 0, 1, 2, 3.

Commuting these elements with S yields additional elements

{Lµν , Zµ} − {S,Wν}, ν = 0, 1, 2, 3

and if we consider [F, S], we see that in the system must be included also

{Wµ,Wµ} − {Zµ, Zµ}.
Denote by Λκµ the following elements

Λκµ = {Lκρ, Lρµ}+ {Wκ,Wµ}+ {Zκ, Zµ}. (52)

Then calculating [F3 + G,Lκλ] for κ �= 3, λ = 3 we get additional element Λκ3

and considering [Fµ, Zν ] and [F,W3] we obtain the following set

1) {Lµν ,Wν}+ {S,Zν}
2) {Lµν , Zν} − {S,Wν}
3) Λµν

4) Λµµ − Λ33

5) Λ33 − {S, S} − {Zµ, Zµ}
6) {Zµ,Wν}
7) {Zµ, Zµ} − {Wµ,Wµ}.

(53)

Commuting the above elements with the generators does not give new elements.
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Let us perform the same procedure calculating the commutators with ωρ. We
remind that

ω0 =
1
4
εijk{Ti,Xjk}, i, j, k = 1, 2, 3

ωi =
1
4
εijk(2{Tj ,X0k} − {T0,Xjk}), i, j, k = 1, 2, 3

where
Tj = Zj−1 − Lj−1,3, T0 = S −W3

X0k =Wk−1, Xjk = Lj−1,k−1.

Skipping the technical details, we obtain after commutation with the generators
that the new elements which must be added to the system (53) are

{S,Lµν} − {Zµ,Wν}+ {Zν ,Wµ} (54)

where the indices run over 0, 1, 2, 3. Thus the set we are looking for consists of
the elements (53) and (54).

Let us consider now the corresponding polynomials. The scalar product 〈X,Y 〉 =
−1
2
Tr(XY ) allows to identify so(4, 2) and so(4, 2)∗, see Section 3. If Iij is the

basis for so(4, 2) (with the signature adopted in this Section), then let I∗ij be the
dual basis. According to the above identification it is a basis of so(4, 2) too. If the
components of a given element are s, lµν , wµν , let us denote by s∗, l∗µν , w

∗
µν the

components of the same element in the dual basis. One easily checks that

s∗ = s, l∗µν = lµν , z∗µ = −zµ, w∗
µ = −wµ. (55)

If x ∈ so(4, 2) we will write

x = sS +
1
2
lµνLµν + zµZµ + wµWµ (56)

or in other words s, lµν = −lµν , zµ, wµ, µ, ν = 0, 1, 2, 3 are the components of
the element x ∈ so(4, 2) in the basis we have chosen. In the dual basis

x = sS∗ +
1
2
lµνL

∗
µν − zµZ

∗
µ −wµW

∗
µ . (57)

It follows that the polynomials, corresponding to the elements from the system of
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the elements (53) and (54) are

1) slµν − zµwν + zνwµ

2) szν − lµνwµ

3) −szν − lµνwµ

4) lκρlρµ + wκwµ + zκzµ

5) lµρlρµ + wµwµ + zµzµ − l3ρlρ3 − w3w3 − z3z3

6) l3ρlρ3 +w3w3 + z3z3 − s2 − zµzµ

7) wµzµ

8) zµzµ − wµwµ

(there is no summation over µ in 5)).

Evaluated on the orbit, we are looking for, these polynomials must be equal to
zero. It is not hard to see that we can select the following independent equations

1) slµν = zµwν − zνwµ

2) zµzµ − wµwµ = 0

3) wµzµ = 0

4) zµzµ = s2.

(58)

These equations coincide with the equations we have obtained earlier considering
the Kepler’s problem. We know that they define two orbits – one for s > 0 and
another for s < 0. In order to decide which of these orbits we must choose, we
have to remark that T0 = s−w3. As in addition wµwµ = s2, then |w3| < |s| and
T0 and s have the same sign. According to the general recipe for obtaining the
phase spaces for Poincaré-type particles one must have T0 > 0 to ensure that the
linear momentum T is future-like vector. Therefore the orbit we are looking for
corresponds to the choice s > 0. Now taking into account the necessary change
of signs when one passes to the opposite signature, we can formulate our main
result:

Theorem 5. The Kepler’s problem (Hydrogen atom problem) phase space and
the phase space of a conformal particle with mass zero and spirality zero are
identical at the classical level.
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