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VISUALIZING LIGHT CONES IN SCHWARZSCHILD SPACE

TARIG ELMABROUK AND ROBERT J. LOW

Communicated by Gregory L Naber

Abstract. We present a numerical approach to the visualization of the light cones,

and hence the causal structure, of exterior Schwarzschild space, taking advantage

of the symmetries of Schwarzschild space and the conformal invariance of null

geodesics.

1. Introduction

The purpose of this paper is to describe a numerical tool for the investigation of

the causal structure of exterior Schwarzschild space by visualization of the light

cones. The tool should also be of use to an instructor teaching a course including

material on the causal structure of space-time, or to a student on such a course.

Much of the material should be accessible to a student of general relativity who has

previously studied a course at the level of, for example, d’Inverno [3] or Hughston

and Tod [2], and the tool should help to bridge the gap between such texts and the

more advanced treatments of Wald [8] or Hawking and Ellis [1]. We will use the

Einstein summation convention throughout.

In Section 2, we provide a brief review of the causal structure of Minkowski space,

as is generally discussed in introductory courses on special relativity, and how

this generalizes to general space-times, with particular reference to the importance

of null geodesics. In Section 3, we consider static space-times, and demonstrate

how conformal transformations can be used to reduce the problem of finding null

geodesics in space-time to that of finding geodesics in a Riemannian manifold

of lower dimension. Section 4 carries this procedure out in the case of exterior

Schwarzschild space-time. In Section 5 we provide a description of the numerical

approach used, with some illustrative figures. Section 6 briefly discusses how the

visualization tool might be used as an educational tool. The code itself is freely

available to download.
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2. Causal Structure

We begin by reviewing the causal structure of Minkowski space-time, and seeing

how these ideas generalise to curved space-time.

So let M be Minkowski space-time, with the standard coordinates (x, y, z, t) =
(x1, x2, x3, x4), in units in which c = 1. We will take xα as an abbreviation for

(x1, x2, x3, x4), with α (and Greek indices generally) being understood to take

values 1, 2, 3, 4. The inner product on M is then η = diag(1, 1, 1,−1).

Given two events, P and Q in M, with coordinates xαP and xαQ the vector con-

necting P to Q is
−−→
PQ = vα = xαQ − xαP , and a particle travelling with constant

velocity from P to Q is travelling slower than light, at the speed of light, or faster

than light as vαvβηαβ is negative, zero, or positive, and we say that vα is timelike,

null, or spacelike respectively. Since the third possibility implies the ability to send

a message into one’s own past, we exclude it as the possible trajectory of a physical

particle.

If tQ ≥ tP , then in the first case a massive particle can travel from P to Q, we say

that Q is to the chronological future of P , and we write Q ∈ I+(P ). In the second

case only a massless particle can, and we say thatQ is to the causal future of P , and

write Q ∈ J+(P ). I− and J−, the chronological and causal past are defined by

Q ∈ I−(P ) if and only if P ∈ I+(Q) and Q ∈ J−(P ) if and only if P ∈ J+(Q).
Finally, I(P ) is defined to be I+(P ) ∪ I−(P ) and J(P ) is J+(P ) ∪ J−(P ).

The light cone of P is the set of all events in M which are connected to P by a null

vector, and it forms the boundary of I(P ): the interior of his light cone comprises

the chronological future and past of P .

Lucid descriptions of these notions can be found in the standard texts, such as

Rindler [6] or Taylor and Wheeler [7], while a detailed consideration of the causal

geometry of Minkowski space and some of its less widely appreciated aspects is

provided in Naber [5].

These definitions of chronological future and past do not easily generalize, how-

ever: an alternative characterization is used.

If xα(s) is a curve in M, parametrized by s, then the tangent vector to this curve

at each event is given by ẋα, and the curve is said to be spacelike, timelike, or null

at xα(s) as ẋα is spacelike, timelike or null: a timelike vector is said to be future

pointing if ẋ4 > 0, and past pointing if ẋ4 < 0.

Then it is fairly obvious, and not too difficult to prove [5], that Q ∈ I+(P ) if

and only if there is a curve which starts and P , ends at Q, and has future pointing

timelike tangent vector at each point. The Q lies on the future light cone of P
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if and only if there is a curve starting and P and ending at Q whose tangent is

everywhere future pointing and null, but Q �∈ I+(P ).

This latter is the characterization which we must use in a general space-time. If

M is space-time with metric gαβ , then there is a null cone at each point consisting

of those tangent vectors nα such that gαβn
αnβ = 0. At each point, this null cone

splits into two halves: if it is possible to choose one of these halves consistently

over the whole of M , we say that M is time orientable, and arbitrarily choose one

of the halves to be the future half.

We can now consider a curve xα(s) in M , and its tangent vector ẋα at each point.

We define this curve to be timelike, null or spacelike at xα(x) depending on the

sign of gαβẋ
αẋβ just as before: and in the first two cases to be future pointing if

the vector points into the future half of the light cone, and past pointing othewise.

Finally, we say that P ∈ I+(Q) if there is a curve from P to Q whose tangent

vector is everywhere timelike and future pointing, and P ∈ J+(Q) if there is a

curve from P to Q which is everywhere timelike or null and future pointing; and

similarly for I− and J−.

These relationships define the causal structure of a space-time, since they deter-

mine the pairs of events P and Q such that a signal can propagate from P to Q:

in other words such that the situation at P can influence the situation at Q. This is

clearly a fundamental property of space-time. The question then arises, given P ,

how can we tell just which events comprise I+(P )?

The situation is similar to that of Minkowski space, but not identical. We anow

calling the set of events which are connected to P by a null geodesic, the light

cone of P . Note the distinction between the null cone of P , which is the set of null

vectors in the tangent space to M at P , and the light cone of P , which is the set

of points in M connected to P by a null geodesic. Then one might hope that, as

before, the light cone of P forms the boundary of I+(P ). Unfortunately, this is not

the case in general. In a general space-time, there may be points on the boundary

of I+(P ) which cannot be connected to P by a null geodesic, and points on future

pointing null geodesics emanating from P which are inside I+(P ) rather than on

the boundary.

Fortunately, we are restricting our attention to Schwarzschild space, in which the

first situation is not an issue: null geodesics can be extended to arbitrarily large

values of t. The second situation is the one which affects us. This arises when

distinct null geodesics emanating from an event P eventually meet and cross: after

they have crossed, each has passed through the boundary of I+(P ) to the interior

of I+(P ). The boundary of I+(P ) is thus given by the light cone of P , up to the

point where null geodesics intersect.
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Note that this is telling us something significant: the null geodesics meet because

of gravitational focussing, i.e., the presence of a gravitational lense. In other words,

although gravitational lensing is generally studied in a first course in general rela-

tivity, but causal structure is not, the phenomenon of gravitational lensing is inti-

mately bound up with the presence of non-trivial causal structure.

In the next two sections we will see how the light cones of space-times with the

symmetry of exterior Schwarzschild can be described, and produce some sample

diagrams obtained form a numerical approach.

3. Static Space-Times

First, we specialize from general space-times to static space-times, i.e. space-times

which have a coordinate system (xa, t) (where a = 1, 2, 3, as do Latin indices in

general) in which the metric takes the form

gab(x
a)dxadxb − f(xa)dt2

where f(xa) > 0, so that the metric is independent of time.

Exterior Schwarzchild is, of course, of this form, but before considering that partic-

ular case we will see how the symmetry of time-invariance simplifies the problem

of finding the null geodesics.

It is immediately obvious that if we make a conformal transformation, i.e., re-

place the metric gαβ by the metric g̃αβ = eΩgαβ where Ω is any smooth function

on space-time, then the causal classification of vectors, and hence curves, is un-

changed. It follows that the metrics gαβ and g̃αβ detemine the same causal struc-

ture. Less obviously, the two metrics have the same null geodesics, and this is what

we will take advantage of.

For in a general space-time,M , with metric gαβ , and affinely parameterised geodesic

is a curve xα(s) satisfying the differential equation

ẍα + Γα
βγ ẋ

βẋγ = 0

where the Γα
βγ are the usual Christoffel symbols.

Now, if we consider the metric g̃αβ , and denote by Fα the partial derivative of F
with respect to xα for any smooth function F , then

γ̃αβγ =
1

2
g̃αδ (g̃γδ,β + g̃βδ,γ − g̃βγ,δ) = Γα

βγ +
1

2
gαδ (Ω,βgγδ +Ω,γgβδ − Ω,δgβγ) .

It then follows that if

ẍα + Γα
βγ ẋ

βẋγ = 0
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then

ẍαΓ̃α
βγ ẋ

βẋγ = ẍαΓα
βγ ẋ

βẋγ + Ω̇ẋα +
1

2
gαδΩ,δẋ

βẋγ

where Ω̇ is the derivative of Ω along the curve xα(s).

But in the case where ẋα is everywhere null, this reduces to

ẍα + Γ̃α
βγ ẋ

βẋγ = Ω̇ẋα

which is differential equation for a geodesic not parametrized by an affine param-

eter.

So null geodesics are preserved, although the affine parametrization is not. This

might at first sight seem like a problem, but we will see below that in fact it is an

advantage.

Let us now return to the problem of describing the null geodesics in a static space-

time. We have the metric

gabdx
adxb − f(xa)dt2

and we now know that the null geodesics of this metric are the same as those of the

metric

g̃abdx
adxb − dt2

where g̃ab = gab/f(x
a), so can find the null geodesics of the original space-time

by finding the null geodesics of this one.

But the geodesic equations have now become

ẍa + Γa
bcẋ

aẋb = 0, ẗ = 0

where Γa
bc are the Christoffel symbols of the three dimensional Riemannian metric

g̃ab = gab/g(x
a).

We immediately see that if (xa(t), t) is a null geodesic in M parameterized by t
(which is not, in general, an affine parameter), then xa(t) will be an arc-length

parameterized geodesic of the Riemanian metric g̃ab, and vice versa. We can thus

construct the null geodesics of M finding the arc-length parameterized geodesics

of g̃ab and associated to each xa(t) in the Riemannian space, the corresponding

(xa(t), t) in space-time.

The unexpected advantage of this approach is that when we visualize the null cone

of an event, P , it will be convenient to compute the section of the null cone between

two values of t, the time coordinate. If we were to work with an affine parame-

ter, we would have the additional complication of continuing to evolve each null
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geodesic until the affine parameter gave the required value of t(s). This complica-

tion does not arise when we are effectively parameterizing the null geodesics by t
in the first place.

So far, we have reduced the dimension of the problem by one by using the time

symmetry present in Schwarzschild space-time. Next, we take advantage of the

spherical symmetry.

4. Schwarzschild Space-Time

We will use the standard polar coordinates for exterior Schwarzschild space-time,

in which the metric takes the form

1

1− 2M/r
dr2 + r2(dθ2 + sin2 θdφ2)−

(
1−

2M

r

)
dt2

for r > 2M , and which we immediately replace by the conformally related metric

dr2(
1− 2M

r

)2 +
r2

1− 2M
r

(dθ2 + sin2 θdφ2)− dt2 (1)

from which in turn we extract the Riemannian metric

dr2(
1− 2M

r

)2 +
r2

1− 2M
r

(dθ2 + sin2 θdφ2). (2)

Then a null geodesic of Schwarzschild space-time, parameterized by time, is an

affinely parameterized null geodesics of the conformally related metric (1), given

by (r(t), θ(t), φ(t), t), where (r(t), θ(t), φ(t)) is a geodesic of the Riemannian

metric (2) parameterized by arc-length.

We now make the final simplification, which takes advantage of the spherical sym-

metry of Schwarzschild space: this relies on the familiar facts (see, for example,

Hughston and Tod [2]) that a geodesic which initially lies in and is tangent to the

equatorial plane θ = π/2 remains in that plane, and that by suitable rotation, any

geodesic can be put in this form. We thus obtain our final Riemannian metric

dr2(
1− 2M

r

)2 +
r2

1− 2M
r

dφ2 (3)

with the associated Lagrangian

L =
ṙ2(

1− 2M
r

)2 +
r2

1− 2M
r

φ̇2.
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The equations of the arc-length parameterized geodesics of the final metric (3) are

the Euler-Lagrange equations of this Lagrangian, which are easily found to be

r̈ = ṙ2
2M

r(r − 2M)
+ φ̇2(r − 3M), φ̈ = 2φ̇ṙ

3M − r

r(r − 2M)
·

The solutions of these equations can then be used to contruct the null geodesics,

and hence the light cones, in the equatorial plane in exterior Schwarzschild space-

time: because of the spherical symmetry, a rotation in each surface of constant t
about an axis containing the point r = 0 and the spatial coordinates of the event P
recovers the full light cone of P .

5. Visualizing the Light Cones

Now, the solutions of the geodesic equations cannot be expressed in terms of the

standard elementary functions, so instead we solve the equations numerically. For

simplicity, we take M = 1, so that the event horizon is at r = 2 and the pho-

ton sphere at r = 3. The visualization tool we now describe was developed in

MATLAB, which conveniently combines built-in routines for solving differential

equations and excellent graphical ouput which alllows the user to interact fruitfully

with the figures.

The first routine1 is wave_front_s.m. It provides an interactive means of in-

vestigating the development of light cones in the vicinity of a Schwarzschild black

hole.

The user is prompted for values of

1. the amount of coordinate time for which the development should be studied

2. the initial radial coordinate of the point (which we give inital time coordinate

t = 0)

3. the range of initial tangent directions, and

4. the number of geodesics to compute.

This allows the user to investigate how the behaviour depends on distance from the

event horizon, to focus on ranges of particular interest, and to choose how finely

detailed an image is produced.

As an example, we show the dialogue produced by a choice of 15 for the devel-

opment time, an initial radial coordinate of 3 (so that the initial point lies on the

1http://www.bio21.bas.bg/jgsp/m_files/wave_front_s.m
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photon sphere), the range [−π, π] for tangent directions (so the full circle is pro-

duce), and 200 for the number of geodesics to be plotted

Enter the evolution time period: 15
Enter the initial radial coordinate: 3
Enter the range of tangent directions you
want to investigate in the form [start end]: [-pi pi]
Enter the number of directions: 200

The output from MATLAB then conveniently produces the top-down view in Fig. 1,

showing the projection of the geodesics to a surface of constant t, where r and φ
are treated as standard plane polar coordinates.
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Figure 1. Top Down View of Light Cone. Figure 2. Rotated View of Light Cone.

In this figure, the lines emanating from the point P with coordinates r = 3, φ = 0
are the null geodesics, and we can see how they are deflected and spread out by

the black hole. Allowing the development to continue for a little longer would let

a pair of null geodesics meet. Then an observer at the point at which they meet

would see the point of origin at each side of the black hole. Recalling that the full

situation is obtained by rotating about an axis connecting the origin of the plane P ,

we see that this produces the famous Einstein ring. Then, allowing the light cone

to develop slightly further, we enter the situation where some of the null geodesics

no longer lie on the boundary of I+(P ), but enter I+(P ).

But the user can also now interact with this figure, zooming, panning and rotating

at will, to produce other images, such as that of Fig. 2, in which the ‘vertical’

axis is time, and which now shows how the null geodesics (at least initially) form

the boundary of I+(P ). We can also see more clearly how the light cone of P
develops, in particular how it wraps around the event horizon at r = 2 without

crossing it.
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Figure 3. The Light Cone at t = 15.

We emphasize that these are only illustrative figures. The real power of this pro-

gram is to allow the user to investigate different choices of initial conditions and

to interact with the graphics in order to gain a better appreciation of how the light

cones develop, and so of the causal structure of Schwarzschild space.

This gives a space-time view of the development of light cones in the equatorial

place of exterior Schwarzschild, at the expense of one of the spatial dimensions.

The second program2, wave_front_3d_s.m, produces an animation of the

growth of the full light cone in three spatial dimensions by rotating the equato-

rial section about the axis of symmetry: in this version, the default is to compute

the entire sphere, and the user selects the initial event, the time of development, the

number of geodesics to compute in the equatorial plane, and the number of frames

to build for the animation.

The dialogue to produce a 20 frame animation of the three-dimensional growth of

the light cone considered above is

Enter the evolution time period: 15
Enter the initial radial coordinate: 3
Enter the number of geodesics to compute: 150
How many frames? 20

An example frame, showing the t = 15 section of the light cone of P , is given in

Fig. 3. Again we emphasize that it is from interaction with the programs that the

user benefits, rather than from viewing these static samples: in this case, he can

2http://www.bio21.bas.bg/jgsp/m_files/wave_front_3d_s.m
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observe the development of the light cone as a growing wave-front, and tune the

point of view, transparency etc as desired by adjusting the source code.

6. Discussion

The MATLAB programs provide a tool for the user to investigate the development

of light cones in Schwarzschild space-time, and so to encourage a better under-

standing of the causal structure. They can also be used as a teaching tool, helping

to illustrate topics such as

1. the relationship between the light cone and the chronological relation

2. how null geodesics are focussed or spread out in Schwarzschild space-time

3. the nature of conjugate points, and how they differ from points where distinct

null geodesics through a common initial even subsequently cross.

We intend to develop this to a general purpose tool for investigating the devel-

opment of light cones in static space-times with two spatial dimensions, taking

advantage of MATLAB’s symbolic manipulation package to compute the required

connection coefficients after the user has specified the metric. The approach is

intended to be complementary to that given by Müller and Frauendiener’s [4]

geodesic visualization tool. Rather than providing high-quality investigations into

the growth of individual geodesics in a specific selection of space-times, the soft-

ware will give the option of a range of quick-and-crude (by choosing a small num-

ber of geodesics) or slow-and-detailed (by choosing a large number) interactive

investigations of the growth of light cones in a user-specified static space-time.
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