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HARMONIC SPHERES AND YANG–MILLS FIELDS
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Communicated by Gregory L. Naber

Abstract. We study a relation between harmonic spheres in loop spaces of com-

pact Lie groups and Yang–Mills fields on the Euclidean four-space R
4.
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Introduction

In the paper we study a relation between two classes of objects, arising in theo-

retical physics, which from the first glance seem to be very far from each other.

The first class is formed by harmonic spheres, i.e., harmonic maps of the Riemann

sphere into Riemannian manifolds, coinciding with the classical solutions of the

sigma-model theory in theoretical physics. The second class consists of Yang–

Mills fields on the Euclidean four-space R
4.

Harmonic spheres in a given oriented Riemannian manifold are the smooth maps

of the Riemann sphere into this manifolds which are the extremals of the energy

functional given by the Dirichlet integral. They satisfy nonlinear second order el-

liptic equations, generalizing Laplace–Beltrami equation. If the target Riemannian

manifold is Kähler then holomorphic and anti-holomorphic spheres realize local

minima of the energy. However, this functional usually have also non-minimal

critical points.

On the other hand, Yang–Mills fields are the extremals of Yang–Mills action func-

tional. Local minima of this functional are called instantons and anti-instantons. It

was believed that they exhaust all critical points of Yang–Mills action on R
4, until

examples of non-minimal Yang–Mills fields were constructed.

There is an evident formal similarity between Yang–Mills fields and harmonic

maps and after Atiyah’s paper [2] it became clear that there is a deep reason for

such a similarity. Namely, Atiyah has proved that the moduli space of G-instantons

on R
4 can be identified with the space of based holomorphic spheres in the loop

space ΩG of a compact Lie group G. Generalizing this theorem, we formulate a

conjecture stating that it should exist a bijective correspondence between the mod-

uli space of Yang–Mills G-fields on R
4 and the space of based harmonic spheres

in the loop space ΩG. In our lectures we discuss this conjecture and propose an

idea of its proof.

1. Harmonic Maps

1.1. Harmonic Self-maps of the Riemann Sphere

Consider the following problem, arising in the ferromagnetic theory. Suppose that

at any point x = (x1, x2) of the Euclidean plane R
2 it is given a unit vector
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ϕ(x) ∈ R
3, depending smoothly on x. In other words, we have a smooth map

ϕ : R2 → S
2, x �−→ ϕ(x)

of the Euclidean plane R
2 into the unit sphere S

2 ⊂ R
3.

Define the energy of ϕ by the following Dirichlet integral

E(ϕ) =
1

2

∫
R2

|dϕ|2dx1dx2

where

|dϕ|2 =

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣2 + ∣∣∣∣ ∂ϕ∂x2

∣∣∣∣2 .
Problem 1. Find all smooth maps ϕ : R2 → S

2 with a finite energy E(ϕ) < ∞
which are extremal with respect to E(ϕ).

Figure 1. Smooth map from the Euclidean plane R
2 to the two-sphere S

2.

Due to the finite energy condition it is natural to impose on maps ϕ the following

asymptotic condition

ϕ(x) −→ ϕ0 uniformly for |x| → ∞

where ϕ0 is a fixed point of S2. Under this condition the maps ϕ : R2 → S
2 extend

to continuous maps

ϕ : S2 = R
2 ∪ {∞} −→ S

2.

It is well known that continuous maps ϕ : S2 → S
2 have a topological invariant,

called the degree of the map. This invariant counts how many times (counted with
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respect to orientation) the image of ϕ covers the sphere S
2 in the target space. It

can be computed by the formula

degϕ =

∫
R2

ϕ∗ω

where ω is the normalized volume form on the sphere S
2, satisfying

∫
S2
ω = 1,

and ϕ∗ω is the preimage of ω under the map ϕ.

Taking into account this invariant, we can reformulate our original problem as

follows:

Problem 2. Find all extremals of the energy E(ϕ) in the class of smooth maps
ϕ : R2 → S

2 with E(ϕ) <∞ of a given degree k = degϕ.

To solve this problem, we introduce the complex coordinates. Namely, denote by

z = x1 + ix2 the complex coordinate in the definition domain R
2 ≈ C and by w

the stereographic complex coordinate in the image S2 \ {∞}. In these coordinates

the expression for the energy of the map ϕ = w(z) takes the form

E(ϕ) = 2

∫
C

|wz|
2 + |wz̄|

2

(1 + |w|2)2
|dz ∧ dz̄|

where wz =
∂w
∂z

, wz̄ =
∂w
∂z̄

. The formula for the degree of ϕ is rewritten as

degϕ =
1

2π

∫
C

|wz|
2 − |wz̄|

2

(1 + |w|2)2
|dz ∧ dz̄|.

Comparing these two formulae, we arrive at inequality

E(ϕ) ≥ 4π|degϕ|.

Moreover, the equality here can be attained only by

• holomorphic functions ϕ = w(z) for k = degϕ ≥ 0, satisfying wz̄ ≡ 0;

• anti-holomorphic functions ϕ = w(z) for k < 0, satisfying wz ≡ 0.

In other words, holomorphic maps ϕ = w(z) realize minima of E(ϕ) in topo-

logical classes with k ≥ 0, while anti-holomorphic functions ϕ = w(z) realize

minima of E(ϕ) in topological classes with k < 0. For minimizing maps in these

classes the value of E(ϕ) is equal to 4π|k|, i.e., it is an integer modulo 4π. Hence,

the energy in our problem is “quantized” which sometimes happens in nonlinear

classical physical systems.
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To find explicit formulas for the minimizing maps, we suppose, for definiteness,

that k > 0. We also note that the value of E(ϕ) does not change under rota-

tions of the sphere S
2 in the target space (by this reason this model is often called

the “SO(3)-model”). Due to this SO(3)-invariance of the problem we can fix the

asymptotic value ϕ0 by setting it equal to w0 = 1. So we have to describe holo-

morphic maps of the Riemann sphere S2 = R
2∪{∞} into itself of degree k which

are equal to one at infinity. Such maps are obligatory rational and, having degree

k, they should have the form

ϕ = w(z) =
k∏

j=1

z − aj
z − bj

where aj �= bj are arbitrary complex numbers.

Note that the space of solutions of our problem depends on 4k real parameters (or

4k + 2 real parameters if we add rotations of S2 in the image).

Remark 1. We have described all local minima of E(ϕ). It can be proved that
this functional has no other critical points apart from the local minima (which is
an effect of two-dimensionality of the target manifold S

2).

1.2. General Definition of Harmonic Maps

Let M be an oriented Riemannian manifold of dimension m, provided with a Rie-

mannian metric g with metric tensor (gij), and N is an oriented Riemannian mani-

fold of dimension n, provided with a Riemannian metric h with metric tensor hαβ .

Definition 2. Let ϕ : (M, g) → (N, h) be a smooth map. Its energy is given by
the Dirichlet integral

E(ϕ) =
1

2

∫
M

|dϕ(p)|2volg

where dϕ is the differential of ϕ and volg is the volume element of metric g.

The squared norm of the differential can be computed in local coordinates as fol-

lows. Choose local coordinates xi at p ∈M and uα at q = ϕ(p) ∈ N . Then

|dϕ(p)|2 =
∑
i,j

∑
α,β

gij
∂ϕα

∂xi
∂ϕβ

∂xj
hαβ

where ϕα = ϕα(x) are the components of ϕ, gij = (g−1)ij are the entries of the

inverse matrix of (gij), volg is the volume element of g, given in local coordinates
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by the formula

volg =
√
|det(gij)|dx

1 ∧ . . . ∧ dxm.

Remark 3. There is also an invariant description of the differential dϕ. Namely,
the map ϕ : M → N generates the tangent map ϕ∗ : TM → TN which may be
identified with a section dϕ of the bundle

T ∗M ⊗ ϕ−1(TN) −→ N

where ϕ−1(TN) is the inverse image of TN under the map ϕ whose fibre at p ∈
M coincides with the fibre TqN at q = ϕ(p). The bundle T ∗M ⊗ ϕ−1(TN) is
provided with a natural Riemannian metric, induced by Riemannian metrics g and
h. (The local expression for this metric can be read from the local formula for
|dϕ(p)|2.)

Example 4. Let M be an open subset in R
m and N be an open subset in R

n. Then
the squared norm of the differential of a smooth map ϕ = (ϕ1, . . . , ϕn) : M → N
is given by

|dϕ(x)|2 =
m∑
i=1

n∑
α=1

∣∣∣∣∂ϕα

∂xi

∣∣∣∣2 = m∑
i=1

∣∣∣∣ ∂ϕ∂xi
∣∣∣∣2

and the energy is equal to

E(ϕ) =
1

2

∫
M

m∑
i=1

∣∣∣∣ ∂ϕ∂xi
∣∣∣∣2 dx1 ∧ . . . ∧ dxm.

Extremals of E(ϕ) are given by the maps ϕ = (ϕα) with components ϕα being
harmonic functions.

Definition 5. A smooth map ϕ : M → N is called harmonic if it is extremal for
the energy functional E(ϕ) with respect to all smooth variations of ϕ with compact
supports.
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Let us write down the Euler–Lagrange equations for E(ϕ) in local coordinates xi

on M and (uα) on N . Denote by M∇ the Levi-Civita connection of M , repre-

sented locally by the Christoffel symbol MΓk
ij , and by N∇ the Levi-Civita connec-

tion of N , represented locally by the Christoffel symbol NΓγ
αβ . In these coordi-

nates the Euler–Lagrange equations take the form

∑
i,j

gij

⎧⎨⎩ ∂2ϕγ

∂xi∂xj
−
∑
k

MΓk
ij

∂ϕγ

∂xk
+
∑
α,β

NΓγ
αβ(ϕ)

∂ϕα

∂xi

∂ϕβ

∂xj

⎫⎬⎭
= ΔMϕγ +

∑
i,j

gij
∑
α,β

NΓγ
αβ(ϕ)

∂ϕα

∂xi

∂ϕβ

∂xj
= 0 , γ = 1, . . . , n.

The operator

ΔMϕγ =
∑
i,j

gij

{
∂2ϕγ

∂xi∂xj
−
∑
k

MΓk
ij

∂ϕγ

∂xk

}
is the standard Laplace–Beltrami operator of M , determined by metric g. Note

that it is a linear differential operator of second order in ϕγ . The second term in

Euler–Lagrange equations depends on the geometry of the target space N and is

quadratic with respect to derivatives of ϕγ .

Example 6. For N = R
n the Euler–Lagrange equations reduce to the Laplace–

Beltrami equations on the components of ϕ. Their solutions are given by harmonic
functions ϕγ . For m = dimM = 1 harmonic maps ϕ : M → N coincide with
geodesics of N , parameterized by the arc length.

Remark 7. One can write down the Euler–Lagrange equations for E(ϕ) also in
an invariant form. Recall that dϕ may be identified with a section of the bundle
T ∗M ⊗ ϕ−1(TN). As we pointed out above, this bundle can be provided with a
natural connection ∇, generated by Levi-Civita connections M∇ and N∇. The
Euler–Lagrange equations in terms of this connection are written in the form

tr(∇dϕ) = 0

where the vector field τϕ = tr(∇dϕ) is called the stress tensor of ϕ.

1.3. Harmonic Maps of Almost Complex Manifolds

Let M be an almost complex Riemannian manifold, provided with an almost com-

plex structure
M

J , compatible with Riemannian metric g, and N be an almost com-

plex Riemannian manifold, provided with an almost complex structure
N

J , com-

patible with Riemannian metric h.
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Recall that an almost complex structure J on M is a smooth family {Jp}p∈M
of endomorphisms Jp : TpM → TpM such that J2

p = −I . This structure J

is integrable if it generates the ∂̄J -operator, satisfying the integrability condition

∂̄2
J = 0. The compatibility of J with Riemannian metric g means that the two-form

ω on M , defined by

ω(X,Y ) := g(X, JY )

is symplectic and the metric g is Hermitian. A manifold (M, g, J, ω) with such

an almost complex structure is called almost Kähler and it is called Kähler if J is

integrable.

Definition 8. Let ϕ : M → N be a smooth map of almost Kähler manifolds. It is
holomorphic if the tangent map ϕ∗ : TM → TN commutes with almost complex
structures

M

J and
N

J , i.e.,
ϕ∗ ◦

M

J =
N

J ◦ ϕ∗.

It is called anti-holomorphic if ϕ∗ anti-commutes with
M

J and
N

J .

Theorem 9 (Lichnerowicz) Let ϕ : M → N be a smooth map of almost Kähler
manifolds. Holomorphic and anti-holomorphic maps ϕ realize local minima of the
energy functional E(ϕ) in a given topological class.

However, in general, the energy functional E(ϕ) has also non-minimal critical

points (harmonic maps).

In our course we shall be interested in the following problem.

Problem 3. Describe all harmonic spheres ϕ : P1 → N , i.e., harmonic maps of
the Riemann sphere P

1 = S
2 to a given Riemannian manifold N , by reducing this

problem to the description of holomorphic spheres in almost Kähler manifolds.

2. Instantons and Yang–Mills Fields

This Section contains a brief introduction to Yang–Mills fields. A detailed ex-

position of this theory the reader may found in the books by Atiyah [1], Freed–

Uhlenbeck [7] and Naber [8].

2.1. Yang–Mills Equations on R
4

Let G be a compact Lie group (gauge group). A gauge G-potential on R
4 is a

connection in a principal G-bundle over R4, identified with a one-form A on R
4
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with values in the Lie algebra g of G. If G coincides with the group U(n) of unitary

(n× n)-matrices then this form may be written as

A =
4∑

μ=1

Aμ(x)dxμ

where x = (x1, x2, x3, x4) are coordinates on R
4, Aμ(x) are smooth functions on

R
4 with values in skew-Hermitian (n×n)-matrices. For n = 1 the gauge potential

is the Euclidean analogue of the electromagnetic four-potential. A gauge G-field
F is the curvature of connection A, given by a two-form on R

4 with values in g of

the form

F = DA = dA+
1

2
[A,A]

where D : Ω1(R4, g) → Ω2(R4, g) is the covariant exterior derivative, generated

by the connection A. In the case G = U(n) this form is equal to

F =
4∑

μ,ν=1

Fμν(x)dxμ ∧ dxν

where

Fμν = ∂μAν − ∂νAμ + [Aμ, Aν ]

with ∂μ := ∂/∂xμ, μ = 1, 2, 3, 4. For n = 1 the form {Fμν} coincides with the

Euclidean analogue of the Maxwell tensor of electromagnetic field.

A gauge transform is a smooth map g : R4 → G, acting on gauge potentials and

fields by the formula

A �−→ Ag := g−1dg + g−1Ag, g : F �−→ Fg := g−1Fg

where G acts on g by the adjoint representation. In the case G = U(1) the gauge

transform coincides with the multiplication by the factor g(x) = eiθ(x) so that

A �→ A− idθ and F does not change under this map.

Define the Yang–Mills action functional by the formula

S(A) =
1

2

∫
R4

‖F‖2d4x

where

‖F‖2 =
4∑

μ,ν=1

‖Fμν‖
2
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and the norm ‖Fμν‖ is computed with the help of an invariant inner product on g.

In the case G = U(n) one can take for such a product 〈X,Y 〉 := tr(XY ). Then

the formula for S(A) will rewrite as

S(A) =
1

2

∫
R4

tr(F ∧ ∗F )

where ∗ is the Hodge star-operator on R
4.

The functional S(A) is invariant under gauge transformations so that S(A) de-

pends on the class of the connection A modulo gauge transformations rather than

A itself.

Definition 10. Yang–Mills fields are the gauge fields F with finite Yang–Mills ac-
tion S(A) < ∞, realizing the extrema of S(A). The corresponding gauge poten-
tials A are called the Yang–Mills connections.

Yang–Mills fields satisfy the Euler–Lagrange equations for S(A) which have the

form

D∗F = 0

where D∗ : Ω2(R4, g) → Ω1(R4, g) is the formal adjoint of D. It is equal to

D∗ = − ∗D∗ so that the Euler–Lagrange equations for S(A) may be rewritten as

D(∗F ) = 0.

This equation is called the Yang–Mills equation and is sometimes supplemented

with the Bianchi identity
DF = 0

automatically satisfied for gauge fields F .

2.2. Instantons

A gauge field F is called selfdual (respectively anti-selfdual) if

∗F = F, (respectively ∗ F = −F ).

It is an immediate corollary of Bianchi identity that solutions of duality equations

∗F = ±F

satisfy the Yang–Mills equations.

If we write down the form F as a sum

F = F+ + F−



Harmonic Spheres and Yang–Mills Fields 11

with F± = 1
2(∗F ±F ) then the formula for the Yang–Mills action can be rewritten

in the form

S(A) =
1

2

∫
R4

(
‖F+‖

2 + ‖F−‖
2
)
d4x.

For gauge fields F with finite Yang–Mills action the quantity

k(A) =
1

8π2

∫
R4

(
−‖F+‖

2 + ‖F−‖
2
)
d4x =

1

8π2

∫
R4

tr(F ∧ F )

is an integer-valued topological invariant, called the topological charge of F . Evi-

dently,

S(A) ≥ 4π2|k(A)|.

The minimum of S(A), equal to 4π2|k| in the topological class of gauge potentials

with finite Yang–Mills action and fixed topological charge k(A) = k, may be

attained for k > 0 only on anti-selfdual fields and for k < 0 only on selfdual ones.

Definition 11. Anti-selfdual fields with finite action S(A) < ∞ are called the
instantons while selfdual fields with finite action S(A) < ∞ are called the anti-
instantons.

Instantons and anti-instantons realize local minima of the action S(A), however,

there exist also non-minimal critical points of this functional.

One of the main objects in Yang–Mills theory is the moduli space of Yang–Mills
fields which is the quotient of the space of all Yang–Mills fields modulo gauge

transforms. The structure of this space is far from being understood and one of

our goals is to approach this problem on the base of harmonic spheres conjecture.

However, the analogous problem for instantons, i.e., the description of the moduli

space of instantons on R
4, was solved by Atiyah–Drinfeld–Hitchin–Manin with

the help of the twistor approach, introduced in the next Section.

Comparing Yang-Mills fields with harmonic maps, introduced in Section 1, we

observe the following evident analogy between:

{(anti-)holomorphic maps} ←→ {(anti-)instantons }

and

{harmonic maps } ←→ {Yang–Mills fields } .

As we shall see from the Atiyah theorem and harmonic spheres conjecture, this

formal analogy has, in fact, a much deeper meaning.
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3. Twistor Interpretation of Instantons

3.1. Basic Twistor Bundle over S
4

We shall identify the four-sphere S4 with the quaternion projective line in the same

way as the two-sphere S
2 is identified with the complex projective line CP

1.

Recall that the space of quaternions H consists of elements

q = x1 + ix2 + jx3 + kx4

where x1, x2, x3, x4 ∈ R, i2 = j2 = k2 = −1 and the multiplication law is defined

by the relation

ij = −ji = k.

The space H is a non-commutative field isomorphic, as a vector space, to R
4. As

a complex vector space H can be identified with C
2 by writing quaternions in the

form

q = z1 + z2j

where z1 = x1 + ix2, z2 = x3 + ix4 ∈ C.

Quaternion projective line HP
1 consists of pairs [q, q′] of quaternions (not equal to

zero simultaneously) which are defined up to multiplication (from the right) by a

nonzero quaternion. We identify the Euclidean sphere S
4 = R

4 ∪ {∞} with the

quaternion projective line HP
1 and define the basic twistor bundle over S4

π : CP3 CP1

−→ HP
1

by the tautological formula

[z1, z2, z3, z4] �−→ [z1 + z2j, z3 + z4j]

where the 4-tuple [z1, z2, z3, z4] ∈ CP
3 is defined up to multiplication by a nonzero

complex number while the pair [z1 + z2j, z3 + z4j] ∈ HP
1 is defined up to mul-

tiplication (from the right) by a nonzero quaternion. The fibre of π coincides with

the complex projective line CP
1, invariant under multiplication from the right by

j, i.e., under the map

j : [z1, z2, z3, z4] �−→ [−z2, z1,−z4, z3].

The constructed bundle π : CP3 → S
4 has a nice interpretation in terms of complex

structures on R
4 due to Atiyah. To describe it, consider the restriction of π to the

Euclidean space R
4 ∼= H

π : CP3 \ CP1
∞ −→ R

4
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where the omitted complex projective line CP1
∞ is identified with the fibre π−1(∞)

of the twistor bundle at∞ ∈ S
4.

The space CP3\CP1
∞ is foliated by parallel complex projective planes CP2. These

planes intersect in CP
3 on the projective line CP

1
∞ so that each point p of CP1

∞

defines one family of parallel planes. The tangent map π∗ provides the tangent

space TqR
4 at a point q ∈ R

4 with the complex structure, induced from these

parallel planes. Different families, determined by points p ∈ CP
1
∞, define different

complex structures on TqR
4 so that the space of all complex structures on TqR

4,

compatible with metric, can be identified with CP
1
∞. Summing up, we can consider

the twistor bundle

π : CP3 \ CP1
∞ −→ R

4

as a bundle of complex structures on R
4, compatible with metric. The fibre of this

bundle at a point q ∈ R
4 consists of complex structures on the tangent space TqR

4,

compatible with metric, and can be identified, as above, with CP
1
∞.

3.2. Atiyah–Hitchin–Singer Construction and Penrose Twistor Program

We shall use an interpretation of basic twistor bundle as a bundle of complex struc-

tures, given in the last Subsection, to extend the twistor bundle construction to

general Riemannian manifolds.

Let N be an even-dimensional oriented Riemannian manifold of dimension 2n.

Consider the bundle π : J (N)→ N of complex structures on N , compatible with

Riemannian metric. The fibre of this bundle at a point q ∈ N coincides with the

space J (TqN) of complex structures Jq on the tangent space TqN , compatible

with metric. The bundle π : J (N) → N is associated with the principal bundle

O(N) → N of orthonormal frames on N and its fibre π−1(q) can be identified

with the complex homogeneous space O(2n)/U(n).

The bundle π : J (N)→ N can be always provided with a natural almost complex

structure, introduced by Atiyah–Hitchin–Singer. Namely, the Levi-Civita connec-

tion N∇ on N generates a natural connection on O(N), hence on J (N). This

connection determines the corresponding vertical-horizontal decomposition

TJ (N) = V ⊕H.

Using this decomposition, introduce an almost complex structure J 1 on J (N) by

setting

J 1 = J v ⊕ J h

where the value J v
z of J v at z ∈ J (N) coincides with the canonical complex

structure on the vertical space Vz , identified with O(2n)/U(n). The value of the
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horizontal component J h
z at z coincides with the complex structure J(z) on the

horizontal space Hz , given by the point z of the twistor bundle, where Hz is iden-

tified with the tangent space Tπ(z)N by π∗. We recall that the fibre π−1(q) of the

bundle π : J (N) → N at q = π(z) ∈ N consists of complex structures on

TqN and we denote by J(z) the complex structure on TqN , corresponding to the

point z ∈ π−1(q). This construction provides (J (N),J 1) with the structure of an

almost complex manifold.

We formulate now an heuristic Penrose twistor program:

Construct for a given Riemannian manifold N a twistor bundle π : Z → N ,

where the twistor space Z is an almost complex manifold, with the follow-

ing characteristic property: there should be a one-to-one correspondence

between

{
objects of Riemannian

geometry on N

}
←→

{
objects of holomorphic

geometry on Z

}
·

Such a correspondence, being established, would give a method of studying the

real geometry of the Riemannian manifold N via the complex geometry of its

twistor space Z.

The above Atiyah–Hitchin–Singer construction yields an example of such a twistor

bundle J (N) → N where the twistor space Z = J (N) is provided with the

almost complex structure J 1.

3.3. Atiyah–Ward and Donaldson Theorems

From now on we shall deal only with the complex projective spaces CP1 and CP
3.

By this reason, we shall shorten their notation to P
1 and P

3.

We return to the problem of description of{
moduli space of

G-instantons on R
4

}
=
{G-instantons on R

4}

{gauge transforms}
·

Using the basic twistor bundle π : P3 \ P1 → R
4, Atiyah and Ward have reduced

this problem to a problem of description of certain holomorphic bundles over the

three-dimensional complex projective space P
3. Namely, according to them, there

is a one-to-one correspondence between{
moduli space of

G-instantons on R
4

}
←→

{
based equivalence classes of holomorphic

GC-bundles over P3, trivial on π-fibers

}
.
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Here, GC is the complexification of the group G and the term “based” means that

the equivalence of GC-bundles over P3 is defined “modulo” P1
∞, i.e., all mappings,

defining the equivalence of the bundles, should be equal to identity on P
1
∞.

This result has the following two-dimensional reduction to the space P1×P
1, given

by the Donaldson theorem{
moduli space of

G-instantons on R
4

}
←→

{
based equivalence classes of holomorphic

GC-bundles over P1×P
1, trivial on P

1
∞∪P

1
∞

}
where P

1
∞ ∪ P

1
∞ denotes the union of two complex projective lines “at infinity” of

P
1 × P

1.

4. Twistor Interpretation of Harmonic Spheres

4.1. Eells–Salamon Theorem

Guided by the Penrose twistor program, mentioned in Subsection 3.2, we may

suppose that our original problem of construction of harmonic spheres ϕ : P1 → N
in a given Riemannian manifold N should reformulate as a problem of construction

of holomorphic spheres ψ : P1 → Z in its twistor space (Z = J (N),J 1) such

that ϕ = π ◦ ψ

Z = J (N)

π

��
P
1

ψ
��
�

�

�

�

�

ϕ
�� N

And it is almost true. In fact, projections of holomorphic spheres ψ : P1 → Z to

N do satisfy some partial differential equations of second order on N . However,

these equations are not harmonic but ultrahyperbolic, i.e., “harmonic with a wrong

signature” (n, n) instead of the required signature (2n, 0).

By this reason, we have to change the definition of the almost complex structure

on Z if we want to construct harmonic spheres in N as projections of holomorphic

spheres in Z. Namely, we shall provide Z with a new almost complex structure

J 2 which is given in terms of the vertical-horizontal decomposition

TJ (N) = V ⊕H

by

J 2 = (−J v)⊕ J h.
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It is precisely this almost complex structure, introduced by Eells and Salamon,

which is used for the twistor description of harmonic spheres.

Before we formulate the main result of this Subsection, let us give a formal defini-

tion of the twistor bundle.

Definition 12. A smooth bundle π : Z → N of an almost complex manifold
(Z,J ) over a Riemannian manifold N will be called the twistor bundle of N if
the projection ϕ := π ◦ ψ of any holomorphic sphere ψ : P

1 → Z to N is a
harmonic sphere ϕ : P1 → N .

Theorem 13 (Eells–Salamon theorem) The twistor bundle

π : Z = J (N) −→ N

provided with the almost complex structure J 2, is the twistor bundle, i.e., projec-
tion ϕ := π ◦ψ of any holomorphic sphere ψ : P1 → Z to N is a harmonic sphere
ϕ : P1 → N .

Using this theorem, we can construct harmonic spheres in the manifold N from

holomorphic spheres in its twistor space Z.

However, we note that the almost complex structure J 1 on J (N) is integrable⇔
N is conformally flat while the almost complex structure J 2 is never integrable.

Remark 14. Taking this into account, the Eells–Salamon theorem may look not
helpful as a method of construction of harmonic spheres in N . Indeed, it reduces
the problem of construction of harmonic spheres in the Riemannian manifold N to
the problem of construction of holomorphic spheres in the almost complex mani-
fold (Z,J 2). But the almost complex structure J 2, being non-integrable, might
be quite bizarre. For example, such a structure may have no non-constant holo-
morphic functions even locally. But our advantage is that we are dealing not with
holomorphic functions, i.e., holomorphic maps f : Z → C, but with a dual object
– holomorphic maps ψ : C → Z. Such a map is holomorphic with respect to the
almost complex structure J 2 on Z ⇐⇒ it satisfies the Cauchy–Riemann equation
∂̄Jψ = 0 with respect to the pulled-back almost complex structure J := ψ∗(J 2)
on C. This structure J is integrable (as any almost complex structure in complex
dimension one). In particular, the above Cauchy–Riemann equation has many lo-
cal solutions.

4.2. Complex Grassmann Manifolds and Flag Bundles

We apply the twistor approach to the description of harmonic spheres in the com-

plex Grassmann manifold Gr(C
d). In this case it is natural to choose for its twistor
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spaces the bundles of complex structures over Gr(C
d), invariant under the action

of the unitary group U(d). Such bundles coincide with the flag bundles defined

below.

Definition 15. The flag manifold F r(C
d) in C

d of type r = (r1, . . . , rn) with d =
r1+. . .+rn consists of flagsW = (W1, . . . ,Wn), i.e., nested sequences of complex
subspaces

W1 ⊂ . . . ⊂Wn = C
d

such that the dimension of the subspace V1 := W1 is equal to r1 and dimensions
of the subspaces Vi := Wi �Wi−1 are equal to ri for 1 < i ≤ n.

The flag manifold F r(C
d) admits the following description as a homogeneous

space of the unitary group U(d)

F r(C
d) = U(d)/U(r1)× · · · × U(rn).

It is a compact Kähler manifold which has an U(d)-invariant complex structure,

denoted by J 1.

Definition 16. For the construction of a flag bundle over the Grassmann manifold
Gr(C

d) we fix an ordered subset σ ⊂ {1, . . . , n}, such that
∑

i∈σ ri = r, and
define the flag bundle

πσ : F r(C
d) −→ Gr(C

d)

by
πσ :W = (W1, . . . ,Wn) �−→W :=

⊕
i∈σ

Vi.

4.3. Harmonic Spheres in Grassmann Manifolds: Burstall–Salamon Theorem

The flag bundle πσ, introduced in the previous Subsection, can be provided, as

before, with an almost complex structure J 2
σ so that the following analogue of

Eells–Salamon Theorem 13 will hold.

Theorem 17 (Burstall-Salamon) The flag bundle

πσ : (F r(C
d),J 2

σ ) −→ Gr(C
d)

provided with an almost complex structure J 2
σ , is a twistor bundle, i.e., the pro-

jection ϕ = πσ ◦ ψ of any holomorphic sphere ψ : P1 → F r(C
d) to Gr(C

d) is
a harmonic sphere ϕ : P1 → Gr(C

d) in Gr(C
d). Moreover, the converse is also

true: any harmonic sphere ϕ : P1 → Gr(C
d) in Gr(C

d) may be obtained in this
way from some flag bundle πσ : F r(C

d)→ Gr(C
d).
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Using the above twistor interpretation of harmonic spheres in Gr(C
d), we can

reduce their description to the description of holomorphic spheres in flag manifolds

F r(C
d). The latter problem was solved by Wood. The idea of his construction can

be roughly described as follows. A map ψ : P1 → F r(C
d) may be considered as a

decomposition of the trivial bundle P
1 × C

d into the direct sum of subbundles

P
1 × C

d = ψ1 ⊕ . . .⊕ ψn

where ψi := ψ∗Ti with Ti being the ith tautological bundle over F r(C
d). A

map ψ : P1 → F r(C
d) is J 1-holomorphic ⇐⇒ all subbundles ψ1, . . . , ψn are

holomorphic. Wood has proposed a procedure how to rebuild this decomposition

into a decomposition

P
1 × C

d = ψ̃1 ⊕ . . .⊕ ψ̃m

corresponding to a J 2-holomorphic sphere, where subbundles ψ̃i are either holo-

morphic or anti-holomorphic.

5. Atiyah Theorem and Harmonic Spheres Conjecture

5.1. Loop Spaces of Compact Lie Groups

We switch now to the infinite-dimensional target manifolds N , namely we take for

N the loop space ΩG of a compact Lie group G.

Definition 18. Let G be a compact Lie group. Then its loop space is

ΩG = LG/G

where LG = C∞(S1, G) is the loop group of G, i.e., the space of C∞-smooth maps
S
1 → G and G in the denominator is identified with the subgroup of constant maps

S1 → g0 ∈ G. Otherwise, ΩG can be thought of as the space of based loops, i.e.,
the maps S1 → G, sending 1 ∈ S

1 �→ e ∈ G.

The space ΩG is an infinite-dimensional Kähler manifold. A complex structure on

ΩG is induced from its representation as a homogeneous space of a complex Lie

group

ΩG = LGC

/
L+G

C

where GC is the complexification of G, LGC = C∞(S1, GC) is the complexified

loop group of G, and L+G
C = Hol(Δ, GC) is a subgroup of LGC, consisting of

the maps which may be holomorphically extended to the unit disc Δ.
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5.2. Holomorphic Spheres in Loop Spaces: Theorem of Atiyah

Recall that, according to Donaldson theorem

{
moduli space of

G-instantons on R
4

}
←→

⎧⎨⎩
based equivalence classes of holomorphic

GC-bundles over P1×P
1, trivial on the union

P
1
∞ ∪ P

1
∞

⎫⎬⎭ .

Atiyah theorem asserts that the right hand side of this correspondence can be iden-

tified with the space of based holomorphic spheres in ΩG. In other words, there is

a one-to-one correspondence⎧⎨⎩
based equivalence classes of holo-

morphic GC-bundles over P1 × P
1,

trivial on the union P
1
∞ ∪ P

1
∞

⎫⎬⎭←→

⎧⎨⎩
based holomorphic spheres

f : P1 → ΩG, sending ∞ to

the origin of ΩG

⎫⎬⎭ .

The proof of Atiyah theorem is based on the following construction.

Figure 2. Holomorphic GC-bundle over CP1 × CP
1.

Restrict a given holomorphic GC-bundle over P1 × P
1 to the projective line P

1
z ,

passing through a point P1 × {z} parallel to P
1
∞. This restricted bundle is deter-

mined by a transition function

f̃z : S
1 −→ GC

which is holomorphic in a neighborhood of the equator S1 in P
1
z . Hence, f̃z ∈ LGC

and we have a map

f : P1 � z �−→ f̃z ∈ LGC �−→ f(z) ∈ ΩG = LGC/L+G
C.

This map is holomorphic and based ⇐⇒ the original GC-bundle over P1 × P
1 is

holomorphic and trivial on P
1
∞ ∪ P

1
∞.
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5.3. Harmonic Spheres Conjecture

Atiyah and Donaldson theorems imply that there is a one-to-one correspondence

between {
moduli space of

G-instantons on R
4

}
←→

{
based holomorphic spheres

f : P1 → ΩG

}
.

So we have a correspondence between local minima of two functionals, namely{
Yang–Mills action on

gauge G-fields on R
4

}
and

{
energy of smooth

spheres in ΩG

}
with local minima given respectively by{

instantons and anti-

instantons

}
←→

{
holomorphic and anti-

holomorphic spheres

}
.

If we replace here the local minima by the critical points of the corresponding

functionals, we shall arrive at the formulation of the harmonic spheres conjecture,

namely it should exist a one-to-one correspondence between{
moduli space of Yang–

Mills G-fields on R
4

}
←→

{
based harmonic spheres

f : P1 → ΩG

}
.

Remark 19. We can consider the described transition from the local minima to
the critical points of our functionals as a “realification” procedure. Indeed, if we
replace smooth spheres in the right hand side of the above diagram by smooth
functions f : C → C then the described transition will reduce to the replacement
of holomorphic and anti-holomorphic functions by arbitrary harmonic functions
(which are the sums of holomorphic and anti-holomorphic functions). In the case
of smooth spheres in ΩG this transition from holomorphic and anti-holomorphic
spheres to harmonic ones becomes non-trivial due to the non-linear character of
Euler–Lagrange equations for the energy.

Unfortunately, a direct extension of Atiyah–Donaldson proof to the harmonic case

is not possible since the proof of Donaldson theorem, based on the monad method

of construction of holomorphic vector bundles on complex projective spaces, is

purely holomorphic. However, one can attempt to reduce the proof of the har-

monic spheres conjecture to the holomorphic case by “pulling-up” both sides of

the correspondence in this conjecture to their twistor spaces.
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6. Twistor Bundle over the Loop Space

6.1. Hilbert–Schmidt Grassmannian

In order to construct a twistor bundle over the loop space ΩG we shall first em-

bed ΩG into an infinite-dimensional Grassmannian, and then construct its twistor

bundle by analogy with the finite-dimensional case.

The role of an infinite-dimensional Grassmannian will be played by the Hilbert–

Schmidt Grassmannian of a complex Hilbert space H , provided with a polariza-
tion. That is a complex Hilbert space H together with a decomposition

H = H+ ⊕H−

into the direct orthogonal sum of closed infinite-dimensional subspaces H±. In the

case of the space H = L2
0(S

1,C) of square integrable functions on S
1 with zero

average one can take for such subspaces

H± = {γ ∈ H ; γ =
∑
±k>0

γke
ikθ}.

Definition 20. The Hilbert–Schmidt Grassmannian GrHS(H) consists of closed
subspaces W ⊂ H such that the orthogonal projection π+ : W → H+ is a Fred-
holm operator and orthogonal projection π− : W → H− is a Hilbert–Schmidt
operator.

For a given subspace W ∈ GrHS(H) the Fredholm index of the projection π+ :
W → H+ is called the virtual dimension of W .

Similar to the finite-dimensional case, the Hilbert–Schmidt Grassmannian GrHS(H)
admits the following homogeneous representation

GrHS(H) =
UHS(H)

U(H+)× U(H−)

where the unitary Hilbert–Schmidt group UHS(H) is defined by

UHS(H) = {A ∈ U(H) ; π− ◦A ◦ π+ is Hilbert–Schmidt}.

The Grassmannian GrHS(H) is a Hilbert Kähler manifold, consisting of a count-

able number of connected components of a fixed virtual dimension:

GrHS(H) =
⋃
d

Gd(H)

where

Gd(H) = {W ∈ GrHS(H) ; virtual dimW = d}.
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6.2. Virtual Flag Bundles and Harmonic Spheres in the Hilbert–Schmidt Grass-
mannian

The virtual flag manifold and flag bundles are defined by analogy with the finite-

dimensional case.

Definition 21. The virtual flag manifold F d
r
(H) in H of type r = (r1, . . . , rn)

with d = r1+ . . .+rn consists of flagsW = (W1, . . . ,Wn), i.e., nested sequences
of complex subspaces

W1 ⊂ . . . ⊂Wn ⊂ H

such that the virtual dimension of the subspace V1 := W1 is equal to r1, and
dimensions of subspaces Vi := Wi �Wi−1 are equal to ri for 1 < i ≤ n.

Definition 22. For the construction of a flag bundle over the Grassmann manifold
Gr(H) we fix an ordered subset σ ⊂ {1, . . . , n}, so that

∑
i∈σ ri = r, and define

the virtual flag bundle
πσ : F d

r
(H) −→ Gr(H)

by
πσ :W = (W1, . . . ,Wn) �−→W :=

⊕
i∈σ

Vi.

As in the finite-dimensional case, we can provide the virtual flag bundle πσ with an

almost complex structure J 2
σ so that the following analogue of Burstall–Salamon

Theorem 17 holds.

Theorem 23. The virtual flag bundle

πσ : (F d
r
(H),J 2

σ ) −→ Gr(H)

provided with the almost complex structure J 2
σ , is a twistor bundle, i.e., the pro-

jection ϕ = πσ ◦ψ of any almost holomorphic sphere ψ : P1 → F d
r
(H) to Gr(H)

is a harmonic sphere ϕ : P1 → Gr(H) in Gr(H).

We think that the converse of this Theorem is also true, as in the finite-dimensional

case.

6.3. Embedding of Loop Spaces into the Hilbert–Schmidt Grassmannian

Suppose that our compact Lie group G is realized as a subgroup of the unitary

group U(N) and construct an embedding of ΩG into the Grassmannian GrHS(H)
where H = L2

0(S
1,CN ).
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Construct first an embedding of the loop group LG into the unitary Hilbert–Schmidt

group UHS(H). For that we associate with a loop γ, belonging to the space

LG = C∞(S1, G) ⊂ C∞(S1,U(N)), the multiplication operator Mγ in the

Hilbert space H = L2
0(S

1,CN ), acting by the formula

h ∈ H = L2
0(S

1,CN ) �−→Mγh(z) := γ(z)h(z), z ∈ S
1.

In other words, Mγh is a vector function from H = L2
0(S

1,CN ), obtained by

the pointwise application of the matrix function γ ∈ C∞(S1,U(N)) to the vector

function h ∈ H = L2
0(S

1,CN ). The operator Mγ belongs to the unitary group

UHS(H) if γ ∈ C∞(S1,U(N)).

The constructed embedding LG ↪→ UHS(H) generates an isometric embedding

ΩG −→ GrHS(H).

7. Idea of the Proof of Harmonic Spheres Conjecture

7.1. Harmonic Analogue of Atiyah Theorem

Using the constructed isometric embedding ΩG ↪→ GrHS(H), we can consider an

arbitrary harmonic map ϕ : P1 → ΩG as taking its values in the Grassmannian

GrHS(H), hence, in one of its connected components Gr(H) and use the twistor

method.

We start from a harmonic version of Atiyah theorem, relating based harmonic

spheres ϕ : P1 → ΩG to harmonic GC-bundles over P1 × P
1. For a fixed z ∈ P

1

we pull back the value ϕ(z) ∈ ΩG to ϕ̃(z) ∈ LGC and consider ϕ̃(z) as a transi-

tion function of a bundle over projective line P1
z . By changing z ∈ P

1, we obtain a

GC-bundle E over P1 × P
1 which is harmonic and trivial over P1 ∪ P

1 if and only

if the original map ϕ is based and harmonic.

We note that if we consider the map ϕ : P1 → ΩG as taking values in GrHS(H)
then the value ϕ(z) for a fixed z ∈ P

1 is interpreted in terms of GrHS(H) as a

subspace Wz = Mϕ̃(z)H+.

7.2. Twistor Interpretation of the Moduli Space of Yang–Mills Fields

The twistor interpretation of the above construction has the following form. A

harmonic sphere ϕ : P
1 → ΩG may be considered as a harmonic sphere in a

submanifold Gr(H) ⊂ GrHS(H), consisting of subspaces W ⊂ H of some fixed

virtual dimension r. Assuming that the converse of Theorem 23 is true, the har-

monic sphere ϕ : P1 → Gr(H) in terms of the twistor flag bundle should coincide
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with the projection of some J 2
σ -holomorphic sphere ψ : P1 → F d

r
(H) so that there

is a commutative diagram

F d
r
(H)

πσ

��
P
1

ψ
��
�
�
�
�
�
�
�
�
�

ϕ
�� Gr(H) .

Then for a fixed z ∈ P
1 we pull back the value ψ(z) = (ψ1(z), . . . , ψn(z)) to

ψ̃(z) = (ψ̃1(z), . . . , ψ̃n(z)) with ψ̃i(z) ∈ LGC.

In terms of F d
r
(H) the value ψ(z) = (ψ1(z), . . . , ψn(z)) is given by the virtual

flagW(z) = (W1(z), . . . ,Wn(z) where Wi(z) = Mψ̃i(z)
H+.

The functions ψ̃i(z) ∈ LGC, being considered as transition functions, determine

some bundles over P1
z . By changing z ∈ P

1, we obtain for i = 1, . . . , n the GC-

bundles Ei over P1 × P
1, trivial over P1

∞ ∪ P
1
∞. It follows from the definition of

the almost complex structure J 2
σ that these bundles Ei should be either holomor-

phic or anti-holomorphic. So by Atiyah theorem they should correspond either to

instantons or anti-instantons on R
4.

In this way we can associate with any Yang–Mills field on R
4 a finite collection

of instantons and anti-instantons on R
4. This construction may be considered as a

twistor description of the moduli space of Yang–Mills fields on R
4.
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