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Abstract. We show that the MIC-Kepler probrem is simply solved via the phase-

space formulation of non-relativistic quantum mechanics. The MIC-Kepler problem

is the Hamiltonian system behind the hydrogen atom subjected to the influence of

the Dirac’s magnetic monopole field and the square inverse centrifugal potential

force besides the Coulomb’s potential force. We get the energy spectrum of the

bound states explicitly and construct the Green’s functions for E 0 by means of

the Moyal product, which is one of the ‘star’ products denoted by ‘ ’.

1. Introduction

In 1978, Bayen et al [1] demonstrated that the quantum mechanics could be re-

placed by a “deformation” of the classical mechanics by introducing an associative

algebra ( -product algebra) and the corresponding Lie algebra. The Moyal product

and the associated Moyal bracket are the most familiar instance of them, which are

directly connected with the definition of quantum commutator.

In this paper, using a star product, more precisely using the Moyal product, we

calculate the energy spectrum and Green’s functions of the MIC-Kepler problem

in the Weyl-Wigner-Moyal (WWM) formalism, which furnishes an alternative for-

mulation – historically, the latest – of quantum mechanics that is independent of

the conventional Hilbert space and path integral approach.

The motion of the electron in the hydrogen atom is called quantum-mechanical

Kepler problem. In 1970, McIntosh and Cisneros studied the above-mentioned

dynamical system and treated the motion of an electron not only in the Coulomb’s

potential but also in both magnetic monopole field derived from a vector potential

and a centrifugal potential proportional to the square of the pole strength, which is

referred later on as the MIC-Kepler problem [7].

Our notation is as follows m and k are positive constants which denote the mass

and the charge of the electron. Moreover Planck’s constant h 0 appears which
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is playing the role of deformation parameter, and μ h
2Z is the constant specifying

the monopole field.

1. We obtain the (Theorem 10) spectral data of the MIC-Kepler problem as

follows

Eigenvalues: En
2mk2

h2 n 2 2
, n 0,1,2, . . .

Dimension of the n, l eigenspace: n l 2 n l 2 4

where l Z such that l n, l and n are simultaneously even or odd.

2. Restricting to the negative energy levels we construct its Green’s functions

with two local polar coordinates (given in §5.2 below). By the transition

functions connecting two local trivializations, we show that the local ex-

pressions for the Green’s function are equivalent, i.e., Green’s function is a

section of a complex line bundle. (See Theorem 12.)

In 1984, Gracia-Bondía solved the quantum-mechanical Kepler problem in the

WWM formalism with the Moyal product. In addition, they showed that the prob-

lem was essentially reduced to that of a four-dimensional oscillator with a con-

straint by means of the Kustaanheimo-Stiefel (KS) transformation in celestial me-

chanics. They obtained the energy spectrum of bound states and calculated the

Green’s function for E 0 [2].

In 1986, Iwai and Uwano [5] proved that the MIC-Kepler problem is a reduced

Hamiltonian system that comes out of the four-dimensional “conformal” Kepler

problem, which is closely related to the four-dimensional harmonic oscillator if

the associated momentum mapping takes a fixed value μ. Using this formulation

in the phase-space, we state that the MIC-Kepler problem can be regarded as the

reduced system of the conformal Kepler problem when the momentum mapping

of the S1 action is set to take a nonzero fixed value μ , and besides that the KS

transformation is its principal U(1) bundle π. In this way, the quantum-mechanical

Kepler problem solved by Gracia-Bondía by means of the Moyal product is viewed

as the special case when the momentum mapping takes the value zero, i.e., μ 0 .

In 1988, Iwai and Uwano presented the quantum version by using an operator

method and constructed the “quantised” MIC-Kepler problem as a reduction of

the “quantised” conformal Kepler problem. A notable theorem is given and the

eigenspaces for negative energy are shown concretely. Their dimension and all

negative eigenvalues are presented in [6]. Our resultant spectrum coincides with

the results of this theorem except that they choose units where h 1 and m is set

at unity as well (m 1). More important, they differ from us in quantum setting
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as they formulated the quantum system in terms of operators in a Hilbert space,

while our system is described in terms of the phase-space common to the classical

mechanics. Proir to that Mladenov and Tsanov [8] have studied the MIC-Kepler

problem from the view point of geometric quantisation.

Later in 1992, Hoang [3] gave Green’s function of the MIC-Kepler problem which

is different from ours in quantum formulation as Hoang adopted another one using

the method of path integrals. Furthermore, we may emphasize that Green’s func-

tion obtained in this paper is a kind of section of the vector bundle which is used

in Iwai-Uwano [6]. More precisely, we obtain two local expressions and these can

be translated into each other through its transition function g . In our notation,

Hoang’s result is only a piece of the local expression of the section.

The organization of this paper is as follows. Section 2 presents an outline of phase-

space formulation called the WWM formalism. Section 3 is also an outline of pre-

vious studies of the MIC-Kepler problem in order to position it as a geometrical

problem. In Section 4, we derive the energy spectrum of the MIC-Kepler prob-

lem through the Moyal product algebra. In Section 5, we construct the Green’s

functions of the MIC-Kepler problem on the basis of -exponential function.

2. -Product on Deformation Quantization

In [1], it is suggested that “quantization” can be understood as a “deformation” of

the algebra N of C functions on the phase-space with ordinary multiplication of

functions. For f , g N , the new deformed product on N is denoted by f , g
f g . Then we base our calculation on the following product and proposition.

Definition 1. Let f p , x and g p , x be two polynomials on the phase space

T R
n, dp dx , where dp dx

n

j 1

dpj dxj is the symplectic form. The

Moyal product f g p, x is given by

f g f e
ih
2
∂x ∂p g f

N 0

1

N !

ih

2

N ∂

∂x

∂

∂p

∂

∂p

∂

∂x

N

g

where the partial differentiation operator with superscript operates on f written
at the left side of , and the other one with superscript operates on g written at
the right side.

Proposition 2. The canonical coordinates p, x on the classical phase-space
T R

n, dp dx satisfy the following Canonical Commutation Relations which
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provides generators of the Weyl algebra

pj pk 0, xj xk 0, pj xk δjk 1 j , k n

where
f g f g g f ih.

For a Hamiltonian function H x, p on the phase space T R
n, dp dx and

t R the following series U x, p ; t is called -unitary evolution function, or

-exponential.

U x, p ; t e
it
h
H xp

1
it

h
H

1

2!

it

h

2

H H
1

N !

it

h

N
N

H H H

In general, the above power series is not a convergent series. So we consider

instead the following differential equation in order to define the -exponential.

ih
∂U

∂t
H U U H, U x, p ; 0 1.

We shall use also the notation e
it
h
H x ,p

which stands for U x, p ; t throughout

the paper.

3. The MIC-Kepler Problem

3.1. Classical Theory

McIntosh and Cisneros [7] studied the dynamical system describing the motion of

a charged particle under the influence of Dirac’s monopole field and the square

inverse centrifugal potential force besides the Coulomb’s potential force.

Iwai and Uwano [5] gives the Hamiltonian description for the MIC-Kepler problem

as follows.

Theorem 3 (Iwai and Uwano [5], Theorem 3.1). The MIC-Kepler problem is the
Hamiltonian system T Ṙ

3, σμ , Hμ

Hμ x, p
1

2m
p2x p2y p2z

μ2

2mr2
k

r

σμ dpx dx dpy dy dpz dz Ωμ
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where Ṙ
3

R
3 0 , x, p T Ṙ

3, r x x2 y2 z2 and Ωμ stands
for Dirac’s monopole field of strength μ

Ωμ
μ

r3
xdy dz y dz dx z dx dy .

3.2. Quantum Theory

Let us consider the principal U 1 bundle π Ṙ
4

Ṙ
3 with the free S1-action ρ

on Ṙ
4, where the S1-bundle π Ṙ

4
Ṙ
3 is contractible to the Hopf fibre bundle

S3 S2. For an integer m, consider the unitary irreducible representation ρm of

U 1 S1 on C, z exp imt 2 z , z C . Let U 1 act on Ṙ
4

C to the left, then

we get the complex line bundle Lm Ṙ
4

mC, πm, Ṙ3 , where πm Ṙ
4

mC

Ṙ
3 is endowed with the linear connection . The curvature form of is Ωm 2 ,

which gives Dirac’s monopole field of strength m 2 .

Let Γm be the Hilbert space of square integrable cross sections in Lm . The quan-

tised MIC-Kepler problem is Γm, Ĥm where Ĥm is the Hamiltonian operator

such that

Ĥm
1

2

3

j 1

2
j

m 2 2

2r2
k

r

and where j stands for the covariant derivation of ∂ ∂j with respect to the linear

connection. Iwai and Uwano showed also that the quantised MIC-Kepler problem

Γm, Ĥm is obtained by the reduction of the quantised conformal Kepler prob-

lem (see Theorem 4.1 in [6]). Using the reduction, Iwai and Uwano obtained the

eigenvalues and their multiplicities.

Theorem 4 ([6], Theorem 5.1). The ρm-equivariant eigensubspace S En ; m
for the conformal Kepler problem is in one-to-one correspondence with the eigen-
space qmS En ; m of negative energy En 2k2 n 2 2 for the quantised
MIC-Kepler problem Γm, Ĥm , where n and m are subject to the conditions -
m n, m and n are simultaneously even or odd.

The qmS En ; m is of dimension n m 2 n m 2 4.

3.3. The MIC-Kepler Problem as Reduced System

In this subsection, we recall the method of the S1-reduction which reduces the

conformal Kepler problem on T Ṙ
4 to the MIC-Kepler problem on T Ṙ

3 .

The S1 action on Ṙ
4 is defined by a 4 4 matrix T ϕ

ϕ 0,4π , Ṙ
4 u T ϕ u Ṙ

4
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where T ϕ
R ϕ O

O R ϕ
, R ϕ

cos ϕ
2 sin ϕ

2

sin ϕ
2 cos ϕ

2

and u u1, u2, u3, u4 .

The bundle projection π is given as follows

π Ṙ
4

Ṙ
3

u π u x(u) where

x u 2 u1u3 u2u4

y u 2 u2u3 u1u4

z u u1
2 u2

2 u3
2 u4

2

and we have u2 u1
2 u2

2 u3
2 u4

2 r .

The S1 action on T Ṙ
4 is defined by the lift of the one on Ṙ

4 such as in [5], i.e.,

ϕ 0,4π , T Ṙ
4 u , ρ T ϕ u , T ϕ ρ T Ṙ

4.

Let ψ u , ρ be the momentum mapping of T Ṙ
4 associated with the above action,

i.e., ψ u , ρ
1

2
u2ρ1 u1ρ2 u4ρ3 u3ρ4 , given by the defining equation

dψ u , ρ η dθ u , ρ

1

2
u2, u1, u4, u3, ρ2, ρ1, ρ4, ρ3 dθ

where dθ dρ du
4

j 1

dρj duj .

Next, let ιμ ψ 1 μ TuṘ
4 be the inclusion map. Then the quotient space

ψ 1 μ U 1 is diffeomorphic to T Ṙ
3 and πμσμ ιμdθ . Hence, we have

Theorem 5 ([5], Theorem 2.5). The reduced phase-space of T Ṙ4,dθ is sym-
plectomorphic to T Ṙ

3, σμ .

The conformal Kepler problem defined in [5] is the triple T Ṙ
4, dθ, H , H u, ρ

1

2m

1

4u2

4

j 1

ρj
2 k

u2
Then we see πμHμ ιμH and that the MIC-Kepler

problem is obtained by the symplectic reduction of the conformal Kepler problem.

(See Theorem 3).
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4. Solution of Eigenspaces

4.1. Harmonic Oscillator

The harmonic oscillator is deeply related to the conformal Kepler problem. In this

subsection we discuss the quantization of the n-dimensional harmonic oscillator

via the Moyal product. We consider the phase-space T R
n, dp dx . Let m and

ω be positive constants for the mass of the oscillator and the angular frequency

respectively. Let K x, p denotes the Hamiltonian of the harmonic oscillator de-

fined as follows

K x, p
n

j 1

Kj xj , pj
1

2m

n

j 1

p2j
1

2
mω2

n

j 1

x2j .

We consider the following functions for all j 1, . . . , n

aj
1

2

mω

h
xj

i

mhω
pj , aj

1

2

mω

h
xj

i

mhω
pj

Nj aj aj .

The function aj corresponds to the annihilate operator, aj to the create operator

and Nj to the number operator respectively. Then we get

a a a1a1 a2a2 anan
K x, p

hω (1)
Nj aj aj

1

2
, N N1 N2 Nn a a

n

2

For all j 1, , n , we introduce

fj0
1

πh
e 2aj aj

1

πh
exp

mω

h
x2j

1

mhω
p2j

fkj
1

kj !
aj aj

kj

fj0 aj aj

kj

1

kj !
aj

kj fj0 aj
kj , kj 0,1,2 . . . .

We put furthermore

fk fk1 fk2 fkn , k 0,1,2 . . .

where k1, , kn N 0 such that k1 kn k.
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Then we have the canonical commutation relations

aj ak aj ak 0, aj ak
i

h
δjk, j , k 1 , , n

which yield the following commutativity

aj fk0 aj fk0 0, j k.

Then, we get

N fk k fk, k 0,1,2 . . .

K fk hω a a fk hω N
n

2
fk hω N fk

n

2
fk

hω k fk
n

2
fk hω k

n

2
fk

furthermore fk fl
1

2πh n fk δkl, k, l 0,1,2, . . . .

We can get the following proposition.

Proposition 6. The eigenspace of n-dimensional harmonic oscillator associated

with the eigenvalue Ek hω k
n

2
, k 0,1,2, is spanned by

fk x, p fk1 fk2 fkn

f0 1 k Lk1 4a1a1 Lk2 4a2a2 Lkn 4anan

where k1, , kn N 0 such that k1 kn k

f0 f10f20 fn0
1

πh n exp
mω

h

n

j 1

x2j
1

mhω

n

j 1

p2j

Lkj 4aj aj

kj

l 0

1 l kj !

l! 2 kj l !
4aj aj

l

4aj aj 4
Kj xj , pj

hω
2

mω

h
x2j

1

mhω
p2j .

4.2. The MIC-Kepler Problem

For a real parameter E let us consider the generalized Hamiltonian Φ x, p de-

fined by

Φ x, p r Hμ E .
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Then we have

πμΦ u, ρ
1

8m
ρ1

2 ρ2
2 ρ3

2 ρ4
2 E u21 u22 u23 u24 k.

The energy hyper surface E Hμ is equivalent to the condition Φ x, p 0 ,

which is preserved by the equation of motion. In what follows we consider the

case E 0 . The condition πμΦ u, ρ 0 gives

1

2m

4

j 1

ρj
2 4 E

4

j 1

uj
2 4k

and this equation is equivalent to that of four-dimensional harmonic oscillator, if

K u, ρ 4k with mω2 2 4 E . Then, by Proposition 6 for the case of four-

dimension, we have

En hω n
4

2
hω n 2 4k, n 0,1,2 . . . .

Then we have h2ω2 n 2 2 16k2, and from ω2 8 E m , we get

E
2mk2

h2 n 2 2
, n 0,1,2 . . . .

The conformal Kepler problem introduced by Iwai and Uwano is the triple T Ṙ
4,

dρ du,H such that

H u, ρ
1

2m

1

4u2

4

j 1

ρj
2 k

u2

Note that

πμΦ u, ρ u2
1

2m

1

4u2

4

j 1

ρj
2 k

u2
E u2 H u, ρ E .

Proposition 6 yields the following one.

Proposition 7. The eigenspace of the conformal Kepler problem associated with

the eigenvalue En
2mk2

h2 n 2 2
, n 0,1,2, . . . is spanned by the functions

fn u, ρ f0 1 nLn1
4a1a1 Ln2

4a2a2 Ln3
4a3a3 Ln4

4a4a4
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where n1, n2, n3, n4 N 0 , such that n1 n2 n3 n4 n and for all j
1,2,3,4

aj
1

2

mωn

h
uj

i

mhωn

ρj , aj
1

2

mωn

h
uj

i

mhωn

ρj

hωn
4k

n 2
, n 0,1,2, . . .

f0 f10f20f30f40
1

πh 4
exp

mωn

h

4

j 1

u2j
1

mhωn

4

j 1

ρ2j

Lnj 4aj aj

nj

l 0

1 l nj !

l! 2 nj l !
4aj aj

l
.

Reduction of conformal Kepler problem by an S1 action is a restriction of the

eigenspaces of H to that of Hμ, i.e., restriction of the eigenfunctions fn to fn ψ 1 μ .

Proposition 8. f ψ 1 μ u, ρ satisfies the following -characteristic equation

ψ u, ρ f u, ρ μ f u, ρ .

We need the eigenfunctions which span the eigenspaces of the Hamiltonian and

that of the momentum mapping simultaneously. For this purpose, we consider the

following functions

b1 u, ρ
1

2
a1 ia2 , b1 u, ρ

1

2
a1 ia2

b2 u, ρ
1

2
a3 ia4 , b2 u, ρ

1

2
a3 ia4

b3 u, ρ
1

2
a1 ia2 , b3 u, ρ

1

2
a1 ia2

b4 u, ρ
1

2
a3 ia4 , b4 u, ρ

1

2
a3 ia4 .

These functions satisfy the following canonical commutation relations

bj bk bj bk 0, bj bk
i

h
δjk, j, k 1, 2, 3, 4.

Moreover, we introduce

Na b3 b3 b3b3
1

2
, fa0

1

πh
e 2b

3
b
3

Nb b1 b1 b1b1
1

2
, fb0

1

πh
e 2b

1
b
1
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Nc b2 b2 b2b2
1

2
, fc0

1

πh
e 2b

2
b
2

Nd b4 b4 b4b4
1

2
, fd0

1

πh
e 2b

4
b
4 .

We have

b b
4

j 1

bjbj

4

j 1

ajaj a a

Na Nb Nc Nd b b 2 a a 2 N .

We also introduce for na , nb , nc , nd 0,1,2 . . . the functions

fna

1

na!
b3 b3

na

fa0 b3 b3

na

1

na!
b3

na fa0 b3
na

fnb

1

nb!
b1 b1

nb

fb0 b1 b1

nb

1

nb!
b1

nb fb0 b1
nb

fnc

1

nc!
b2 b2

nc

fc0 b2 b2

nc

1

nc!
b2

nc fc0 b2
nc

fnd

1

nd!
b4 b4

nd

fd0 b4 b4

nd

1

nd!
b4

nd fd0 b4
nd

and put

fn fna fnb
fnc fnd

, n 0,1,2 . . .

where na, nb, nc, nd N 0 such that na nb nc nd n .

Similarly, we get the following commutation relation

b3 fb0 b3 fc0 b3 fd0 b3 fb0 b3 fc0 b3 fd0 0

b1 fa0 b1 fc0 b1 fd0 b1 fa0 b1 fc0 b1 fd0 0

b2 fa0 b2 fb0 b2 fd0 b2 fa0 b2 fb0 b2 fd0 0

b4 fa0 b4 fb0 b4 fc0 b4 fa0 b4 fb0 b4 fc0 0 .

In this way we can find that

Na Nb Nc Nd fn n fn, N fn n fn

and due to (1)

a a 2 fn n fn hωa a fn K fn hω n 2 fn.
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As a result, we get

K fn hω n 2 fn, n 0,1,2, . . .

fn fl
1

2πh 4
fn δnl, n, l 0,1,2, . . . .

We can reslate the above-mentioned proposition (Proposition 7) as the following.

Proposition 9. The eigenspace of the conformal Kepler problem associated with

the eigenvalue En
2mk2

h2 n 2 2
, n 0,1,2, . . . is also spanned by

fn u, ρ f0 1 nLna 4b3b3 Lnb
4b1b1 Lnc 4b2b2 Lnd

4b4b4

where na, nb, nc, nd N 0 such that na nb nc nd n

hωn
4k

n 2
, n 0,1,2, . . .

f0 fa0fb0fc0fd0
1

πh 4
exp

mωn

h

4

j 1

u2j
1

mhωn

4

j 1

ρ2j

and for all α , j a ,3 , b ,1 , c ,2 , d ,4

Lnα 4bj bj

nα

l 0

1 l nα!

l! 2 nα l !
4bj bj

l
.

In fact,

4b3b3
mω

h
u1

2 u2
2 1

mhω
ρ1

2 ρ2
2 2

h
u1ρ2 u2ρ1

4b1b1
mω

h
u1

2 u2
2 1

mhω
ρ1

2 ρ2
2 2

h
u1ρ2 u2ρ1

4b2b2
mω

h
u3

2 u4
2 1

mhω
ρ3

2 ρ4
2 2

h
u3ρ4 u4ρ3

4b4b4
mω

h
u3

2 u4
2 1

mhω
ρ3

2 ρ4
2 2

h
u3ρ4 u4ρ3 .

We get

b3b3 b1b1 b2b2 b4b4
1

h
u2ρ1 u1ρ2 u4ρ3 u3ρ4

2

h
ψ u, ρ

ψ u, ρ
h

2
b3b3 b1b1 b2b2 b4b4 (2)

h

2
b3 b3 b1 b1 b2 b2 b4 b4 .
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By (2) and Proposition 8, the conditional equation for reduction is

b3 b3 b1 b1 b2 b2 b4 b4 fn
2

h
μ fn . (3)

The left side of (3) can be transformed into the form

b3 b3 b1 b1 b2 b2 b4 b4 fna fnb
fnc fnd

na nb nc nd fna fnb
fnc fnd

na nb nc nd fn .

In this way we find the relation

2

h
μ na nb nc nd l, l Z.

Therefore, we get as well

2

h
μ l

2 na nd n l

2 nb nc n l

μ
l

2
h l Z

l n

n and l are simultaneously even or odd.

Finally, we obtain the theorem.

Theorem 10. The eigenspace of the MIC-Kepler problem associated with the eigen-

value En
2mk2

h2 n 2 2
, n 0,1,2, . . . is spanned by the functions

fn u, ρ f0 1 n Lna 4b3b3 Lnb
4b1b1 Lnc 4b2b2 Lnd

4b4b4

where na, nb, nc, nd N 0 , l Z are such that

2 na nd n l
2 nb nc n l

i.e.,
l n
n and l are simultaneously even or odd.

Its dimension is

n l

2
1

n l

2
1

n l 2 n l 2

4
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5. Green’s Functions

5.1. Harmonic Oscillator

In order to obtain the -exponential function e
it
h
K

of n-dimensional harmonic os-

cillator, we consider the following differential equation

ih
∂

∂t
e

it
h
K

K e
it
h
K

e
it
h
K

K

K
h2ω2

4
n

∂

∂K

h2ω2

4
K

∂2

∂K2
e

it
h
K

with the initial condition e
it
h
K

t 0 1 . We solve this differential equation explicitly

and state

Proposition 11. The -exponential of n-dimensional harmonic oscillator is given
as

e
it
h
K

cos
ωt

2

n

exp i
2K

hω
tan

ωt

2
,

ωt

2
l

1

2
π, l Z.

Since this -exponential function e
it
h
K

has singularities on real axis t t 0 , there

is a posibility to shift from variable t to z t iy y 0 [9].

Then we get

ih
∂

∂z
e

iz
h
K

K e
iz
h
K

e
iz
h
K

K

e
iz
h
K

cos
ωz

2

n

exp i
2K

hω
tan

ωz

2
.

Let n 4 , then

K u, ρ
1

2m

4

j 1

ρ2j
1

2
mω2

4

j 1

u2j
1

2m
ρ2

1

2
mω2u2.

When y 0 , we can calculate the inverse Fourier-transform of the following

exponential

e
iz
h
K

ui uf
2

,ρ
cos

ωz

2

4

exp i
2

hω
K

ui uf

2
, ρ tan

ωz

2
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Figure 1. The path of integration Γy for the Laplace transformation of

K̃ uf , ui ; z .

where ui and uf denote initial point and final point respectively.

1

2πh 4

4

cos
ωz

2

4

ei
2

hω
K

ui uf
2

,ρ tanωz
2 e

i

h
ρ ui uf dρ

m2ω2

4π2h2
1

sin2 ωz
exp i

mω

2h

1

sin ωz
u2i u2f cos ωz 2ui uf (4)

K̃ uf , ui ; z

Then we calculate its Green’s function by the Laplace transform of (4) as follows.

lim
Im z 0

i

h Γy

K̃ uf , ui ; z e
i

h
ε iy z dz

lim
y 0

i

h 0
K̃ uf , ui ; t iy e

y iε
h

t iy dt

im2ω2

4π2h3
lim

y 0 0
e

i

h
ε iy t iy sin ωt iωy 2 (5)

exp i
mω

2h

1

sin ωt iωy
u2i u2f cos ωt iωy 2ui uf dt

G uf , ui ; ε .

5.2. The MIC-Kepler Problem

We reduce the Green’s function of the four-dimensional harmonic oscillator (ε 4k
and mω2 8 E , i.e., the conformal Kepler problem) to that of the MIC-Kepler
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Figure 2. The configuration space Ṙ
3

R
3 0 .

problem by the S1 action. We consider the open subsets of Ṙ3
R
3 0 such that

U = x r, θ, φ Ṙ
3 ; r 0 , 0 θ π , 0 φ 2π

U = x r̃, θ̃, φ̃ Ṙ
3 ; r̃ 0 , 0 θ̃ π , 0 φ̃ 2π .

We define two kinds of local coordinate as follows.

π π 1 U u r, θ, φ, ϕ x r, θ, φ U

x r sin θ cosφ
y r sin θ sinφ
z r cos θ

u1 r cos
θ

2
cos

ϕ φ

2
, u2 r cos

θ

2
sin

ϕ φ

2

u3 r sin
θ

2
cos

ϕ φ

2
, u4 r sin

θ

2
sin

ϕ φ

2

where r 0, 0 θ π, 0 φ 2π, 0 ϕ 4π, and

π π 1 U u r̃, θ̃, φ̃, ϕ̃ x r̃, θ̃, φ̃ U

x r̃ sin θ̃ cos φ̃

y r̃ sin θ̃ sin φ̃

z r̃ cos θ̃

u1 r̃ sin
θ̃

2
cos

ϕ̃ φ̃

2
, u2 r̃ sin

θ̃

2
sin

ϕ̃ φ̃

2

u3 r̃ cos
θ̃

2
cos

ϕ̃ φ̃

2
, u4 r̃ cos

θ̃

2
sin

ϕ̃ φ̃

2

where r̃ 0, 0 θ̃ π, 0 φ̃ 2π, 2π ϕ̃ 6π .

Then we have local trivializations τ π 1 U U S1, respectively. The

transition function

g τ τ 1 U U S1 U U S1
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is given explicitly as

u x, ϕ u r, θ, φ, ϕ g u x, ϕ̃ g u r̃, θ̃, φ̃, ϕ̃

g u r, π θ, φ, ϕ 2π .

Let ω 0 such that ω ωn
4k

h n 2
, n 0,1,2, . . . . We calculate the

Green’s functions of MIC-Kepler problem as follows, where J l ξ is the Bessel

function.

Theorem 12. i) When ui , uf π 1 U , the Green’s function is

G rf , ri ; E mω2 8

rf
4π

0
G uf , ui ; 4k exp i l

ϕi ϕf

2
dϕi

1
μ
h

im2ω2

16πh3
lim

y 0 0
e

i

h
4k iy t iy sin ωt iωy 2

exp i
mω

2h
ri rf cot ωt iωy i

2μ

h

Θ

2

J 2μ
h

mω

2h
2xi xf 2ri rf cosec ωt iωy dt

where l
2μ

h
Z and

Θ

2
tan 1 xi yf yi xf

ri zf rf zi

zi zf r2i z2i r2f z2f ri rf

zi zf r2i z2i r2f z2f xi xf

(6)

ii) When ui , uf π 1 U , then the Green’s function is written as

G r̃f , r̃i ; E mω2 8

r̃f
6π

2π
G uf , ui ; 4k exp i l

ϕ̃i ϕ̃f

2
dϕ̃i

1
μ
h

im2ω2

16πh3
lim

y 0 0
e

i

h
4k iy t iy sin ωt iωy 2

exp i
mω

2h
r̃i r̃f cot ωt iωy i

2μ

h

Θ̃

2

J 2μ
h

mω

2h
2xi xf 2r̃i r̃f cosec ωt iωy dt
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where l
2μ

h
Z and

Θ̃

2
tan 1 yi xf xi yf

r̃i zf r̃f zi

zi zf r̃2i z2i r̃2f z2f r̃i r̃f

zi zf r̃2i z2i r̃2f z2f xi xf

(7)

iii) When ui , uf π 1 U π 1 U , and using g we can easily
find

tan
Θ̃

2
tan

Θ

2
Θ̃ Θ

which shows that (6) and (7) are equivalent and we can state that the Green’s
function is a kind of a section.
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