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GEOMETRICAL FRAMEWORK OF QUANTIZATION PROBLEM

MARIUS GRIGORESCU

Communicated by Ivaïlo M. Mladenov

Abstract. The basic elements of the geometric approach to a consistent quantiza-

tion formalism are summarized, with reference to the methods of the old quantum

mechanics and the induced representations theory of Lie groups. A possible rela-

tionship between quantization and phase-space discretization is briefly discussed.
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1. Introduction

The notion of quantization has appeared at the beginning of the last century in

the theory of thermal radiation, when M. Planck has formulated the hypothesis

of the energy quanta: ε = hν, h = 6.626 × 10−34 J·s [21]. The existence of h
was considered in statistical mechanics as evidence for a granular structure of the

2n-dimensional phase-space, composed of elementary cells (“quantum states”) of

volume hn. For the integrable systems with multiple periodic motions, such as

the hydrogen atom, this structure was provided by the quantization rules of the old

quantum mechanics. Relativistic effects have also been included, as a correction

to Balmer’s formula, due to the variation of mass with velocity, was introduced

by Bohr [3], and the relativistic Kepler problem was quantized by Sommerfeld,

applying integrality constraints to the action invariants [25].

In the algebraic (Dirac) approach to quantum mechanics, the observables are repre-

sented by elements of the set F(M) of the smooth real functions over the classical

(momentum) phase space (M,ω), M = T ∗Q, (Q = R
3), with ω the globally

defined symplectic form. Let Xf be the vector field determined by iXf
ω = df ,

and LX the Lie derivative with respect to X . As F(M) becomes a Lie algebra

with respect to the Poisson bracket {·, ·}, {f, g} = 〈df,Xg〉 = ω(Xf , Xg) =
−LXf

g, f, g ∈ F(M), the full quantization of M was defined as a R-linear map

f �→ f̂ from F(M) to a set A(H) of symmetric operators on the Hilbert space H,

having the following properties [1]

1) the mapˆ : F(M) �→ A(H) is injective

2) [f̂ , ĝ] = i�{f, g}̂ , f, g ∈ F(M)

3) 1̂ = I , for f = 1, constant on M , and I the identity operator on H

4) q̂k, p̂k, k = 1, 2, 3 act irreducibly on H.

It is presumed that onceˆ and H are found, the quantum dynamics with respect to

the classical time [4,6] is given by the Schrödinger equation, and the scalar product

in H has the statistical interpretation of probability amplitude.

In classical nonrelativistic statistical mechanics, a Brownian particle can be de-

scribed by a time-dependent distribution function f ≥ 0 defined on the phase-space

M = T ∗
R

3, evolving according to the Fokker-Planck equation. Though, at zero

temperature both classical and quantum distributions arise as two different types

of “functional coherent states” f0, fψ for the classical Liouville equation [8]. These

are solutions associated with “action waves” n
[S], respectively “quantum waves”
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ψ =
√

n exp(iS/�), expressed in terms of only two functions of coordinates and

time: the localization probability density in the coordinate space n(q, t), and the

local “momentum potential” S(q, t). Moreover, these classes are related, as the

action distributions turn into quantum distributions (Wigner functions) when the

configuration space Q = R
3 is discretized. However, by contrast to the action dis-

tributions, the Wigner distributions fψ remain the same as functionals of ψ during

time evolution only for polynomial potentials of degree at most two. This limita-

tion also appears in the canonical quantization, as the van Hove theorem [1, 10]

states the incompatibility between the conditions 1), 2), 3), 4). Thus, it is possi-

ble to fulfill the first three conditions, obtaining a “prequantization”, but then the

Heisenberg algebra H ≡ {q, p, 1} is represented with infinite multiplicity. Also,

if only the last three conditions are retained, then the mapˆ should be restricted to

some subalgebra FP ⊂ F(M), containing H.

This work presents, following [14] as main reference, the geometrical framework

in which the “action” and the “quantum” phase-space distributions are defined.

The next two sections are based on the notes from the seminar “Classical Limit

and Quantization Methods” given in 1989 at the Institute of Atomic Physics in

Bucharest. Section 2 recalls the main concepts applied to the prequantization of

Hamiltonian dynamical systems. The reduction of the prequantum Hilbert space

H � L2(M,ωn), to the quantum Hilbert space HP � L2(Q), is considered in

Section 3. The transition from classical to quantum distributions by phase-space

discretization is outlined in Section 4.

2. The Prequantization

2.1. Equivalence Classes of Line Bundles

Let M be a C∞ differentiable manifold, separable and connected. A line bundle

on M is a vector bundle

C �→ L
↓ π
M

.

The projection map π is smooth, and for any p ∈ M , Lp = π−1(p) (the fiber over

p) is a one-dimensional vector space over C.

On L, as manifold, we can introduce local coordinates. Let U = {Ui, i ∈ I}, be

an open covering of M , and si : Ui �→ L smooth non-vanishing sections, such that

the map σi : C × Ui �→ π−1(Ui), σi(z, p) = zsi(p), is a diffeomorphism. The set

of pairs {(Ui, si), i ∈ I} defines a local system for the line bundle L.
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Let ΓL be the space of smooth sections s : M �→ L. For the local system (Ui, si)
any s ∈ ΓL can be written on Ui as s = ψisi, where ψi ∈ Fc(Ui) is a complex

function on Ui. The collection {ψi}i∈I represents the local coordinates of s.

On Ui ∩ Uj the local system defines by the relation si = cijsj the transition func-

tions cij ∈ F∗
c (Ui ∩ Uj). These functions should satisfy the relationships

cij = c−1
ji , cijcjk = cik (1)

onUi∩Uj , respectively onUi∩Uj∩Uk. If expressed in the form cij = exp(iqij/�),
(� = h/2π = 1/2π, as we take h = 1), we can see that the new functions qij
provide a constant with integer values, denoted by aijk

aijk = qij + qjk − qik ∈ Z (2)

on any intersection Ui ∩ Uj ∩ Uk �= ∅.

Two line bundles L1 and L2 on M are equivalent if there exists a diffeomorphism

τ : L1 �→ L2 such that for any p ∈ M , the map τ induces a linear isomorphism

L1
p �→ L2

p. The set of equivalence classes of line bundles on M is denoted L(M).

If c1ij , c
2
ij are the transition functions forL1, respectivelyL2, then the two are equiv-

alent iff there exists λi = s2i /s
1
i , λi ∈ F∗

c (Ui) (the set of nonvanishing complex

functions on Ui), such that c2ij = λic
1
ijλ

−1
j . Using this result it can be proved [14]

that there exists a one-to-one mapping κ : L(M) �→ H2(M,Z), which associates

to any element � = [L] ∈ L(M) the Cech cohomology class [a] ∈ H2(M,Z) [12]

of the function aijk associated with L. In particular, L is called trivial if equivalent

to C ×M (ΓL contains a nonvanishing global section).

2.2. Line Bundles with Connection

Let χc(M) be the Lie algebra of complex fields onM , andL a line bundle onM . A

connection in the line bundle π : L �→M is a linear map ∇ : χc(M) �→ End(ΓL)
such that

∇Φξ = Φ∇ξ (3)

∇ξ(Φs) = (LξΦ)s+ Φ∇ξs, Φ ∈ Fc(M), s ∈ ΓL. (4)

If {(Ui, si), i ∈ I} is a local system for L, then ∇ is completely specified by its

action on the sections {si}i∈I
∇ξsi = 2πiαi(ξ)si, ξ ∈ χc(M), i ∈ I. (5)

The condition (3) implies αi(Φξ) = Φαi(ξ), such that the collection of functions

{αi(ξ) ; i ∈ I, ξ ∈ χc(M)} defines a family of complex one-forms {αi}i∈I ,
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iξαi ≡ 〈αi, ξ〉 = αi(ξ), associated with the connection ∇. On Ui ∩ Uj we get

αi = αj + dqij

and conversely, any family of one-forms having this property specifies uniquely a

connection ∇. Such a family arises by the pull-back of an unique C
∗ - invariant

one-form α ∈ Ω1(L∗), called connection form. Here Ωk(L∗) denotes the set of k-

forms on the manifold L∗ = {∪p∈ML∗
p ; L∗

p = Lp − {0}}. The form α is globally

defined on L∗, and s∗iα = αi, i ∈ I .

If (L1, α1), (L2, α2), are line bundles on M with connection forms α1, α2, then

there exists a diffeomorphism τ : L1 �→ L2 such that τ induces a linear isomor-

phism

L1
p �→ L2

π(τ(L1
p))

and τ∗α2 = α1.

One should note that any equivalence (L,α) �→ (L,α1) is specified by a function

Φ ∈ F∗
c (M), such that

τ∗Φα
1 = α1 − 1

2πi

dΦ̃

Φ̃
= α, Φ̃ = π∗(Φ)

and τΦ(x) = Φ(πx)x, x ∈ L. In particular, τΦ : (L,α) �→ (L,α) is an equivalence

iff Φ is a complex constant on M .

The family of one-forms {αi}i∈I , associated to the connection ∇ determines an

unique complex two-form ω∇ on M , such that

dω∇ = 0, ω|Ui
= dαi, π∗ω = dα. (6)

Because

[∇ξ,∇η] −∇[ξ,η] = 2πiω∇(ξ, η), ξ, η ∈ χc(M)

and ω∇ is called the curvature form of the connection ∇. If it is real and nonde-

generate, ω∇ provides a symplectic structure on M .

2.3. Line Bundles with Connection and Hermitian Structure

A Hermitian structure on L is a function (· , · ) : L×L �→ C having the properties:

i) (· , · ) induces a structure of 1-dimensional Hilbert space onLp, for all p ∈M

ii) | · |2 is a positive function on L∗, |x|2 ≡ (x, x), x ∈ L∗.
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Let γ be a smooth curve on M . The covariant derivative of the section s ∈ ΓL
along γ is defined by

Ds

Dt
= ∇γ̇(t)s. (7)

For any smooth curve γ on M , {γt ; t ∈ (a, b)}, the covariant derivative defines a

linear isomorphism τt′,t : Lγt �→ Lγt′
, called a parallel transport by

Ds

Dt
|γt =

d

dt′
τt,t′s(γt′)|t′=t. (8)

A section r = ψsi is autoparallel along γ if ∇γ̇r = 0, or

ψ(γt) = e−2πi t
0 〈αi,γ̇t〉ψ(γ0).

If γ = ∂Σ ⊂M is closed, contractible on Σ to a point, then

Qγ = e−2πi Σ ω

is the scalar function of the parallel transport. Applications to autoparallel sections

for the constrained quantum dynamics are presented in [7].

The Hermitian form (· , · ) is called ∇-invariant if the parallel transport leaves in-

variant the inner product on the fiber

d

dt
(τt,t′s

1
(γt′ )

, τt,t′s
2
(γt′ )

)|t′=t = 0 (9)

or

Lξ(s
1, s2) = (∇ξs

1, s2) + (s1,∇ξs
2). (10)

When s1 = s2 = si this reduces to

d ln |si|2 = 2πi(αi − ᾱi) (11)

where ᾱi is the complex conjugate form of αi. Thus, αi − ᾱi is a real one-form,

exact on Ui, so that the curvature form

ω|Ui
= dαi = dᾱi

is real, and Qγ ∈ U(1). Let [ω]dR ∈ H2
dR(M,R) be the de Rahm cohomology

class of ω. In general, the isomorphism between H2
dR(M,R) and H2(M,R) asso-

ciates to a real, closed two-form ω on M , expressed locally as

ω|Ui
= dαi, αi = αj + dfij , fij : M �→ R

the class [ω] ≡ [aω] ∈ H2(M,R), where aωijk = fij+fjk−fik is a real constant on

Ui∩Uj∩Uk. However, if ω is the curvature of the connection ∇ on the line bundle
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L with ∇-invariant Hermitian structure, then aωijk is an integer, and ω specifies an

integral cohomology class in H2(M,R).

Conversely, the problem is to what extent a closed, real two-form ω, satisfying the

integrality condition, determines a Hermitian line bundle with a connection on M .

If ω is integral, then in general aωijk are not integers, but we can find real constants

xij = −xji on Ui ∩ Uj �= ∅, such that

zijk = aijk + xij + xjk − xik

are integers on Ui ∩ Uj ∩ Uk �= ∅. This result allows to define a line bundle L on

M with the transition functions

cij = exp(2πiqij), qij = fij + xij

on Ui ∩ Uj �= ∅. Because

αi = αj + dfij = αj + dqij = αj +
1

2πi

dcij
cij

with αi, αj real, on L there exists a connection ∇ defined by the family of one-

forms {αi}i∈I , and a ∇-invariant Hermitian structure.

In this formulation, the one-forms αi are defined by ω up to a total differential dΦi.

If α′
i = αi + dΦi, then f ′ij = fij + Φi − Φj , and

c′ij = λicijλ
−1
j , λi = e2πiΦi

define a Hermitian line bundle with connection (L′,∇′), equivalent to (L,∇). In

specifying this equivalence class there is still an arbitrariness due to the way of

choosing the constants xij . Thus, the integrality condition allows one to replace

xij by new real constants x′ij = xij+yij , where yij+yjk+yki ∈ Z, and yij = −yji.
The line bundle L′, specified by the transition functions

c′ij = exp 2πi(fij + x′ij) = e2πiyijcij

is equivalent to L if only the functions yij have the form yij = ci − cj . Be-

cause yij + yjk + yki �= 0, yij does not specify a cocycle in C1(M,R), but

its exponential determines a cocycle in C1(M,U(1)). The bundles L′ and L
are equivalent only if this cocycle is coboundary, such that the set of equiva-

lence classes of the Hermitian line bundles whose connection has the same cur-

vature form ω parameterized by H1(M,U(1)). This set of equivalence classes

is denoted by Lc(M,ω), and the result presented above states the isomorphism

Lc(M,ω) � H1(M,U(1)) � H2(M,Z).
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Let ε : H2(M,Z) �→ H2(M,R) be the homomorphism induced by the injection

ε : Z �→ R, κ : L(M) �→ H2(M,Z) the bijection introduced in Subsection 2.1,

and σ : Lc �→ L the mapping given by σ[(L,α)] = [L]. In this case, the Weil

integrality condition states that if ω is any real, closed two-form on M , then

i) Lc(M,ω) �= {∅} iff [ω] ∈ H2(M,R) is integral

ii) σLc(M,ω) = {[L] ∈ L ; εκ[L] = [ω]}.

Applications to the calculus of the energy levels of the multidimensional Kepler

problem are presented in [16–18].

2.4. The BWS Condition

Let (N,ω) be a reducible presymplectic manifold, and (M ′, ω′), withM ′ = N/K,

the reduced space. Here K is a smooth distribution on N , with the tangent space

TmK = {x ∈ TmN ; ixωm = 0}.

Proposition 1. A sufficient condition to obtain a quantizable reduction (M ′, ω′)
of (N,ω) is ∮

γ

θ ∈ Z (12)

where θ is a global one-form such that ω = dθ, and γ is any closed curve contained
in a leaf of K. If N is simply connected, then (12) is also necessary [30].

For the proof we take a contractible covering U = {Ui, i ∈ I} of M ′, such that for

any i ∈ I there exists a section Σi in K over Ui and a diffeomorphism ρi : Ui �→
Σi. If m1,m2 ∈ Ui ∩Uj are two points joined by the curve c, then ρi(c) is a curve

in Σi, and ρj(c) is a curve in Σj . Moreover, ρi(m1) and ρj(m1) can be joined by

a curve γ1 in the leaf of K through m1, respectively ρi(m2) and ρj(m2) can be

joined by a curve γ2 in the leaf of K through m2. Let S be the surface bounded by

ρi(c), ρj(c), γ1, γ2, so that π(S) = c. Because S ∈ ker(ω)∫
S

ω =

∮
∂S

θ =

∫ ρi(m2)

ρi(m1)
θ −

∫ ρj(m2)

ρj(m1)
θ +

∫ ρj(m2)

ρi(m2)
θ −

∫ ρj(m1)

ρi(m1)
θ

= fji(m2) − fji(m1) +

∫ m2

m1

(ρ∗i θ − ρ∗jθ) = 0

which yields

ρ∗i θ − ρ∗jθ ≡ θi − θj = dfij .
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The one-forms θi = ρ∗i θ, θj = ρ∗jθ on Ui ∩Uj �= {∅} are related to the symplectic

form ω′ = dθi = dθj . The functions fij = −fji on Ui ∩ Uj can be defined by

integration along an arbitrary curve contained in the leaf of K over m,

fij(m) =

∫ ρj(m)

ρi(m)
θ.

Thus, fij+fjk+fik ∈ Z as an integral (12) of the one-form θ along a closed curve

in the leaf of K through m, proving that the class [ω′] ∈ H2(M ′,R) is integral.

When N = h−1(E) ⊂ M is the constant energy surface of a classical system on

(M,ω) with Hamiltonian h, then (12) is similar to the Bohr-Wilson-Sommerfeld

(BWS) condition from the old quantum mechanics.

2.5. The Prequantum Hilbert Space and Operators Related to Observables

Let (M,ω) be a quantizable classical phase-space, in the sense that [ω] ∈ H 2(M,R)
is integral. In this case, on M we can define a Hermitian line bundle with con-

nection (L,α). The natural volume element on M is εω = ωn, and for ω =∑n
k=1 dqk ∧ dpk

εω = dq1 ∧ ... ∧ dqn ∧ dp1 ∧ ... ∧ dpn.

If (· , · ) denotes the ∇-invariant Hermitian form on L, the prequantum Hilbert

space H is defined as the space of all sections s ∈ ΓL(M) for which∫
M

εω (s, s)

exists and is finite. The inner product in H is

< s1, s2 >≡
∫
M

εω (s1, s2), s1, s2 ∈ H. (13)

Let e(L) be the Lie algebra of the C
∗-invariant, real fields on L∗. By the existence

of the connection form α and the projection π∗ : TL �→ TM , there exists also a

linear isomorphism

e(L) �→ Fc(M) × χ(M) (14)

which associates to η ∈ e(L) a function Φ ∈ Fc(M) and a vector ξ ∈ χ(M) such

that

π∗Φ = −〈α, η〉, ξ = π∗η. (15)

Conversely, any function Φ ∈ Fc(M) specifies an unique field ηΦ ∈ e(L), ηΦ ∈
ker(π∗) by the relation

〈α, ηΦ〉 = −π∗Φ
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and for any ξ ∈ χ(M) there exists an unique field ξ̂ ∈ e(L), ξ̂x ∈ ker(αx),
x ∈ L∗ [14]

π∗ξ̂ = ξ.

Proposition 2. Therefore e(L) is parameterized by Fc(M)× χ(M), such that for
any Φ ∈ Fc(M) and ξ ∈ χ(M)

η(Φ,ξ) = ηΦ + ξ̂ ∈ e(L) (16)

[η(Φ1,ξ1), η(Φ2,ξ2)] = η(ξ1Φ2−ξ2Φ1+ω(ξ1,ξ2),[ξ1,ξ2]) (17)

To prove this let us denote by η(Φ,ξ) the commutator [η(Φ1,ξ1), η(Φ2,ξ2)]. Then

π∗[η(Φ1,ξ1), η(Φ2,ξ2)] = [ξ1, ξ2] ≡ ξ (18)

and

〈α, [η(Φ1,ξ1), η(Φ2,ξ2)]〉 ≡ −π∗Φ. (19)

With the identity

〈α, [η1, η2]〉 = Lη1〈α, η2〉 − Lη2〈α, η1〉 − dα(η1, η2) (20)

the equality (19) becomes

Φ = Lξ1Φ2 − Lξ2Φ1 + ω(ξ1, ξ2). (21)

The elements of the algebra e(L) act on functions on L∗, but we can also find a

representation of e(L) in the space of the sections ΓL. Thus, we can define an

e(L)-isomorphism ˜ : ΓL(M) �→ F(L∗) associating to any section s ∈ ΓL(M) a

function s̃ ∈ F(L∗),

s̃(x) =
s(πx)

x
, x ∈ L∗.

Proposition 3. If (Φ, ξ) ∈ Fc(M) × χ(M) then η(Φ,ξ)s̃ = t̃, where

t = (∇ξ + 2πiΦ)s ≡ η̂s.

With respect to a local system {(Ui, si) ; i ∈ I} on L, the elements of ΓL are

represented by functions ψi : Ui �→ C, provided by

s|Ui
= ψisi, s ∈ ΓL.

For this local trivialization, the operator η̂(Φ,ξ) = ∇ξ+2πiΦ determines an operator

η̂i(Φ,ξ) on Fc(Ui)
η̂i(Φ,ξ) = Lξ + 2πi(〈αi, ξ〉 + Φ).
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The tangent fields to L which preserve the connection and the Hermitian structure

form a subalgebra in e(L), denoted e(L,α). It can be proved [14] that if η(Φ,ξ) ∈
e(L), then

Lη(Φ,ξ)
| · |2 = 0 iff Φ ∈ F(M) (22)

and

Lη(Φ,ξ)
α = π∗(iξω − dΦ). (23)

This shows that

η(Φ,ξ) ∈ e(L,α) iff Φ ∈ F(M) and iξω = dΦ.

Therefore, the mapping

δ : F(M) �→ e(L,α), δ(Φ) = η(Φ,ξΦ)

(or F(M) �→ end(ΓL)), called map of pneumatization, is an isomorphism of Lie

algebras.

These results indicate that we can obtain a representation of the Lie algebra of the

observables, F(M), in the prequantum Hilbert space H. In this representation

each function Φ has an associated operator

η̂(Φ,ξΦ) = ∇ξΦ + 2πiΦ

on ΓL, or on the space of the local representatives ψi of the sections

η̂i(Φ,ξΦ) = LξΦ + 2πi(〈αi, ξΦ〉 + Φ).

Thus, defining the local operator associated with the observable f as

f̂ =
1

2πi
η̂(f,ξf ) ≡

1

2πi
Lξf + 〈αi, ξf 〉 + f (24)

one obtains a map which satisfies the conditions 1,2,3 stated in the Section 1, dis-

cussed in detail in [6]. In particular, if M = R
2, αi = −pdq, then ξp = ∂q,

ξq = −∂p, and p̂ = −i�∂q, q̂ = q + i�∂p.

2.6. The Prequantization of Classical Dynamical Systems

The classical dynamical systems defined on the phase-space (M,ω) are subgroups

of D(M), the group of diffeomorphisms on M . The symplectic diffeomorphisms

form a subgroup denoted D(M,ω), of diffeomorphisms which act by canonical

transformations

D(M,ω) = {ρ ∈ D(M) ; ρ∗ω = ω}.
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This subgroup contains Ham(M,ω), the subgroup of all Hamiltonian diffeomor-

phisms, and if M is simply connected, then D(M,ω) = Ham(M,ω).

The phase-space (M,ω) has also an associated set of equivalence classes of Her-

mitian line bundles with connection, Lc(M,ω). The group symplectic diffeomor-

phisms D(M,ω) acts on Lc(M,ω), but prequantum representations in a class � ∈
Lc(M,ω), can be obtained only for the elements of the stability group D�(M,ω)
of � with respect to the action of D(M,ω)

D�(M,ω) = {ρ ∈ D(M,ω) ; ρ∗L� = �, � ∈ Lc(M,ω)}.
Thus, if [L] = � and ρ ∈ D�(M,ω), then ρ∗LL and L are equivalent, and there

exists an equivalence of line bundles with connection ε : ρ∗LL �→ L, uniquely

specified up to a phase factor.

In general, if G is a group acting on (M,ω) by canonical transformations, there

are operators ĝ : H �→ H which define a projective representation of G in H, such

that for g1, g2 ∈ G
ˆg1g2 = τ12ĝ1ĝ2, |τ12| = 1. (25)

In the prequantum Hilbert space H ⊂ ΓL, [L] = �, the operator associated to

ρ ∈ D�(M,ω) is defined up to a phase-factor by the equality

(ρ̂−1s)(p) = ε(ρ∗s(p)). (26)

If ρh(t) ∈ Ham(M,ω) is generated by the Hamiltonian h, then ρ∗L = L and the

operator ρ̂t : ΓL �→ ΓL will be defined by

ρ̃η(t) ◦ ρ̂−1
t s = s ◦ ρh(t) (27)

where ρ̃η(t) is the group of one-parameter diffeomorphisms on L∗ generated by

η(h,Xh) ∈ e(L,α).

Theorem 4. The field η(h,Xh) is globally integrable on L∗ iff Xh is globally inte-
grable on M , and the diagram

ρ̃η(t) : L∗ �→ L∗

π ↓ π ↓
ρt : M �→ M

commutes.

To obtain explicitly the operator ρ̂t, we can write (27) in local coordinates. Let

{(Ui, si) ; i ∈ I} be a local system, and σ the diffeomorphism

σ : C × Ui �→ π−1(Ui), σ(z, p) = zsi(p).
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The functions s̃(x) ≡ s(πx)/x on L∗ associated to the sections s ∈ ΓL(Ui) are

represented locally by the functions s̃
 on C × Ui

s̃
(z, p) = s̃(zsi(p)) =
1

z
s̃(si(p)) =

1

z
ψ(p).

Also, the connection form α and the field η(Φ,ξ) have the local expressions

α
 = αi +
1

2πi

dz

z
, αi = s∗iα (28)

η
 = ξ
 − 2πiΦz∂z (29)

where ξ
 = ξ−2πi(〈αi, ξ〉z∂z−〈ᾱi, ξ〉z̄∂z̄) ∈ ker(α
). The flow of η
 determines

the time-evolution of the functions s̃
i by the equation

ds̃
i
dt

= η
s̃
i. (30)

This provides the dependence on time of the coordinate z and of the point p in

terms of the local expression, denoted ρ̃

η�(t)

ρ̃

η�(t)(z0, p0) = (z0e

−2πi t
0 dt

′(〈αi,ξ〉+Φ), ρt(p0)) (31)

of the flow ρ̃η(t).

The operator ρ̂(t) defines an operator Ût acting on the complex functions ψ(p) =
s(p)/si(p), p ∈ Ui representing the sections s ∈ ΓL(Ui), by

Ûtψ =
ρ̂ts

si
· (32)

Explicitly, this is obtained from (27) in local form

ρ̃
η(t)(Û
−1
t ψ, p) = (ψ(ρtp), ρt(p)) (33)

where the action of ρ̃
η is given by (31)

ρ̃
η(t)(Û
−1
t ψ, p) = (e−2πi t

0 dt′(〈αi,ξ〉+Φ)(Û−1
t ψ)p, ρt(p)). (34)

The result

(Û−1
t ψ)p = e2πi t

0 dt′(〈αi,ξ〉+Φ)ψ(ρt(p)) (35)

agrees with the expression derived in the previous subsection for the local operator

Φ̂ =
1

2πi
LξΦ + 〈αi, ξΦ〉 + Φ

because

i�
d

dt
(Ûtψ) = Φ̂Ûtψ. (36)
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2.7. Applications to Elementary Systems

Let G be a simply connected Lie group with the Lie algebra g, and g∗ is the dual

space of g. For f ∈ g∗ one can define on G a right (Rg) - invariant one-form θf ,

and a closed two-form ωf = dθf defined by

ωf (x, y)|e = 〈f, [x, y]〉, x, y ∈ g.

The leaf Kf determined by the kernel of ωf on G has as tangent space at the

identity the space

TeKf = {x ∈ g ; 〈f, [x, y]〉 = 0 for any y ∈ g}
namely the Lie algebra gf of the stability group Gf of f with respect to the coad-

joint action of G. Thus, the leaf through e is the connected component (Gf )0 of

Gf , which contains e, and if closed M ′ ∼= G/Kf is covering space for the orbit

Mf = G/Gf of f in g∗.

Theorem 5. Let (M ′, ω′), M ′ = G/Kf , be the reduced phase-space associated
with the reducible presymplectic manifold (G,ωf ). Then (M ′, ω′) is quantizable
iff f can be integrated to a character of (Gf )0.

Proof: Let us assume first that ∮
γ

θf ∈ Z

(the BWS condition) with γ ⊂ (Gf )0. Thus, one can define

χf (h) = e2πi h
e
θf (37)

where the integral can be taken along any curve in (Gf )0, which joins e to h.

Because

χf (h1h2) = e2πi h1h2
e

θf = e
2πi h2

e
θf+2πi

h1h2
h2

θf (38)

independently of the integration path, from the BWS condition, while∫ h1h2

h2

θf =

∫ h1

e

θf

from the Rg-invariance of θf , one obtains

χf (h1h2) = χf (h1)χf (h2) (39)

so that χf is a character for (Gf )0. If h = etx, with x ∈ gf , then

χf (e
tx) = e2πi〈f,x〉t
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from the Rg-invariance, an f appears as an infinitesimal character in the sense that

d

dt
χf (e

tx)|t=0 = 2πi〈f, x〉, x ∈ gf (40)

〈f, [x, y]〉 = 0, x, y ∈ gf . (41)

Conversely, applied to (37) the condition for integrability of the infinitesimal char-

acter f to a character of (Gf )0 independently of the path (40), leads to the BWS

condition. �

Let us consider

G = SU(2) =

{[
z0 z1
−z̄1 z̄0

]
; |z0|2 + |z1|2 = 1

}
� S

3 ⊂ C
2. (42)

The algebra g ≡ TeG of G consists of the matrices

xa = − i

2

[
a1 a2 − ia3

a2 + ia3 −a1

]
=

3∑
i=1

aiEi

with (a1, a2, a3) ≡ a ∈ R
3 and [Ei, Ej ] = εijkEk.

The right (left) - invariant vector fields Ya (Za) generated by xa ∈ g are

Ya = − i

2
[(a1z0 − (a2 − ia3)z̄1)∂z0 + (a1z1 + (a2 − ia3)z̄0)∂z1 ] + c.c. (43)

Za = − i

2
[(a1z0 + (a2 + ia3)z1)∂z0 + (−a1z1 + (a2 − ia3)z0)∂z1 ] + c.c. (44)

and the right-invariant one-form θf associated to f ∈ g∗ � g is

θf = i[(f1z̄0 − (f2 + if3)z1)dz0 + (f1z̄1 + (f2 + if3)z0)dz1] + c.c. (45)

where c.c. means the complex conjugate of the previous term. In particular, for

f ≡ (f1, f2, f3) = (−l, 0, 0) we get

(Gf )0 = Gf =

{[
eit 0
0 e−it

]
; t ∈ R

}
⊂ G

and

θf = il
1∑

k=0

(zkdz̄k − z̄kdzk), ωf = 2il
1∑

k=0

dzk ∧ dz̄k. (46)

Each ht ∈ Gf is generated by xa ∈ g with a = (−2, 0, 0)

xa =

[
i 0
0 −i

]
, ht = etxa =

[
eit 0
0 e−it

]
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and therefore

〈θf , Ya〉 = 〈f, xa〉 = f · a = −a1l = 2l

determines the character χf

χf (ht) = e2πi〈θf ,Ya〉t = e4πilt.

This character allows one to define a line bundle L′ on M ′ = G/Gf by factorizing

the trivial bundle G× C with respect to the equivalence relation “∼”

(g, z) ∼ (hg, χf (h)z)

where g ∈ G, h ∈ Gf and z ∈ C. The sections in ΓL′ are represented by functions

ψ : G �→ C (sections in G× C) which satisfy the global relation

ψ(hg) = χf (h)ψ(g) (47)

or locally

Yaψ(g) = 2πia · fψ(g). (48)

Thus, the sections of ΓL′ are represented in the coordinates (zi, z̄i) by the functions

ψ : S
3 �→ C which satisfy

1∑
k=0

(zk∂zk
− z̄k∂z̄k

)ψ(z, z̄) = 4πlψ(z, z̄). (49)

The equivalence relation “∼” is well defined, and M ′ is quantizable if

χf (h2π) = e8π2il = 1, 4πl ∈ Z

namely l = n�/2 (here � = 1/2π), with n ∈ Z. A physical application to the

intrinsic angular momentum (spin) is presented in [24].

The points of the phase-space M ′ correspond to equivalence classes in G defined

by

[g] = {hg ; h ∈ Gf , g ∈ G}.
Let pr : G �→M ′ be the projection pr(g) = [g], g ∈ G. A canonical action

g1[g] = [gg−1
1 ]

of G on M ′ can be defined by the projection on M ′ of the action to the right of G
onG (because the equivalence necessary for projection is obtained by the action to

the left), and M ′ becomes a homogeneous phase-space for G. Locally, the action

of G on M ′ arises by the projection of the left-invariant fields, −Za, on TM ′,

pr∗(−Za) = Xa, and because the algebra g is semisimple, there exists a lift λ of

this action such that the diagram
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0 �→ F(M ′) �→ ham(M ′) �→ 0

λ↖ ↑
g

commutes. Explicitly, for any xa ∈ g one can find ha : M ′ �→ C, pr∗ha =
〈θf , Za〉, representing the Hamiltonian of the vector field Xa

iXaω
′ = dha.

To get the time-evolution of the sections from the line bundle L′, associated with

the dynamical system generated on M ′ by the Hamiltonian ha, we project on L′

the trajectory in G × C of the dynamical system generated by the Hamiltonian

〈θf , Za〉. This trajectory is given by (35) in which

αi = θf , ξ = −Za, Φ = 〈θf , Za〉
(Ûgtψ)(g) = ψ(ggt), g ∈ G (50)

while the projection on ΓL′ requires ψ constrained by (47)

ψ(hg) = χf (h)ψ(g), g ∈ G, h ∈ Gf . (51)

The result indicates that the prequantization of the phase space (M ′, ω′) is equiva-

lent to the derivation of the representations of the groupG induced by the character

χf of the subgroup Gf [15]. In general these representations are not irreducible

(do not provide a quantization for (M ′, ω′)), but imposing the condition on ψ to

be holomorphic, we obtain irreducible representations. Thus, the holomorphy con-

dition, by introducing a complex polarization, represents a way of restricting the

prequantum Hilbert space.

The technique of the induced representations was successfully applied to quantize

the relativistic free particle or the liquid drop. In both cases the classical config-

uration space is the orbit of a group H in a linear space V , and the quantization

consists in finding induced representations for the semidirect product G = H×V .

In the first case H = O(3, 1) is the Lorentz group, V = R
3,1 is the Minkowski

space, and G is the Poincaré group, while in the second case H = SL(3,R),
V = R

4, and G = CM(3) [20, 22, 23]. The case of a massive free particle in the

anti-de Sitter spacetime is considered in [2].

3. Elements of Quantization

3.1. Complex Polarizations

A complex polarization of the 2n-dimensional manifold (M,ω) is a complex dis-

tribution P having the following properties
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i) for any m ∈M , Pm ⊂ T cmM is a complex Lagrangian subspace

ii) Dm = Pm ∩ P̄m ∩ TmM has a constant dimension

iii) P is integrable, in the sense that for any m ∈ M there exists a collection

of functions {zk ∈ Fc(M), k = 1, . . . , n}, such that {X̄zk
, k = 1, . . . , n}

generate Pm.

Let us introduce the notation

χc(U,P ) = {X ∈ χc(U) ; Xm ∈ Pm, m ∈ U ⊂M}
Fc(U,P ) = {f ∈ Fc(U) ; X̄f = 0, X ∈ χc(U,P )}

= {f ∈ Fc(U) ; X̄f ∈ χc(U,P )}
Fc(U,P, 1) = {f ∈ Fc(U) ; {f, g} ∈ Fc(U ∩ V, P ) V ⊂M, g ∈ Fc(V, P )}.

The set Fc(U,P, 1) consists of functions having the property that generate flows

which preserve the polarization

LXf
P̄ ⊂ P̄ ⇔ f ∈ Fc(U,P, 1). (52)

When f ∈ Fc(U,P, 1) is real, the flow generated by Xf preserves both P̄ and ω.

The polarization P is called admissible if on a neighborhood of any m ∈M , there

exists a symplectic potential β, which is adapted to P in the sense that

iX̄β = 0, X ∈ χc(M,P ).

The polarization P is of Kähler type if Pm ∩ P̄m = {0} and TmM = Pm + P̄m.

In the Kähler case any X ∈ TmM can be written as X = Z + Z̄, with Z ∈ Pm,

and TmM carries a complex structure

Jm : TmM �→ TmM, JmX = iZ − iZ̄

compatible with the symplectic form ω in the sense that ω(JX, JY ) = ω(X,Y ).

Let (M,ω, J) be a Kähler manifold (Appendix [10]), and {zk, k = 1, . . . , n} are

local complex coordinates such that

J∂zk
= i∂zk

, J∂z̄k
= −i∂z̄k

. (53)

On M can be introduced two polarizations: the holomorphic polarization P gen-

erated at any point by the vectors {∂zk
, k = 1, . . . , n}, and the antiholomorphic

polarization P̄ generated by {∂z̄k
, k = 1, . . . , n}. Thus, for any U ⊂M

Fc(U,P ) = {f : U �→ C ; f = holomorphic}.
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3.2. Phase-Space Quantization for Kähler Polarizations

Let (M,ω) be a symplectic manifold, {qk, pk, k = 1, . . . , n} the local canonical

coordinates for ω (ω =
∑n

k=1 dqk ∧ dpk), and P a Kähler polarization on M
locally generated by the vectors

{∂zk
; zk = (qk − ipk)/

√
2, k = 1, . . . , n}.

The complex potential adapted to P is

β = i
n∑
k=1

z̄kdzk (54)

and ω = dβ. If (M,ω) is quantizable, then there exists a Hermitian line bundle

with a connection (L,α) on M , and the associated prequantum Hilbert space H.

We can further define the space of the polarized sections

ΓL(M,P ) = {s ∈ ΓL(M) ; ∇X̄s = 0, X ∈ χc(M,P )} (55)

and the quantum Hilbert space HP = H ∩ ΓL(M,P ). The space ΓL(M,P ) is

well defined because the local integrability condition for the sections s ∈ ΓL(M)
is satisfied. Thus, if

∇X̄s = ∇Ȳ s = 0, X, Y ∈ χc(M,P )

then

∇[X̄,Ȳ ]s = [∇X̄ ,∇Ȳ ]s− 2πiω(X̄, Ȳ )s = 0 (56)

because ω(X̄, Ȳ ) = 0.

The Hilbert space HP is not invariant with respect to the action of the operator

associated with any classical observable, and one should specify which classical

observables provide operators on HP . If f ∈ F(M), then

f̂ =
1

2πi
∇Xf

+ f

and the condition f̂HP ⊂ HP yields

∇X̄ f̂ s = 0, X ∈ χc(M,P ), s ∈ HP . (57)

However, because

2πi∇X̄ f̂ s = ∇X̄(∇Xf
+ 2πif)s = ([∇X̄ ,∇Xf

] + 2πiLX̄f)s

= (∇[X̄,Xf ] + 2πiω(X̄,Xf ) + 2πiLX̄f)s = ∇[X̄,Xf ]s
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the condition (57) is equivalent to LXf
P̄ ⊂ P̄ . Thus, the observable f determines

an operator on HP if only if f ∈ Fc(M,P, 1).

Let s be a section of ΓL(M,P ) for which s∗α = β, and r the unit section in ΓL(U)
such that r∗α =

∑n
k=1 qkdpk. Then, s = eϕr, with ϕ specified (up to an additive

constant ϕ0) by

∇Xs = 2πi〈β,X〉s = ∇X(eϕr) = (LXϕ)s+ 2πi〈r∗α,X〉s
with

〈β,X〉 = 〈r∗α,X〉 +
1

2πi
〈dϕ,X〉, X ∈ χ(M)

such that

dϕ = 2πi(β − r∗α) = 2πi
n∑
k=1

[
i

2
(qk + ipk)d(qk − ipk) − qkdpk]

= −π
2

n∑
k=1

d(q2k + p2
k + 2iqkpk) = −π

n∑
k=1

d(|zk|2 + iqkpk).

Considering ϕ0 = 0, we get ϕ = −π∑n
k=1(|zk|2 + ipkqk) and

(s, s) = e−2π n
k=1 |zk|

2
.

Thus, with respect to the local system specified by s, the elements of the space HP

are sections of the form {ψpsp, p ∈ U ⊂M}, where ψp are holomorphic functions

of {zk, k = 1, . . . , n}, and the inner product (13) is given by the formula

< ψ1, ψ2 >∼
∫
εωψ̄1(z)ψ2(z)e

−2π n
k=1 |zk|

2
.

This Hilbert space coincides with the representation introduced by Fock, in his

study of the quantum states of the harmonic oscillator. Though, its domain of

applicability remains limited because the only observables quantizable in HP are

polynomials in coordinates and momenta of degree at most two.

For the harmonic oscillator the classical Hamiltonian is h = 2πνz̄z, and

Xh = 2πiν(z∂z − z̄∂z̄).

The operator ĥ in H associated with h

ĥ =
1

2πi
LXh

+ 〈β,Xh〉 + h = ν(z∂z − z̄∂z̄)

becomes ĥP = νz∂z when restricted to HP . Its eigenvalues are nν, n ∈ Z,

showing that this approach yields the same result, physically incomplete, as the

old quantum mechanics. To obtain the missing term ν/2 the bundle of polarized

sections should be extended by the line bundle of half-forms providing the measure

for the inner product in HP , as indicated by examples in [19].



Geometrical Framework of Quantization Problem 21

3.3. Real Polarizations and Asymptotic Solutions

A real polarization of the symplectic manifold (M,ω) is a foliation of M by La-

grangian (maximal isotropic) submanifolds. IfM=T ∗Q, and ω=
∑n

k=1 dqk ∧ dpk
is the canonical two-form, then the vertical foliation P is a real polarization, and

the leaves of P are the surfaces qk =constant, k = 1, . . . , n.

Let P be a real polarization of the symplectic manifold (M,ω). Then, on a

neighborhood of any point m of M one can find canonical coordinates (x, y) ≡
(xk, yk)k=1,...,n such that the leaves of P coincide locally with the surfaces x =
constant or y = constant. The canonical coordinates having this property are called

“adapted to P ”.

Let Λ ⊂ M be a Lagrangian submanifold and U ⊂ M such that ω|U = dθ.

Because ω|Λ = 0 then also dθ|Λ = 0, and locally there exists a function ℘ on Λ,

called “local phase function”, ℘ : Λ �→ R, such that θ|Λ = −d℘.

If M = T ∗Q, then Λ is transversal to the vertical polarization P if the restriction

to Λ of the projection

Λ ⊂ M

π ↓
Q

is a diffeomorphism. In this case S ∈ F(W ), π(Λ) = W ⊂ Q, π∗S = ℘, is

called “generating function of the first kind” of Λ. Moreover, Λ∩T ∗Q determines

a one-form on W with the local coordinates

(p, q) ≡ (
∂S

∂q
, q).

Thus, a foliation of the phase-space M = T ∗Q by Lagrangian submanifolds cor-

responds to a family of generating functions S(q, y), y ≡ {yk, k = 1, . . . , n},

parameterized by the variables y. This type of foliation appears naturally in classi-

cal mechanics by the Hamilton-Jacobi equation,

h(∂qS, q) = constant

which represents the condition h|ΛS
= constant for the Lagrangian submanifold

ΛS of T ∗Q generated by S,such that Xh is tangent to Λ.

If we denote x ≡ {xk = ∂S/∂yk, k = 1, . . . , n}, then (x, y) is a local coordinate

system on T ∗Q adapted to the polarization ΛS determined by S(q, y). In this

system h is a function only of y, and the equations of motion are

ẏ = 0, ẋ = constant.
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In particular, when Q � R
n and ΛS ⊂ T

n ≡ R
n/Zn is part of an invariant torus,

then y-x are the “action-angle” coordinates used to express the BWS conditions.

To quantize a classical system described by the Hamiltonian h it is convenient to

find a Hilbert space HΛS
associated to the polarization determined by the solu-

tion S of the Hamilton-Jacobi equation. Because in the case ΛS ⊂ T
n the BWS

conditions provide constraints on the phase-space reduction (to a point) and the

stationary states, it is natural to select the sections from ΓL(M,ΛS) by ∇Xr = 0,

where X is tangent to ΛS and r ∈ ΓL(M). Let s be a section in ΓL(M) such that

s∗α|Ui
= −dS

and r = ψs an arbitrary element in ΓL(M,ΛS). The equation

∇Xr = (LXψ)s− 2πi〈dS,X〉ψs = (LXψ)s− 2πi(LXS)ψs = 0 (58)

has the solution lnψ − 2πiS = f(y), where f is an arbitrary function of y, or

ψ(q, y) = a(y)e2πiS(q,y). (59)

The sections from ΓL(M,ΛS) can be transferred to the space ΓL(M,P ), where

P is the vertical polarization associated to the Schrödinger representation. The

function obtained in [30]

Ψ(q) = A(q)e2πiS(q) (60)

can be interpreted as asymptotic solution of the Schrödinger equation in the WKB

[27] approximation.

As h may contain any potential, in general S is multiple-valued, and Ψ should be

defined by a sum
∑

μAμ exp(2πiSμ) over different branches. Presuming that Aμ
can have the branches ±|Aμ|, but Ψ remains single-valued, one obtains corrected

BWS quantum conditions [13], which yield for the harmonic oscillator the exact

energy levels ν(n+ 1/2), n = 0, 1, 2, ... .

4. Quantization and Discretization

The geometric elements presented in the previous sections also appear in the for-

malism of statistical mechanics. Let f ≥ 0 be the distribution function [26] of a

classical system composed of N identical, non-interacting particles, defined on the

one-particle phase-space (M,ω), normalized by∫
M

εωf(q,p, t) = N, N ≥ 1. (61)
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For a one-particle Hamilton function h : M �→ R, at zero temperature and without

friction, f(q,p, t) evolves according to the transport equation

∂tf + LXh
f = 0. (62)

Let us consider M = T ∗
R

3, ω =
∑3

i=1 dqi ∧ dpi, h(q,p) = p2/2m+V (q), and

f(q,p, t) =
1

(2π)3

∫
d3k e−ik·p

f̃(q,k, t) (63)

where f̃(q,k, t) is the Fourier transform of f(q,p, t). In this case, a particular class

of exact solutions for (62) are the “action distributions” f0(q,p, t), provided by

f̃0(q,k, t) = n(q, t)eik·∂qS(q,t) (64)

where n(q, t) ≥ 0 (the particle density) and S(q, t) satisfy the continuity, respec-

tively the Hamilton-Jacobi equations [8].

The partial derivative k · ∂qS(q, t) in (64) is the limit of

k

�
[S(q +

�

2k
k, t) − S(q − �

2k
k, t)] (65)

k = |k|, when �→ 0. If a new parameter σ = �/k is introduced, then

f̃0(q,k, t) = lim
σ→0

f̃ψ(q,k, t) (66)

where

f̃ψ(q,k, t) ≡ ψ∗(q − σk

2
, t)ψ(q +

σk

2
, t) (67)

and ψ =
√

n exp(iS/σ). However, when k → 0

S(q ± σ0

2
k, t) = S(q, t) ± σ0

2
k · ∂qS(q, t) +

σ2
0

8
(k · ∂q)2S(q, t) ± ...

and if the terms containing (σ0k)
m, m ≥ 3 are neglected, then

k · ∂qS(q, t) =
1

σ0
[S(q +

σ0

2
k, t) − S(q − σ0

2
k, t)]

for any dimensional constant σ0. Thus, within a suitable domain of k, we may also

consider in (67) σ as a finite constant, (e.g. σ = �), such that fψ defined by (63)

fψ(q,p, t) =
1

(2π)3

∫
d3k e−ik·p

f̃ψ(q,k, t) (68)
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is the Wigner transform [11] of ψ(q, t). In this case, the normalization condition

(61) takes the form∫
d3qd3p fψ(q,p, t) =

∫
d3q |ψ(q, t)|2 = 〈ψ|ψ〉 = N (69)

and the phase-space overlap between two distributions fψ1 , fψ2 , (resembling the

inner product (13)), is [9]

< fψ1fψ2>≡
∫

d3qd3p fψ1fψ2 =
|〈ψ1|ψ2〉|2
(2πσ)3

(70)

where

〈ψ1|ψ2〉 ≡
∫

d3q ψ∗
1(q, t)ψ2(q, t). (71)

Worth noting, within this framework can be defined overlaps < f01f02> between

“action distributions”, or mixed overlaps< fψf0>, while f can be a sum f = f0+fψ.

Usually, derivatives are replaced by finite differences such as (65) in numerical

or lattice [28] calculations, as a result of discretization. Variations in the length

unit (measure), with respect to a connection form provided by the electromag-

netic potentials, have also been introduced by H. Weyl [5, 29]. Presuming that

canonical and mechanical momentum coincide, let {a1,a2,a3} be the (covariant)

fundamental vectors of a Bravais lattice BP in the momentum space, {a1,a2,a3}
the (contravariant) fundamental vectors of the reciprocal lattice B∗

P

al = 2πεlmn
am × an

ΩP
, ΩP = a1 · (a2 × a3)

and {ci = �ai, i = 1, 2, 3} the fundamental vectors of a Bravais lattice BQ in the

coordinate space. Thus, if f̃(q,k, t) has significant values only when k relates two

nodes of B∗
P and σk in (67) relates two nodes of BQ, then σ = �.

These considerations indicate that a natural relationship between the classical dis-

tribution function f0 and the quantum WKB wave function arises by phase-space

discretization, using for the canonically conjugate variables a direct lattice and its

reciprocal. It can also be shown [8] that the Wigner function fψ is an exact solution

of (62) with ψ an exact solution of the Schrödinger equation, only if the potential

V is a polynomial of degree at most two.

5. Summary and Conclusions

The integrality conditions of the old quantum mechanics, as well as the correspon-

dence between observables and operators, sought in algebraic quantization, may
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receive a geometrical interpretation in the theory of complex line bundles with

connection and Hermitian structure. The basic elements of this “prequantization”

theory have been presented in Section 2. However, the meaning of the complex

line over a (physical or reduced) phase-space (M,ω) is not obvious. The distrib-

ution function f ≥ 0 used in classical statistical mechanics is integrable over M ,

but real, while the quantum wave functions ψ are complex, but ψ̄ψ is integrable

only over the configuration space. To retrieve this property, the prequantum Hilbert

space can be reduced, as indicated in Section 3, by selecting a polarization.

For the real polarization ΛS generated by the solution S of the Hamilton-Jacobi

equation, the polarized sections take the form of the quantum wave functions in

the WKB approximation. However, similar functions appear in the structure of the

exact solution f0 for the classical one-particle Liouville equation, which becomes

the Wigner transform fψ of ψ if the configuration space is discretized. Although

fψ is not positive definite, it is integrable over M , and the phase-space overlap be-

tween two such functions fψ1 , fψ2 is proportional to |〈ψ1|ψ2〉|2.

By discretization, f acquires a nonlocal character, as fψ(q,p) depends not only

on |ψ(q)|2, but also on φ̄p(q−)φp(q+) with φp(q) = exp(−iq · p/�)ψ(q) and

q± = q ± �k/2 covering a whole domain of “quantum coherence”, containing

q. The relationship between a possible lattice structure of the phase-space and the

statistical interpretation of fψ remains a subject worth of further consideration.

6. Appendix

Definition 6. M is a complex manifold if it possesses an atlas {(Ui, ϕi), i ∈ I}
where U are open sets covering M , ϕi : Ui �→ Oi ⊂ C

n is a diffeomorphism,
and the transition functions cij = ϕj ◦ ϕ−1

i are holomorphic. If p ∈ Ui ∩ Uj then
Tpϕi : TpM �→ C

n, Tpϕj : TpM �→ C
n, and Tpϕi ◦ (Tpϕj)

−1 ∈ GL(n,C).

Definition 7. Let (M,ω) be a complex symplectic manifold. Then M is called
a Kähler manifold if for any p ∈ M the complex structure Jp ∈ Sp(TpM) and
ωp define a Kähler structure on TpM , ωp(Jpx, Jpy) = ωp(x, y). M is a positive
Kähler manifold if (x, y)p ≡ ωp(x, Jpy) is positive definite.
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