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Abstract. The relations between smooth and peaked soliton solutions are reviewed

for the Camassa-Holm (CH) shallow water wave equation in one spatial dimension.

The canonical Hamiltonian formulation of the CH equation in action-angle variables

is expressed for solitons by using the scattering data for its associated isospectral

eigenvalue problem, rephrased as a Riemann-Hilbert problem. The momentum map

from the action-angle scattering variables T ∗(TN ) to the flow momentum provides

the Eulerian representation of the N -soliton solution of CH in terms of the scat-

tering data and squared eigenfunctions of its isospectral eigenvalue problem. The

dispersionless limit of the CH equation and its resulting peakon solutions are ex-

amined by using an asymptotic expansion in the dispersion parameter. The peakon

solutions of the dispersionless CH equation in one dimension are shown to gener-

alize in higher dimensions to peakon wave-front solutions of the EPDiff equation

whose associated momentum is supported on smoothly embedded subspaces. The

Eulerian representations of the singular solutions of both CH and EPDiff are given

by the (cotangent-lift) momentum maps arising from the left action of the diffeo-

morphisms on smoothly embedded subspaces.
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1. Shallow Water Background for the CH Equation

Euler’s equations for irrotational incompressible ideal fluid motion under gravity

with a free surface have an asymptotic expansion for shallow water waves that con-

tains two small parameters, ε and δ2, with ordering ε ≥ δ2. These small parameters

are ε = a/h0 (the ratio of wave amplitude to mean depth) and δ2 = (h0/lx)2 (the

squared ratio of mean depth to horizontal length, or wavelength). Euler’s equa-

tions are made non-dimensional by introducing x = lxx′ for horizontal position,

z = h0z
′ for vertical position, t = (lx/c0)t

′ for time, η = aη ′ for surface el-

evation and ϕ = (glxa/c0)ϕ
′ for velocity potential, where c0 =

√
gh0 is the

mean wave speed and g is the constant gravity. The quantity σ = σ ′/(h0ρc2
0
) is

the dimensionless Bond number, in which ρ is the mass density of the fluid and

σ′ is its surface tension, both of which are taken to be constants. After dropping

primes, this asymptotic expansion yields the nondimensional Korteweg-de Vries

(KdV) equation for the horizontal velocity variable u = ϕx(x, t) at linear order in

the small dimensionless ratios ε and δ2, as the left hand side of

ut + ux +
3ε

2
uux +

δ2

6
(1 − 3σ)uxxx = O(εδ2) . (1)

Here, partial derivatives are denoted using subscripts, and boundary conditions

are u = 0 and ux = 0 at spatial infinity on the real line. The famous traveling

wave solutions sech2(x− ct) (the solitons) for KdV (1) arise in a balance between

its (weakly) nonlinear steepening and its third-order linear dispersion, when the

quadratic terms in ε and δ2 on its right hand side are neglected.

On the right hand side of equation (1), a normal form transformation due to Ko-

dama [41] has been used to remove the other possible quadratic terms of order
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O(ε2) and O(δ4). The remaining quadratic correction terms in the KdV equation

(1) may be collected at order O(εδ2). These terms may be expressed, after intro-

ducing a “momentum variable”

m = u − νδ2uxx (2)

and neglecting terms of cubic order in ε and δ2, as

mt + mx +
ε

2
(umx + b mux) +

δ2

6
(1 − 3σ)uxxx = 0 . (3)

In the momentum variable (2), the parameter ν is given in [21] by

ν =
19 − 30σ − 45σ2

60(1 − 3σ)
·

Thus, the effects of δ2−dispersion also enter the nonlinear terms. After restoring

dimensions in equation (3) and rescaling velocity u by (b + 1), the following “b-

equation” emerges

mt + c0mx + umx + b mux + Γuxxx = 0 (4)

where m = u − α2uxx is the dimensional momentum variable, and the constants

α2 and Γ/c0 are squares of length scales. When α2 → 0, one recovers KdV from

the b-equation (4), up to a rescaling of velocity. Any value of the parameter b �= −1
may be achieved in equation (4) by an appropriate Kodama transformation [21].

As we have emphasized, the values of the coefficients in the asymptotic analysis

of shallow water waves at quadratic order in their two small parameters only hold,

modulo the Kodama normal-form transformations. Hence, these transformations

may be used to advance the analysis and thereby gain insight, by optimizing the

choices of these coefficients. The freedom introduced by the Kodama transforma-

tions among asymptotically equivalent equations at quadratic order in ε and δ2 also

helps to answer the perennial question, “why are integrable equations so ubiquitous

when one uses asymptotics in modeling?” Namely, there may be special values of

the free parameters in the normal-form transformations of the asymptotics that al-

low integrability.

Integrable Cases of the b-equation

The cases b = 2 and b = 3 are special values. For these values, the b-equation

becomes completely integrable as a Hamiltonian system. For b = 2, equation (4)

specializes to the integrable CH equation of Camassa and Holm [9]. The case
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b = 3 in (4) recovers the integrable DP equation of Degasperis and Procesi [19].

These two cases exhaust the integrable candidates for (4), as was shown using

Painlevé analysis. The b−family of equations (4) was also shown in [47] to admit

the symmetry conditions necessary for integrability, only in the cases b = 2 for CH

and b = 3 for DP.

The b-equation (4) with b = 2 was first derived in Camassa and Holm [9] by using

asymptotic expansions directly in the Hamiltonian for Euler’s equations govern-

ing inviscid incompressible flow in the shallow water regime. In this analysis, the

CH equation was shown to be bi-Hamiltonian and thereby was found to be com-

pletely integrable by the inverse scattering transform (IST) on the real line. This

development of IST for CH equation (4) with b = 2 is discussed in Section 2.

Camassa and Holm [9] also discovered the remarkable peaked soliton (peakon)

solutions of (5,35) for the CH equation on the real line, given by (4) in the case

b = 2. The peakons arise as solutions of (4), when c0 = 0 and Γ = 0 in the absence

of linear dispersion. Peakons move at a speed equal to their maximum height, at

which they have a sharp peak (jump in derivative). The single peakon solution is

u(x, t) = ce−|x−ct|/α. (5)

Unlike the KdV soliton, the peakon speed is independent of its width (α). Periodic

peakon solutions of CH were treated in Alber et al [3]. There, the sharp peaks

of periodic peakons were associated with billiards reflecting at the boundary of

an elliptical domain. These billiard solutions for the periodic peakons arise from

geodesic motion on a tri-axial ellipsoid, in the limit that one of its axes shrinks to

zero length.

The CH equation was found after its derivation as a shallow water equation in [9]

to fit into a class of integrable equations derived previously by using hereditary

symmetries in Fokas and Fuchssteiner [23]. See Fuchssteiner [25] for an insightful

history of how the shallow water equation (4) in the integrable case with b = 2
relates to the mathematical theory of hereditary symmetries.

Equation (4) with b = 2 was recently re-derived as a shallow water equation by

using asymptotic methods in three different approaches in Dullin et al [21], in

Fokas and Liu [24] and also in Johnson [38]. These three derivations all used

different variants of the method of asymptotic expansions for shallow water waves

in the absence of surface tension. Only the derivation in Dullin et al [21] took

advantage of the parametric freedom in the Kodama normal-form transformations

of the asymptotic expansion results at quadratic order.

The effects of the parameter b on the solutions of equation (4) were investigated

in Holm and Staley [36], where b was treated as a bifurcation parameter, in the

limiting case when the linear dispersion coefficients are set to c0 = 0 and Γ = 0.
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This limiting case allows a variety of special solutions for different ranges of the

values of b, in which the two nonlinear terms in equation (4) balance each other in

the absence of linear dispersion.

Since its first appearance in [9], the CH equation has been the centre of a conflu-

ence of scientific endeavors that includes water waves, integrable systems, partial

differential equation (PDE) analysis, asymptotics, geometry and Lie groups. This

confluence has led to a continued interest and opportunities for contributions from

many different fields in mathematics. The interest in CH solutions may be mea-

sured by noticing that the entry ‘peakon’ has acquired many thousands of Google
hits.

Plan of the Paper

This paper aims to review some of the geometric highlights of recent work on

the CH equation. It is certainly not exhaustive. It mainly focuses on comparing

the soliton theory for smooth CH solutions with the peakon theory for its singular

solutions in the dispersionless limit. Section 2 briefly explains the application of

the method of the IST for obtaining the soliton solutions of CH equation. The set

of scattering data is introduced and the formulation of the inverse scattering as a

Riemann-Hilbert problem is outlined. The solution is expressed via the scattering

data in a form that admits the peakon limit in the sections that follow.

In Section 3 the map between the action-angle variables (expressed via the scat-

tering data) and the momentum of the CH solution is formulated as a momentum

map from the symplectic action-angle variables to the dual of the Lie algebra of

smooth vector fields on the real line. This is a Poisson map, but the noncanoni-

cal bi-Hamiltonian structure of the CH equation which led to the discovery of its

isospectral problem in [9] and its geometrical significance as geodesic flow on the

diffeomorphism group are not discussed here.

In Section 4 we introduce the peakons as singular solutions that appear in disper-

sionless limit. The N -peakon solution is governed by a finite-dimensional inte-

grable dynamical system.

Section 5 presents the multi-peakon solution as a limiting case of the CH multi-

soliton solution and points out the similarity between the dynamics of the peakon

system and the well known Toda lattice.

In Section 6 we comment briefly on the existence of additional integrals of motion

of the peakon system, a property known as superintegrability. The two-peakon

system is analysed explicitly.
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Section 7 presents the compacton and pulson solutions, which are singular solu-

tions, similar to peakons that can also be represented by the singular momentum

map for peakons discussed in [34].

In Section 8 we deal with generalizations of the CH equation in higher dimensions.

These also allow for singular solutions. Although such multidimensional general-

izations are unlikely to be integrable, numerical studies show that their solutions

are stable and interact elastically in collisions.

In Section 9 we comment briefly on some limitations of our present discussion and

point out three open problems for further research.

2. Soliton Solutions of CH Equation from Inverse Scattering

2.1. Inverse Scattering for the KdV Equation

One of the most significant results in the theory of nonlinear partial differential

equations was the development of Gardner, Greene, Kruskal and Miura [28,29] of

a method for the exact solution of the initial-value problem for the KdV equation.

Prior to their work the only known exact solutions of KdV were the travelling

wave solutions. The idea is based on a representation of the nonlinear equation

ut + 6uux + uxxx = 0 as a compatibility condition of two eigenvalue problems

with a time-independent spectral parameter λ

Ψxx + uΨ = λΨ, Ψt = (ux + γ)Ψ − (4λ + 2u)Ψx (6)

where γ is an arbitrary constant. The method is conceptually analogous in many

ways to the Fourier transform method for solving linear equations. This method is

now known as IST. It was recast by Lax [42] in a general framework that allows

the IST to be used for solving other nonlinear PDEs. An important consequence

is the relationship between the discrete eigenvalues and the characteristics of the

solitons that emerge asymptotically. Another feature of soliton collisions is the

preservation of soliton identities after the interaction (asymptotically in time). For

example, collisions of KdV solitons only result in a phase shift from the positions

where they would have been without the interaction.

The KdV was formulated as a completely integrable Hamiltonian system in a work

by Faddeev and Zakharov [56], the Hamiltonian form was also noted by Gardner

[27].

Reviews of IST may be found, for example, in Ablowitz et al [1], Dubrovin et al
[20], Novikov et al [48]. For discussions of other related bi-Hamiltonian equations,

see [19]. We note that the spectrum of the corresponding eigenvalue problem, e.g.

(6), depends on the boundary conditions of the solution, see [30].
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Figure 1. A Gaussian initial condition for the CH equation breaks up into

an ordered train of solitons as time evolves (the time direction being verti-

cal). The soliton train eventually wraps around the periodic domain, thereby

allowing the leading solitons to overtake the slower emergent solitons from

behind in collisions that cause phase shifts, as discussed in [9].

2.2. Inverse Scattering for CH Solitons with Dispersion

In this section we outline the application of the IST for the CH equation. We use

the form with a linear dispersion term

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0 (7)

where ω is a real constant. This equation appears as a model of unidirectional

propagation of shallow water waves over a flat bottom [9, 38, 39] as well as that

of axially symmetric waves in a hyperelastic rod [18]. It can be obtained from the

b-equation (4) with b = 2 via Galilean transformation that removes the uxxx term.

Equation (7) admits a Lax pair formulation [9]

Ψxx =
1

4

(
1 − (m + ω)λ

)
Ψ (8)

Ψt = −
(

2

λ
+ u

)
Ψx +

ux

2
Ψ + γΨ (9)

where γ is an arbitrary constant. We will use this freedom for a proper normaliza-

tion of the eigenfunctions.

In our further considerations m will be a Schwartz class function, ω > 0 and

m(x, 0) + ω > 0. Then m(x, t) + ω > 0 for all t [11]. Let us introduce a new
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spectral parameter k, such that

λ(k) =
1

ω

(
1 + 4k2

)
. (10)

The spectrum of the problem (8) under these conditions is described in [10]. The

continuous spectrum in terms of k corresponds to k – real. The discrete spectrum

(in the upper half plane) consists of finitely many points kn = iκn, n = 1, . . . , N
where κn is real and 0 < κn < 1/2.

For all real k �= 0 a basis in the space of solutions of (8) can be introduced, ψ(x, k)
and ψ̄(x, k̄), fixed by its asymptotic when x → ∞ [10]

ψ(x, k) = e−ikx + o(1), x → ∞. (11)

Another basis can be introduced, ϕ(x, k) and ϕ̄(x, k̄) fixed by its asymptotic when

x → −∞
ϕ(x, k) = e−ikx + o(1), x → −∞ (12)

and the relation between the two bases is [13]

ϕ(x, k) = a(k)ψ(x, k) + b(k)ψ̄(x, k) (13)

where

|a(k)|2 − |b(k)|2 = 1. (14)

The quantity R(k) = b(k)/a(k) is called the reflection coefficient, without any

danger of confusing b(k) with the bifurcation parameter b introduced in (4).

All of the required information about the scattering, i.e., a(k) and b(k), is provided

by R(k) for k > 0 only [15]. It is sufficient to know R(k) only on the half line

k > 0, since ā(k) = a(−k), b̄(k) = b(−k) and thus R(−k) = R̄(k).

The constant γ in (9) can be chosen for each eigenfunction in such a way that a(k)
does not depend on t and is a generating function of the integrals of motion [15].

At the points of the discrete spectrum, a(k) has simple zeroes [10], therefore ϕ and

ψ̄ are linearly dependent (13)

ϕ(x, iκn) = bnψ̄(x,−iκn). (15)

In other words, the discrete spectrum is simple, there is only one (real) eigenfunc-

tion ϕ(n)(x), corresponding to each eigenvalue iκn, and we can take this eigen-

function to be

ϕ(n)(x) ≡ ϕ(x, iκn).
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The asymptotic behaviour of ϕ(n), according to (12), (15) is

ϕ(n)(x) = eκnx + o(eκnx), x → −∞
ϕ(n)(x) = bne−κnx + o(e−κnx), x → ∞.

The sign of bn obviously depends on the number of the zeroes of ϕ(n). Suppose

that

0 < κ1 < κ2 < . . . < κN < 1/2.

Then from the oscillation theorem for the Sturm-Liouville problem [7], ϕ(n) has

exactly n − 1 zeroes. Therefore

bn = (−1)n−1|bn|.

The set

S ≡ {R(k) ; k > 0, κn, Rn = bn/ia′(iκn), n = 1, . . . N}

is called the scattering data. The Hamiltonians for the CH equation in terms of

the scattering data are presented in [15]. The time evolution of the scattering data

is [13]

R(k, t) = R(k, 0) exp

(
−4ik

λ
t

)
, Rn(t) = Rn(0) exp

(
4κn

λn

t

)
where Rn(t) is always a positive quantity [13] and λn = λ(κn).

The scattering coefficient a(k) is analytic for Im k > 0 with asymptotic [15]

eiβka(k) → 1, |k| → ∞

where β is a constant (integral of motion)

β =

∫ ∞

−∞

(√
1 +

m(x)

ω
− 1

)
dx. (16)

The asymptotics of the Jost solutions (or, rather the following quantities, depending

on the Jost solutions) for |k| → ∞ have the form [13]

ψ(x, k) ≡ ψ(x, k)e
iky
√

ω = X0(x) +
X1(x)

k
+

X2(x)

k2
+ . . . (17)

ϕ(x, k) ≡ ϕ(x, k)e
ik(

y
√

ω
+β)

= X0(x) +
X̃1(x)

k
+

X̃2(x)

k2
+ . . . (18)
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where X0(x) = [ω/(m(x) + ω)]1/4 > 0 and

y(x) =
√

ω

[
x +

∫ x

∞
(X−2

0
(x̃) − 1)dx̃

]
. (19)

Moreover, (17) is analytic for Im(k) < 0, (18) is analytic for Im(k) > 0 [13].

From (13) with (17) and (18) we obtain

ϕ(x, k)

eikβa(k)
= ψ(x, k) + R(k)ψ̄(x, k)e2iky(x)/

√
ω. (20)

The function ϕ(x, k)/(eikβa(k)) is analytic for Im(k) > 0, ψ(x, k) is analytic for

Im(k) < 0. Thus, (20) represents an additive Riemann-Hilbert Problem (RHP)

with a jump on the real line, given by R(k)ψ̄(x, k)e2iky(x)/
√

ω.

The solution of this RHP follows a standard pattern, see [13] for more details.

The solution simplifies considerably in the case R(k) ≡ 0. This is the N -soliton

solution

ψ(x, k) = X0(x) − i
N∑

n=1

Rn(t)e−2κny/
√

ωψ(x,−iκn)

iκn − k
, Im(k) < 0 (21)

ϕ(x, k)

eikβa(k)
= X0(x) − i

N∑
n=1

Rn(t)e−2κny/
√

ωψ(x,−iκn)

iκn − k
, Im(k) > 0. (22)

From (21) one has a linear system for the quantities ψ(x,−iκn, t) with a solution

ψ(x,−iκn, t) = X0(x)
N∑

p=1

A−1

np [y, t], n = 1, . . . , N (23)

where

Apn[y, t] ≡ δpn +
Rn(t)e−2κny/

√
ω

κp + κn

· (24)

Taking k = −i/2 in (21) with (23) we have

e
− 1

2
(x− y

√

ω
) ≡ ψ(x,−i/2) = X0(x)

⎛⎝1 −
N∑

n,p=1

Rn(t)e−2κny/
√

ω

κn + 1

2

A−1

np [y, t]

⎞⎠. (25)
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The substitution κ = i/2 in (22) with a(i/2) = 1 gives

e
1

2
(x− y

√

ω
) ≡ ϕ(x, i/2)

e−β/2a(i/2)
= X0(x)

⎛⎝1 −
N∑

n,p=1

Rn(t)e−2κny/
√

ω

κn − 1

2

A−1

np [y, t]

⎞⎠. (26)

From (25) and (26) there follows a parametric representation

x = X(y, t) ≡ y√
ω

+ ln
f+

f−
(27)

f± ≡ 1 −
N∑

n,p=1

Rn(t)e−2κny/
√

ω

κn ∓ 1

2

A−1

np [y, t]. (28)

2.3. Parametric Form of the Dispersive CH Soliton Solution

From (19) and (27) one can compute the solution in parametric form

u(X(y, t), t) = Xt(y, t), x = X(y, t) (29)

where X(y, t) is given in terms of the scattering data in (27), (28).

Upon introducing new notations

ξj = 2κj

(
− y√

ω
+

2t

λj

+ xj0

)
xj0 =

1

2κj

ln
Rj(0)

2κj

φj = ln
1 − 2κj

1 + 2κj

γij = ln

(
κi − κj

κi + κj

)2

one can rewrite the expression for f± (28) in the form [45, 49–51]

f± ≡
∑

μ=0,1

exp

⎡⎣ N∑
i=1

μi(ξi ∓ φi) +
∑

1≤i<j≤j

μiμjγij

⎤⎦ .

The solution for m can be obtained from (29). First we notice that

∂u(X(y, t), t)

∂y
= ux(X(y, t), t)Xy
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and also

∂u(X(y, t), t)

∂y
=

∂Xt

∂y
= Xty.

Thus ux(X(y, t), t) = Xty/Xy. Similarly

uxx(X(y, t), t) =
1

Xy

(
Xty

Xy

)
y

and

m(X(t, y), t) = u(X(t, y), t) − uxx(X(t, y), t) = Xt − 1

Xy

(
Xty

Xy

)
y

with

m(x, t) =

∫ ∞

−∞
P (y, t)δ(x − X(y, t))dy (30)

P (y, t) = XtXy −
(

Xty

Xy

)
y

u(x, t) =
1

2

∫ ∞

−∞
P (y, t) exp(−|x − X(y, t)|)dy.

As we shall see in Section 8, this representation is also useful in the study of

multidimensional solutions.

2.4. Relation to KdV Hierarchy

The spectral problem (8) is gauge equivalent to a standard Sturm-Liouville prob-

lem, well known from the KdV hierarchy, cf. (6), with short notation q = m + ω:

−Φyy + U(y)Φ = μΦ, μ =
λ

4
− 1

4ω (31)

Φ(y) = q1/4Ψ,
dy

dx
=

√
q

U(y) =
1

4q(y)
+

qyy(y)

4q(y)
− 3q2

y(y)

16q2(y)
− 1

4ω
· (32)

Note that (32) leads to two possible expressions for the change of the variables in

the Liouville transformation

y =
√

ωx +

∫ x

−∞
(
√

q(x′) −√
ω)dx′ + const

y =
√

ωx +

∫ x

∞
(
√

q(x′) −√
ω)dx′ + const.
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These two possibilities are only consistent iff∫ ∞

−∞
(
√

q(x) −√
ω)dx = const

which is always the case, since the integral under question is (up to a multiplier)

the Casimir function β (16).

The matching of the CH hierarchy to KdV hierarchy requires solving the Ermakov-

Pinney equation (32) [10], which is not straightforward and leads to the same so-

lution (29) in parametric form.

3. Momentum Map Formulation with Action-angle Variables

The canonical Poisson brackets for the scattering data of the CH equation are com-

puted in [15] where also the action-angle variables are expressed in terms of the

scattering data. Let us consider the action variable for the N-soliton solution.

(These considerations can be extended easily to the variables of the continuous

spectrum.) The angle variable is Φn = lnRn(t) and it is linear in time t and

Φ̇n = 4κn/λn. Let us introduce Λn := 4κn/λn into Hamilton’s principle δS = 0,

with

S[u, Φn, Πn] =

∫ (
�[u] +

N∑
n=1

Πn

(
Φ̇n − Λn[u]

))
dt.

Here the Lagrange multiplier Πn enforces the action-angle relation for the CH

scattering data as a T
N shift of the angles Φn at constant angular frequencies Λn,

with n = 1, . . . , N . The stationary variation is

δS =

∫ ((
δ�

δu
−

N∑
n=1

Πn
δΛn

δu

)
δu +

N∑
n=1

(
Φ̇n − Λn[u]

)
δΠn −

N∑
n=1

Π̇nδΦn

)
dt.

Since by definition m = δ�/δu is the momentum, δS = 0 implies the Eulerian

representation

m =
δ�

δu
=

N∑
n=1

Πn
δΛn

δu
, with (33)

Φ̇n = Λn[u] and Π̇n = 0. (34)

Relation (33) is the momentum map

(Φn, Πn) ∈ T ∗
T

N → m ∈ X∗
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for the toral T
N action (34) on the angles Φn at constant angular frequencies Λn.

This momentum map from the action-angle scattering variables T ∗(TN ) to the

flow momentum X∗(R) (dual to the smooth vector fields X(R) on the real line)

provides the Eulerian representation of the N -soliton solution of CH in terms of the

scattering data and squared eigenfunctions of its isospectral eigenvalue problem.

Momentum maps for Hamiltonian dynamics are reviewed in [44], for example.

By using the spectral quantities of the N -soliton solution and recalling that λn =
(1− 4κ2

n)/ω one may express the variation of the spectrum with respect to the CH

solution in terms of the squared-eigenfunctions of the isospectral problem as [15]

δΛn

δm(x, t)
=

(1 + 4κ2
n)

2ωκnλn

Rn(t)[ψ̄(x,−iκn, t)]2

in which ψ̄(x,−iκn, t) is the eigenfunction that belongs to eigenvalue λn, see (15).

On the other hand, the expansion of u(x, t) over squares of eigenfunctions is given

by [14]

u(x, t) =
N∑

n=1

4κn

ωλ2
n

Rn(t)[ψ̄(x,−iκn, t)]2.

Consequently

m(x, t) =
N∑

n=1

4κn

ωλ2
n

Rn(t)(1 − ∂2)[ψ̄(x,−iκn, t)]2

or

m(x, t) =
N∑

n=1

ΠnJn(x, t)

where Πn and Jn(x, t) denote explicitly

Πn =
8κ2

n

λn(1 + 4κ2
n)

=
2Λnκn

1 + 4κ2
n

Jn(x, t) ≡ δΛn

δu(x, t)
=

(1 + 4κ2
n)

2ωκnλn

Rn(t)(1 − ∂2)[ψ̄(x,−iκn, t)]2.

Thus, the momentum map (33) from the action-angle variables under going dy-

namics (34) to the Eulerian representation of the momentum for the CH solution

is expressed in terms of the scattering data and squared eigenfunctions of its N -

soliton isospectral eigenvalue problem. Perhaps not unexpectedly, this momentum

map may be applied to the action-angle representation of the solution of any inte-

grable Hamiltonian PDE.
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4. Peakons

4.1. Peakons: the Singular Solution Ansatz

Camassa and Holm [9] discovered the “peakon” solitary traveling wave solution

for a shallow water wave

u(x, t) = ce−|x−ct|/α

whose fluid velocity u is a function of position x on the real line and time t. The

peakon traveling wave moves at a speed equal to its maximum height, at which

it has a sharp peak (jump in derivative). Peakons are an emergent phenomenon,

solving the initial value problem for a PDE derived by an asymptotic expansion of

Euler’s equations using the small parameters of shallow water dynamics. Peakons

are nonanalytic solitons, which superpose as

u(x, t) =
1

2

N∑
a=1

pa(t)e
−|x−qa(t)|/α =:

1

2

N∑
a=1

pa(t)g(x − qa(t))/α) (35)

for sets {p} and {q} satisfying canonical Hamiltonian dynamics. Peakons arise

for shallow water waves in the limit of zero linear dispersion in one dimension.

Peakons satisfy a PDE arising from Hamilton’s principle for geodesic motion on

the smooth invertible maps (diffeomorphisms) with respect to the H1 Sobolev

norm of the fluid velocity. Peakons generalize to higher dimensions, as well. We

explain how peakons were derived in the context of shallow water asymptotics and

describe some of their remarkable mathematical properties.

Peakons were first found as singular soliton solutions of the completely integrable

CH equation. This is equation (4) with b = 2, now rewritten in terms of the

velocity, as

ut + c0ux + 3uux + Γuxxx = α2(uxxt + 2uxuxx + uuxxx). (36)

Peakons were found in [9] to arise in the absence of linear dispersion. That is,

they arise when c0 = 0 and Γ = 0 in CH (36). Specifically, peakons are the

individual terms in the peaked N−soliton solution of CH (36) for its velocity, in

the absence of linear dispersion. Each term in the sum (35) is a solition with a sharp

peak at its maximum. Hence, the name “peakon.” Expressed using its momentum,

m = (1−α2∂2
x)u, the peakon velocity solution (35) of dispersionless CH becomes

a sum over a delta functions, supported on a set of points moving on the real line.

Namely, the peakon velocity solution (35) implies

m(x, t) = α
N∑

a=1

pa(t)δ(x − qa(t)) (37)
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because of the relation (1 − α2∂2
x)e−|x|/α = 2αδ(x). These solutions satisfy the

b-equation (4) for any value of b, provided c0 = 0 and Γ = 0. As we shall discuss

later, the peakon momentum relation (37) is again a momentum map.

Thus, peakons are singular momentum solutions of the dispersionless b-equation,

although they are not stable for every value of b. From numerical simulations [36],

peakons are conjectured to be stable for b > 1. In the integrable cases b = 2 for CH

and b = 3 for DP, peakons are stable singular soliton solutions. The spatial velocity

profile e−|x|/α/(2α) of each separate peakon in (35) is the Green’s function for the

Helmholtz operator on the real line, with vanishing boundary conditions at spatial

infinity. Unlike the KdV soliton, whose speed and width are related, the width of

the peakon profile is set by its Green’s function, independently of its speed.

4.2. Integrable Peakon Dynamics of CH

Substituting the peakon solution ansatz (35) and (37) into the dispersionless CH

equation,

mt + umx + 2mux = 0 , with m = u − α2uxx (38)

yields Hamilton’s canonical equations for the dynamics of the discrete set of

peakon parameters pa(t) and qa(t)

q̇a(t) =
∂hN

∂pa

and ṗa(t) = − ∂hN

∂qa

(39)

for a = 1, 2, . . . , N , with Hamiltonian [9] given by

hN = 1

4

N∑
a,b=1

pa pb e−|qa−qb|/α . (40)

Or explicitly

q̇a =
1

2

N∑
b=1

pbe
−|qa−qb|/α (41)

ṗa =
pa

2α

N∑
b=1

pbe
−|qa−qb|/αsgn(qa − qb). (42)

Thus, one finds that the points x = qa(t) in the peakon solution (35) move with the

flow of the fluid velocity u at those points, since u(qa(t), t) = q̇a(t). This means

the qa(t) are Lagrangian coordinates. Moreover, the singular momentum solution

(37) is the Lagrange-to-Euler map for an invariant manifold of the dispersionless
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CH equation (38). On this finite-dimensional invariant manifold for the PDE (38),

the dynamics is canonically Hamiltonian.

With Hamiltonian (40), the canonical equations (39) for the 2N canonically con-

jugate peakon parameters pa(t) and qa(t) were interpreted in [9] as describing

geodesic motion on the N−dimensional Riemannian manifold whose co-metric

is gab({q}) = e−|qa−qb|/α. Moreover, the canonical geodesic equations arising

from this Hamiltonian comprise an integrable system for any number of peakons

N . This integrable system was studied in [9] for solutions on the real line, and

in [3, 16] and references therein, for spatially periodic solutions.

The integrals generated by the action variables in terms of the coordinates can be

recovered as tr(Lk), where L is the Lax operator for the peakon system [9].

Being a completely integrable Hamiltonian soliton equation, the continuum CH

equation (36) has an associated isospectral eigenvalue problem, discovered in [9]

for any values of its dispersion parameters c0 and Γ. Remarkably, when c0 = 0
and Γ = 0, this isospectral eigenvalue problem has a purely discrete spectrum.

Moreover, in this case, each discrete eigenvalue corresponds precisely to the time-

asymptotic velocity of a peakon. This discreteness of the CH isospectrum in the

absence of linear dispersion implies that only the singular peakon solutions (37)

emerge asymptotically in time, in the solution of the initial value problem for the

dispersionless CH equation (38). This is borne out in numerical simulations of

the dispersionless CH equation (38), starting from a smooth initial distribution of

velocity [26, 36].

Figure 2 shows the emergence of peakons from an initially Gaussian velocity dis-

tribution and their subsequent elastic collisions in a periodic one-dimensional do-

main. This figure demonstrates that singular solutions dominate the initial value

problem and, thus, that it is imperative to go beyond smooth solutions for the CH

equation; the situation is similar for the EPDiff equation.

Peakons as Mechanical Systems

Governed by canonical Hamiltonian equations, each N−peakon solution can be

associated with a mechanical system of moving particles. Calogero et al [8] fur-

ther extended the class of mechanical systems of this type. The r-matrix approach

was applied to the Lax pair formulation of the N−peakon system for CH by Rag-

nisco and Bruschi [53], who also pointed out the connection of this system with

the classical Toda lattice. A discrete version of the Adler-Kostant-Symes factoriza-

tion method was used by Suris [54] to study a discretization of the peakon lattice,

realized as a discrete integrable system on a certain Poisson submanifold of gl(N)
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Figure 2. A Gaussian initial condition for the CH equation breaks up into

an ordered train of peakons as time evolves (the time direction being verti-

cal). The peakon train eventually wraps around the periodic domain, thereby

allowing the leading peakons to overtake the slower emergent peakons from

behind in collisions that cause phase shifts, as discussed in [9].

equipped with an r-matrix Poisson bracket. Beals et al [6] used the Stieltjes theo-

rem on continued fractions and the classical moment problem for studying multi-

peakon solutions of the CH equation. Generalized peakon systems are described

for any simple Lie algebra by Alber et al [3].

5. Peakon Limit of the CH Soliton Solutions

The limit ω → 0 in the N -soliton solution u(x, t) produces the N -peakon solution

(35). The limiting procedure is described in detail in [46]. Due to (10) one can

write for the discrete eigenvalues kn = iκn

2κj = (1 − ωλj)
1/2 = 1 − 1

2
ωλj + . . . . (43)

The solution (27) depends explicitly on κj (43) and the limit can be computed with

(43) by taking ω → 0 and keeping the eigenvalue λj constant. The result is the
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expression (35) with

pi =
4D

(0)

N−i+1
D

(2)

N−i

D
(1)

N−i+1
D

(1)

N−i

, i = 1, 2, ..., N (44)

qi = α ln

[
2D

(0)

N−i+1

D
(2)

N−i

]
, i = 1, 2, ..., N (45)

where

D(m)

n =
∑

1≤i1<i2<...<in≤N

Δn(i1, i2, ..., in)(λi1λi2 ...λin)mRi1Ri2 ...Rin

Δn(i1, i2, ..., in) =
∏

1≤l<m≤n

(λil − λim)2, n ≥ 2

Ri(t) = Ri(0)e
2

λi
t
, xi0 = lnRi(0).

Usually the quantities D
(m)

n are called Hankel determinants. By definition D
(m)

0
=1.

In general, Hankel determinant is a determinant of n × n matrix of the form

D
(m)

n ≡ det(a
(m)

ij ) where aij are elements of a sequence, i.e.,

a
(m)

ij = Ai+j+m−2.

In this particular case

Al =
N∑

i=1

λl
iRi(t).

Mixture of Peakons and ‘Anti-peakons’

The peakon solution (44) was obtained from the soliton solution under the assump-

tion m(x, 0) + ω > 0. Thus, all pk are of the same sign, since all the eigenvalues

λn in this case are positive. However, one can formally use the same solution with

eigenvalues of various signs to model pk of various signs (mixture of peakons and

‘anti-peakons’) and thus to study peakon – anti-peakon interactions, see e.g. [52].

The result is that the multi-peakon interaction (including anti-peakons) in general

decomposes into a sequence of pairwise collisions [26]. The collision of a single

peakon-anti-peakon pair was studied already in [9]. When the eigenvalues are of

mixed signs, the Hankel determinants in the denominator of (44) may develop sin-

gularities for finite values of t. This ‘peakon-breaking’ phenomenon is apparently

the analog of the wave-breaking mentioned earlier when ω → 0.
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Matsuno’s form of the solution with Hankel determinants is particularly useful for

the study of this phenomenon. Supposed that i-th and (i+1)-st particles are peakon

and anti-peakon, i.e. qi(t) and qi+1(t) have different signs before the impact. Using

the identities for the Hankel determinants

D
(m)

n+2
D(m+2)

n = D
(m+2)

n+1
D

(m)

n+1
− (D

(m+1)

n+1
)2

D
(2)

N−n+1,tD
(2)

N−n − D
(2)

N−n+1
D

(2)

N−n,t = 2D
(1)

N−n+1
D

(3)

N−n

D
(0)

N−n+2,tD
(0)

N−n+1
− D

(0)

N−n+2
D

(0)

N−n+1,t = −2D
(−1)

N−n+2
D

(1)

N−n+1

we find that when the i-th and i + 1-st particles collide, i.e., qi(t) = qi+1(t),

D
(1)

N−i = 0, which gives |pi| = ∞, |pi+1| = ∞. In other words, we have a

‘peakon breaking’ at the time of impact. Moreover, it is clear that both pi(t) and

pi+1(t) change signs, i.e., jump from −∞ to +∞ at the moment of impact (and

vice versa). This means that the peakon becomes antipeakon after the impact and

vice versa. Moreover, when D
(1)

N−i = 0, the above identities applied to the solution

give d

dt
(qi(t)− qi+1(t)) = 0, i.e., the i-th and (i+1)-st particles are at rest relative

to each other at the time of the impact. In fact, using the identities we can compute

qi − qi+1 = ln

(
1 − (D

(1)

N−i)
2

D
(0)

N−iD
(2)

N−i

)
.

Since D
(0)

N−i and D
(2)

N−i are always positive, qi − qi+1 ≤ 0 with equality at the time

of impact, when D
(1)

N−i = 0. Thus, at impact the particles do not go through each

other but first stop and change the direction of their motion (relative to each other).

Similarity of Peakon Lattice and Toda Lattice

Hankel determinants appear in the solutions of other integrable systems, e.g. the

Toda lattice [32]. The Toda equation [55]

dpn

dt
= eqn+1−qn − eqn−qn−1 , n ∈ Z

dqn

dt
= pn

is one of the most important integrable systems. We have a finite chain with N
nodes under the fixed ends boundary conditions q0 = −qN+1 = ∞. The solution
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is in the form

qn(t) = q1(0) + ln
D

(0)

n

D
(0)

n−1

q1(0) = − 1

N
lnD

(0)

N (0) is a const.

The Hankel determinants are obtained by a similar sequence

Al =
N∑

i=1

λl
iRi(t)

Ri(t) = Ri(0)e−λit

where λi are N different constants (eigenvalues of the Lax matrix) and the quanti-

ties Ri(0), i = 1, . . . , N represent another set N of constants.

Due to its simple form, the N -peakon solution can be used as an approximation of

the N -soliton CH solution when the dispersion term is small (and the term 2ωux

can be neglected). Similarly, the Toda chain with complex dynamical variables

(the so-called Complex Toda Chain – CTC) provides an approximation for the N-

soliton solution of the Nonlinear Schröedinger Equation (NLS)

iut +
1

2
uxx + |u|2u = 0

see [31–33] for more details. Such an approximation is called adiabatic approxi-

mation and means that the N -soliton solution consists of N well separated solitons

u(x, t) ≈
N∑

k=1

2νke
i[2μk(x−ξk(t)+δk(t)]

cosh(2νk(x − ξk(t))

i.e., the overlap between the solitons is small. The variables qn(t) of the CTC are

related to the NLS solitons parameters by

qk(t) = −2ν0ξk(t) + i (2μ0ξk(t) − δk(t)) + const

where ξk, δk, μk = 1

2
ξ̇k and νk = (1

2
δ̇k − μ2

k)
1/2 characterize the center-of-mass

position, the phase, velocity and amplitude respectively of the k-th soliton in the

chain while ν0 and μ0 are the average amplitude and velocity of the soliton train.

The parameters ξk and δk can be obtained as the real and imaginary parts of qk(t).
Such soliton trains and their asymptotic behavior appear to be important for the

needs of soliton based fiber optics communications.
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6. Superintegrability of the Peakon System

Suppose we have an integrable system with 2N - dimensional phase space which

in terms of the Action-Angle (canonical) variables can be represented as

Λ̇n = 0, Φ̇n = Λn, n = 1, 2, . . . , N

or, if there exists a bracket such that1

{Φn, Λl} =
1

2
δnl, {Φn, Φl} = {Λn, Λl} = 0 (46)

the system is Hamiltonian with a Hamiltonian

hN = Λ2

1 + . . .Λ2

N . (47)

The integrals Λn, n = 1, 2, . . . , N are clearly in involution, which guarantees the

integrability of the system. There is however another set of integrals

Ij = (Φj − Φj+1)(Λ1 + . . . + ΛN ) − (Λj − Λj+1)(Φ1 + . . .ΦN )
(48)

j = 1, 2, . . . , N − 1.

If the ‘action’ variables Λn are all different, the set (49) is functionally independent

from the set Λn, n = 1, 2, . . . , N . In addition, the integrals (49) form another

set of N -integrals in involution together with H . Due to the existence of two

sets of functionally independent integrals in involution such systems are termed

superintegrable.

An example of such system is Toda lattice, see the discussion in [2]. The peakon

system is also superintegrable. The canonical variables in terms of the scattering

data for CH equation can be used in the peakon limit: Λn = 2/λn, Φn = lnRn(t),
the Hamiltonian (47) is also a peakon limit (ω → 0) of the N -soliton Hamiltonian

[15]

HN (ω) = ω2

N∑
n=1

(
ln

1 − 2κn

1 + 2κn

+
4κn(1 + 4κ2

n)

(1 − 4κ2
n)2

)
.

The Poisson bracket for the CH peakon solution is

{A, B} ≡ −
∫ ∞

−∞

δA

δm
(m∂ + ∂m)

δB

δm
dx (49)

1The 1/2 coefficient in the definition of the bracket appears in order to match it to the Poisson
bracket used in the CH Hamiltonian formulation.
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and the scattering data satisfy (46) with respect to (49), see [15] for the details.

More interesting are the integrals (49). From (45) and (44) one can recover these

integrals in coordinate form. For example, when N = 2 we have

I1 = ln

√
J + p1 − p2√
J − p1 + p2

+

√
J

p1 + p2

(
q1 + q2

α
+ ln

p1

p2

)
where

J = (p1 − p2)
2 + 4p1p2e

−|q1−q2|/α.

Note that I1 depends on both combinations q1 + q2 and q1 − q2 as well as the

momentum variables. The Hamiltonian h2 (which depends only on q1 − q2 and

the momentum variables) and I1 form a complete system of integrals in involution.

The integration of the 2-peakon system with these integrals can be performed as

follows. First, one can express q1 and q2 in terms of I1, h2 and the momentum

variables: qi = qi(p1, p2, I1, h2). Next

q̇i =
∂qi

∂p1

ṗ1 +
∂qi

∂p2

ṗ2. (50)

The substitution of q̇i, ṗi from (41) (42) to (50) produces an algebraic equation

that gives, say p2 as a function of p1. Then (42) is an ODE for p1 of the form

ṗ1 = f(p1, I1, h2). Clearly, from practical viewpoint it is much more convenient

to work with the other system of integrals in involution: h2 and the conserved

momentum P = p1 + p2. Note that J = 4h2 − 3P 2 is itself an integral.

7. Other Singular Solutions: the Dispersionless b-equation

Pulsons: Generalizing the Peakon Solutions of the Dispersionless b-equation
for Other Green’s Functions.

The Hamiltonian hN in equation (40) depends on the Green’s function for the

relation between velocity u and momentum m. However, the singular momentum

solution ansatz (37) is independent of this Green’s function. Thus, as discovered

in Fringer and Holm [26], one can state

The singular momentum solution ansatz (37) for the dispersionless equation,

mt + umx + 2mux = 0, with u = g ∗ m (51)

provides an invariant manifold on which canonical Hamiltonian dynamics occurs,
for any choice of the Green’s function g relating velocity u and momentum m by
the convolution u = g ∗ m.
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The fluid velocity solutions corresponding to the singular momentum ansatz (37)

for equation (51) are the pulsons. Pulsons are given by the sum over N velocity

profiles determined by the Green’s function g, as

u(x, t) =
N∑

a=1

pa(t)g
(
x, qa(t)

)
. (52)

Again for (51), the singular momentum ansatz (37) results in a finite-dimensional

invariant manifold of solutions, whose dynamics is canonically Hamiltonian. The

Hamiltonian for the canonical dynamics of the 2N parameters pa(t) and qa(t) in

the “pulson” solutions (52) of equation (51) is

hN = 1

2

N∑
a,b=1

pa pb g(qa, qb) .

Again for the pulsons, the canonical equations for the invariant manifold of sin-

gular momentum solutions provide a phase-space description of geodesic motion,

this time with respect to the co-metric given by the Green’s function g. Mathe-

matical analysis and numerical results for the dynamics of these pulson solutions

are given in [26]. These results describe how the collisions of pulsons (52) depend

upon their shape.

Compactons in the 1/α2 → 0 Limit of CH

As mentioned earlier, in the limit that α2 → 0, the CH equation (36) becomes the

KdV equation. In the opposite limit that 1/α2 → 0 CH becomes the Hunter-Zheng

equation [37] (
ut + uux

)
xx

=
1

2
(u2

x)x.

This equation has “compacton” solutions, whose collision dynamics was studied

numerically and put into the present context in [26]. The corresponding Green’s

function satisfies −∂2
xg(x) = 2δ(x), so it has the triangular shape, g(x) = 1 − |x|

for |x| < 1, and vanishes otherwise, for |x| ≥ 1. That is, the Green’s function

in this case has compact support; hence, the name “compactons” for these pulson

solutions, which as a limit of the integrable CH equations are true solitons, solvable

by IST.
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Pulson Solutions of the Dispersionless b-equation

Holm and Staley [36] give the pulson solutions of the traveling wave problem and

their elastic collision properties for the dispersionless b-equation

mt + umx + b mux = 0 , with u = g ∗ m

with any (symmetric) Green’s function g and for any value of the parameter b.

Numerically, pulsons and peakons are both found to be stable for b > 1, [36].

The reduction to noncanonical Hamiltonian dynamics for the invariant manifold of

singular momentum solutions (37) of the other integrable case b = 3 with peakon

Green’s function g(x, y) = e−|x−y|/α is found in [19].

8. Euler-Poincaré Theory in Higher Dimensions

Generalizing the Peakon Solutions of the CH Equation to Higher Dimensions

In [36], weakly nonlinear analysis and the assumption of columnar motion in

the variational principle for Euler’s equations were found to produce the two-

dimensional generalization of the dispersionless CH equation (38). This gener-

alization is the Euler-Poincaré (EP) equation [35] for the Lagrangian consisting of

the kinetic energy

� =
1

2

∫ [
|u|2 + α2

(
div u

)2
]
dxdy (53)

in which the fluid velocity u is a two-dimensional vector. Evolution generated by

kinetic energy in Hamilton’s principle results in geodesic motion, with respect to

the velocity norm ‖u‖, which is provided by the kinetic energy Lagrangian. For

ideal incompressible fluids governed by Euler’s equations, the importance of geo-

desic flow was recognized by Arnold [4] for the L2 norm of the fluid velocity.

The EP equation generated by any choice of kinetic energy norm without impos-

ing incompressibility is called “EPDiff,” for “Euler-Poincaré equation for geodesic

motion on the diffeomorphisms.” EPDiff is given by [35]( ∂

∂t
+ u · ∇

)
m + ∇uT · m + m(div u) = 0 (54)

with momentum density m = δ�/δu , where � = 1

2
‖u‖2 is given by the kinetic

energy, which defines a norm in the fluid velocity ‖u‖, yet to be determined. By

design, this equation has no contribution from either potential energy, or pressure.

It conserves the velocity norm ‖u‖ given by the kinetic energy. Its evolution de-

scribes geodesic motion on the diffeomorphisms with respect to this norm [35]. An
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alternative way of writing the EPDiff equation (54) in either two, or three dimen-

sions is
∂

∂t
m − u × curlm + ∇(u · m) + m(div u) = 0 . (55)

This form of EPDiff involves all three differential operators, curl, gradient and

divergence. For the kinetic energy Lagrangian � given in (53), which is a norm

for irrotational flow (with curlu = 0), we have the EPDiff equation (54) with

momentum m = δ�/δu = u − α2∇(div u).

EPDiff (54) may also be written intrinsically as

∂

∂t

δ�

δu
= − ad∗

u

δ�

δu
(56)

where ad∗ is the L2 dual of the ad-operation (commutator) for vector fields. See [5,

44] for additional discussions of the beautiful geometry underlying this equation.

Reduction to the Dispersionless CH Equation in 1D

In one dimension, the EPDiff equation (54-56) with Lagrangian � given in (53)

simplifies to the dispersionless CH equation (38). The dispersionless limit of the

CH equation appears, because we have ignored potential energy and pressure.

Strengthening the Kinetic Energy Norm to Allow for Circulation

The kinetic energy Lagrangian (53) is a norm for irrotational flow, with curlu = 0.

However, inclusion of rotational flow requires the kinetic energy norm to be streng-

thened to the H1
α norm of the velocity, defined as

� =
1

2

∫ [
|u|2 + α2

(
div u

)2
+ α2

(
curlu

)2

]
dxdy

(57)

=
1

2

∫ [
|u|2 + α2|∇u|2

]
dxdy =

1

2
‖u‖2

H1
α

.

Here we assume some boundary conditions that give no contributions upon inte-

grating by parts. The corresponding EPDiff equation is (54) with m ≡ δ�/δu =
u − α2Δu . This expression involves inversion of the familiar Helmholtz operator

in the (nonlocal) relation between fluid velocity and momentum density. The H 1
α

norm ‖u‖2

H1
α

for the kinetic energy (58) also arises in three dimensions for turbu-

lence modeling based on Lagrangian averaging and using Taylor’s hypothesis that

the turbulent fluctuations are “frozen” into the Lagrangian mean flow [22].
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Figure 3. A peakon segment of finite length is initially moving rightward

(East). Because its speed vanishes at its ends and it has fully two-dimensional

spatial dependence, it expands into a peakon “bubble” as it propagates. (The

colors indicate speed: red is highest, yellow is less, blue low, grey zero.)

Generalizing the CH Peakon Solutions to n Dimensions.

Building on the peakon solutions (35) for the CH equation and the pulsons (52)

for its generalization to other traveling-wave shapes in [26], Holm and Staley [36]

introduced the following measure-valued singular momentum solution ansatz2 for

the n−dimensional solutions of the EPDiff equation (54)

m(x, t) =
N∑

a=1

∫
Pa(s, t) δ

(
x − Qa(s, t)

)
ds. (58)

These singular momentum solutions, called “diffeons,” are vector density functions

supported in R
n on a set of N surfaces (or curves) of codimension (n − k) for

s ∈ R
k with k < n. They may, for example, be supported on sets of points (vector

peakons, k = 0), one-dimensional filaments (strings, k = 1), or two-dimensional

surfaces (sheets, k = 2) in three dimensions.

Figure 3 shows the results for the EPDiff equation when a straight peakon segment

of finite length is created initially moving rightward (East). Because of propagation

along the segment in adjusting to the condition of zero speed at its ends and finite

speed in its interior, the initially straight segment expands outward as it propagates

and curves into a peakon “bubble.”

2These solutions represent smooth embeddings Emb(Rk, Rn) with k < n. In contrast, the
similar expression (30) for the soliton solutions represent smooth functions R → R.
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Figure 4. An initially straight segment of velocity distribution whose expo-

nential profile is wider than the width α for the peakon solution will break

up into a train of curved peakon “bubbles,” each of width α. This example

illustrates the emergent property of the peakon solutions in two dimensions.

Figure 4 shows an initially straight segment whose velocity distribution is expo-

nential in the transverse direction, but is wider than α for the peakon solution. This

initial velocity distribution evolves under EPDiff to separate into a train of curved

peakon “bubbles,” each of width α. This example illustrates the emergent prop-

erty of the peakon solutions in two dimensions. This phenomenon is observed in

nature, for example, as trains of internal wave fronts in the south China Sea [43].

Substitution of the singular momentum solution ansatz (58) into the EPDiff equa-

tion (54) implies the following integro-partial-differential equations (IPDEs) for

the evolution of the parameters {P} and {Q}

∂

∂t
Qa(s, t) =

N∑
b=1

∫
Pb(s′, t)G(Qa(s, t) − Qb(s′, t)

)
ds′

∂

∂t
Pa(s, t) = −

N∑
b=1

∫ (
Pa(s, t)·Pb(s′, t)

)
(59)

∂

∂Qa(s, t)
G
(
Qa(s, t) − Qb(s′, t)

)
ds′.



Smooth and Peaked Solitons of the Camassa-Holm Equation and Applications 41

Figure 5. A single collision is shown involving reconnection as the faster

peakon segment initially moving Southeast along the diagonal expands,

curves and obliquely overtakes the slower peakon segment initially moving

rightward (East). This reconnection illustrates one of the collision rules for

the strongly two-dimensional EPDiff flow.

Importantly for the interpretation of these solutions, the coordinates s ∈ R
k turn

out to be Lagrangian coordinates. The velocity field corresponding to the momen-

tum solution ansatz (58) is given by

u(x, t) = G ∗ m =
N∑

b=1

∫
Pb(s′, t)G

(
x − Qb(s′, t)

)
ds′ (60)

for u ∈ R
n. When evaluated along the curve x = Qa(s, t), this velocity satisfies,

u(Qa(s, t), t) =
N∑

b=1

∫
Pb(s′, t)G

(
Qa(s, t) − Qb(s′, t)

)
ds′

=
∂Qa(s, t)

∂t
·

Consequently, the lower-dimensional support sets defined on x = Qa(s, t) and

parameterized by coordinates s ∈ R
k move with the fluid velocity. This means the

s ∈ R
k are Lagrangian coordinates. Moreover, equations (59) for the evolution of

these support sets are canonical Hamiltonian equations

∂

∂t
Qa(s, t) =

δHN

δPa
,

∂

∂t
Pa(s, t) = − δHN

δQa
·
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Figure 6. A series of multiple collisions is shown involving reconnections

as the faster wider peakon segment initially moving Northeast along the di-

agonal expands, breaks up into a wave train of peakons, each of which prop-

agates, curves and obliquely overtakes the slower wide peakon segment ini-

tially moving rightward (East), which is also breaking up into a train of wave-

fronts. In this series of oblique collision, the now-curved peakon filaments

exchange momentum and reconnect several times.

The corresponding Hamiltonian function HN : (Rn × R
n)N → R is

HN =
1

2

∫∫ N∑
a , b=1

Pa(s, t) · Pb(s′, t)G
(
Qa(s, t),Qb(s′, t)

)
dsds′ .

This is the Hamiltonian for geodesic motion on the cotangent bundle of a set of

curves Qa(s, t) with respect to the metric given by G. This dynamics was investi-

gated numerically in [36] to which we refer for more details of the solution proper-

ties. One important result found numerically in [36] is that only codimension-one

singular momentum solutions appear to be stable under the evolution of the EPDiff

equation. Thus, we have

Stability for codimension-one: the singular momentum solutions of EPDiff are
stable, as points on the line (peakons), as curves in the plane (filaments, or wave
fronts), or as surfaces in space (sheets).

Proving this stability result analytically remains an outstanding problem. The sta-

bility of peakons on the real line is proven in [17].
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Reconnections in Oblique Overtaking Collisions of Peakon Wave Fronts

Figure 5 and Figure 6 shows results of oblique wave front collisions producing

reconnections for the EPDiff equation in two dimensions. Figure 5 show a single

oblique overtaking collision, as a faster expanding peakon wave front overtakes a

slower one and reconnects with it at the collision point.

The Peakon Solution Ansatz is a Momentum Map

As shown in [34], the solution expressions (37) in one dimension and (58) in higher

dimensions may be interpreted as equivariant momentum maps, from the cotan-

gent bundle of the smooth embeddings of lower dimensional sets R
s ⊂ R

n , to the

dual of the Lie algebra of vector fields defined on these sets. (Momentum maps

for Hamiltonian dynamics are reviewed in [44], for example.) The result that the

singular solution ansatz (58) is a momentum map helps to organize the theory, to

explain previous results and to suggest new avenues of exploration. This geometric

feature underlies the remarkable reduction properties of the CH and EPDiff equa-

tions, and explains why they must be Lie-Poisson Hamiltonian equations. This is

because of the general fact that equivariant momentum maps are Poisson maps.

This geometric feature also underlies the singular momentum solution (58) and

its associated velocity (60) which generalize the peakon solutions, both to higher

dimensions and to arbitrary kinetic energy metrics. As we saw in Section 3, the

soliton solution (33) is also a momentum map. This soliton momentum map may

be expected to apply in the action-angle representation of the solution of any inte-

grable Hamiltonian PDE. Its further properties will be studied in detail elsewhere.

9. Two Open Problems

1. Throughout this discussion the solutions u(x, t) were confined to be functions

in the Schwartz class, ω > 0. The situation when the condition m(x, 0) + ω > 0
on the initial data does not hold is more complicated and requires separate analy-

sis [10,12,40]. In general, it leads to wave-breaking [12]. An attempt at developing

the inverse scattering theory for this case has been made by Kaup [40], who sug-

gested applying the inverse scattering approach separately in each interval where

m(x, t)+ω is of the same sign. The problem however is how to join solutions that

are valid in different intervals.

2. Stability for EPDiff singular momentum solutions, that is, proving their stability

analytically, remains an outstanding problem.
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