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Abstract. We work out the general idea that a composite continuous physical

system can be mathematically modelled locally as a completely integrable geomet-

ric distribution on a manifold, the time-recognizable subsystems to be modelled by

corresponding subdistributions, and any local interaction between two subsystems

of the physical system to be described in terms of the nonintegrability of the two

subdistributions making use of the corresponding two curvature forms. As an illus-

tration we present the corresponding description of photon-like objects, based on the

notion that photon-like objects are real, massless time-stable physical objects with
intrinsically compatible translational-rotational dynamical structure. The spatial

propagation of the system follows some external/shuffling symmetry of the distrib-

ution.

1. Introduction

It hardly deserves to put under dispute the thesis that the concept of interaction in

physics is a basic one. One of the most important in our view lessons that we more

or less have been taught is that any detection and further study of a physical object

requires some energy-momentum exchange. So, every physical object necessar-
ily carries energy-momentum, every quantity of energy-momentum needs a carrier,
and every interaction between two physical objects has an energy-momentum ex-
change aspect. The second lesson concerning any interaction is that, beyond its

universality, energy-momentum is a conserved quantity, so NO loss of it is al-

lowed: it may only pass from one object to another. This means, for example, also,

that every annihilation process causes creation process(es), and the full energy-

momentum that has been carried by the annihilated objects, is carried away by

the created ones. The energy-momentum exchange abilities of any physical object

realize its protection against dangerous external influence on one side, and reveal

its intrinsic nature, on the other side. Therefore, our knowledge about the entire

complex of properties of a physical object relies on getting information about its

abilities in this respect.
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The above views make us think and assume the standpoint that the most reliable

dynamical equations, describing locally the time-evolution of a composite phys-

ical system, should express energy-momentum balance between/among its time-

recognizable subsystems. So, finding natural appropriate mathematical structures

in terms of which to understand and describe formally these exchange processes is

of basic importance.

This paper aims to analyze the geometric structures and concepts connected with

the problem of integrability of distributions on manifolds as possible useful and ad-

equate tools in trying to peep into the intrinsic dynamical structure of photon-like

objects. The basic view that we follow is that these objects consist of two time-

recognizable and energy-momentum exchanging field subsystems, the mathemati-

cal image of each can be represented by a two dimensional nonintegrable subdis-

tribution of a three dimensional integrable distribution on Minkowski space-time,

and the corresponding two curvature forms represent formally the local dynamical

equilibrium between the two subsystems.

2. Basic Geometry

2.1. Distributions and Co-distributions

We recall some facts from the geometry of distributions on manifolds [1,2]. Let M
be an arbitrary n-dimensional manifold. At every point x ∈ M the tangent space

Tx(M) is defined. The union of all these spaces with respect to the points of M
defines the tangent bundle. On the other hand, the union of the co-tangent spaces

T ∗
x (M) defines the co-tangent bundle. At every point now of M we separate a p-

dimensional subspace Δx(M) ⊂ Tx(M) in a smooth way, i.e., the map x → Δx ix

smooth. If this is done we say that a p-dimensional distribution Δ on M is defined.

From the elementary linear algebra we know that every p-dimensional subspace

Δx ⊂ Tx(M) defines unique (n − p)-dimensional subspace Δ∗
x ⊂ T ∗

x (M), such

that all elements of Δ∗
x annihilate (i.e., send to zero) all elements of Δx. In this

way we get a (n − p)-dimensional co-distribution Δ∗ on M .

We consider those vector fields, the representatives of which at every point are

elements of the distribution Δ, and those one-forms, the representatives of which

at every point are elements of the co-distribution Δ∗. Clearly, every system of p
independent and non-vanishing vector fields, belonging to Δ, defines Δ equally

well, and in this case we call such a system a differential p-system P on M . The

corresponding system P∗ of q independent one-forms is called q-dimensional Pfaff
system. Clearly, if α ∈ P∗ and X ∈ P, then 〈α, X〉 = 0.
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This allows to look at distributions as defined by a nonvanishing decomposable p-

vector, or by a nonvanishing (n − p)-differential form. If P ⇔ {X1, X2, . . . , Xp}
then the p-vector field P = X1 ∧ X2 ∧ · · · ∧ Xp �= 0 defines the distribution

since at every point the representatives of Xi, i = 1, ..., p define the corresponding

subspace Δx ⊂ Tx(M). An appropriate decomposable nonvanishing (n-p)-form

Ω = α1 ∧ α2 ∧ · · · ∧ αn−p such that 〈αm, Xi〉 = 0 also defines Δx(M).

A derivative of a distribution defined by the vector fields (X1, X2, . . . , Xp) is a

new distribution P′ defined by the given Xi, i = 1, 2, . . . , p plus all Lie brackets

[Xi, Xj ], i < j = 1, 2, . . . , p. In the same way higher derivatives of a given

distribution can be defined.

It deserves noting, that the above definition of a distribution Δ on a manifold M
allows definite freedom in choosing appropriate local bases of Δ and allows also

to form linear combinations of vectors in Δ. But, on the other hand, it requires

basis independence of all essential statements concerning Δ.

2.2. Morphisms of Distributions

Let now M and N be two manifolds and Δ(M) and Δ(N) be two distributions

on M and N respectively. Let ϕ : M → N be a smooth map. If Xx ∈ Δx(M),
we consider its image (dϕ)x(Xx) ∈ Tϕ(x)(N). If for every x ∈ M every image

of elements of Δx(M) is in Δϕ(x)(N) we say that the coupe (ϕ, dϕ) realize a

morphism Δ(M) → Δ(N).

If ϕ : M → N is a diffeomorphism and Δ(M) and Δ(N) have the same di-

mension then the image Im(Δ(M)) = (ϕ, dϕ)|Δ(M) of Δ(M) is a well defined

distribution on N .

Correspondingly, every diffeomorphism ϕ : M → M sends a distribution on M
into another (in general) distribution on M .

2.3. Integral Manifolds

Similarly to the integral curves of vector fields, the concept of integral manifold
of a p-dimensional distribution, or differential system, is introduced. Namely, a p-

dimensional submanifold V p of M is called integral manifold for the p-dimensional

differential system P, or for the p-dimensional distribution Δp(M), to which P be-

longs, if the tangent spaces of V p at every point coincide with the subspaces of the

distribution Δp(M) at this point. In this case V p is called also integral manifold

for the corresponding (n − p)-dimensional Pfaff system P∗. If P admits at least

one integral manifold, then it is called integrable.
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If through every point of M there passes an integral manifold for P, then P and P∗

are called completely integrable.

A smooth function f ∈ J(M) is called first integral for P if df ∈ P∗.

It can be shown that P is completely integrable iff it has

n − p = codim(P) = dim(P∗)

functionally independent first integrals, i.e., locally P(df1, df2, . . . ,dfn−p).

2.4. Symmetries of Distributions

A diffeomorphism ϕ : M → M is called a symmetry of the distribution Δ on M if

(dϕ)x(Δx) = Δϕ(x), x ∈ M.

If Δ is defined by the linearly independent one-forms {α1, α2, . . . , αn−p} then

we obtain the transformed by ϕ one-forms {ϕ∗α1, ϕ∗α2, . . . , ϕ∗αn−p}, which are

also linearly independent, so, we have the relations

ϕ∗(αm) = Am
n αn

where the matrix Am
n is non-degenerate at every point x ∈ M . These last relations

may be written as follows:

ϕ∗(αm) ∧ α1 ∧ α2 ∧ · · · ∧ αn−p = 0, m = 1, 2, ..., (n − p).

i.e., without making use of the matrix Am
n .

A vector field X ∈ X(M) is called infinitesimal, or local symmetry of the distrib-

ution Δ if the corresponding flow ϕt is a symmetry of Δ. This is equivalent to say

that

LX(P) ⊂ P or LX(P∗) ⊂ P∗.

In other words, the Lie derivative of every Z ∈ P is again in P and the Lie deriva-

tive of every α ∈ P∗ is again in P∗.

Clearly, the set of infinitesimal symmetries of the distribution Δ is a Lie algebra

(over R), i.e., if X, Y are infinitesimal symmetries of Δ, then X + Y , λX , λY
and [X, Y ] are also infinitesimal symmetries of Δ.

There are two naturally identified subsets of all local (i.e., infinitesimal) symme-

tries of Δ. The first subset, denoted by char(P), includes those vector fields which

live in P, and the second subset includes all the rest. Since if X ∈ char(P) can be

represented as a linear combination of elements of P it is tangent to every integral

manifold of Δ. From the general relation [LX , iY ] = i[X,Y ] it follows that the set
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char(P) is an ideal of the Lie algebra of all local symmetries of Δ. Also, the set

char(P) is a module over J(M).

The other subset of local symmetries, denoted by shuf(P), consists of vector fields

that live outside P and are called shuffling symmetries of Δ, the corresponding

flows transform an integral manifold of Δ to another integral manifold of Δ.

2.5. Curvature of Distributions

The concept of curvature of a distribution Δp(M) on a manifold M is a local

measure of the integrability properties of Δp(M), i.e., when Δp(M) admits an

integral manifold. This problem is solved by the following theorem of Frobenius.

In terms of symmetries this theorem can be formulated in the following way.

Frobenius theorem: A distribution Δp(M) is integrable iff all vector fields in P

are symmetries of P

If {Xi, i = 1, ..., p} are constituents of Δp(M) then this theorem says that Δp(M)
is integrable only if all Lie brackets [Xi, Xj ], i < j = 1, ..., p can be represented

as J(M)-linear combinations of Xi, i = 1, ..., p

[Xi, Xj ] = fk
ijXk, i < j, k = 1, ..., p, fk

ij ∈ J(M).

Therefore, if at least one of the following exterior products

[Xi, Xj ] ∧ X1 ∧ X2 ∧ · · · ∧ Xp, i, j = 1, ..., p

is different from zero, then Δp(M) is not integrable.

Let us see now how this criteria looks in terms of the codistribution P∗. Recall that

if {αp+1, αp+2, . . . , αn} are constituents of P∗ then

〈αm, Xi〉 = 0, m = (p + 1), ..., n, i = 1, 2, ..., p.

Also, since all αm are one-forms, then we obtain

dαm(Xi, Xj) = −αm([Xi, Xj ]), m = (p + 1), ..., n.

Thus, if Δp(M) is integrable then the restriction of every dαm to Δp(M) has to

be zero. This is equivalent to the requirements

dαm ∧ αp+1 ∧ αp+2 · · · ∧ αn = 0, m = (p + 1), ..., n.

Locally, on every open subset U ⊂ M we can introduce additional to Δp(U)

distribution Δ̃n−p(U), i.e., nonvanishing and linearly independent vector fields
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{Xp+1, Xp+2, ...Xn}, and additional to Δ∗
n−p(U) codistribution Δ∗

p(U), i.e., non-

vanishing and linearly independent one-forms {α1, α2, ..., αp} such that

〈αi, Xj〉 = δi
j , i, j = 1, 2, ..., p and 〈αm, Xs〉 = δm

s , m, s = p + 1, ..., n.

Then Δp(U) and ˜Δn−p(U) are called corresponding horizontal and vertical to

each other.

Therefore, the nonintegrability of Δp(U) would mean
(
[Xi, Xj ] − fk

ijXk

)
/∈ Δp(U), i < j, k = 1, ..., p

or, equivalently

dαm + fm
sl αs ∧ αl �= 0, m, s < l = p + 1, . . . , n.

As an example, consider the manifold R
3 (with the corresponding identification of

forms and vector fields by the Euclidean metric) and a two-dimensional distribution

defined by the one-form α. The corresponding integrability condition looks like

dα ∧ α = 0. In terms of vector analysis this condition is equivalent to �A.rotÃ =
0. Hence, the nonintegrability of the two-dimensional distribution defined by α

requires that �A to be non-orthogonal to rotÃ, we recall that in hydrodynamics this

quantity �A.rotÃ is called local helicity of the vector field �A.

We form now the following objects

Ω = −dαm ⊗ Xm, m = p + 1, ..., n

and

Ω̃ = −dαi ⊗ Xi, i = 1, 2, ..., p.

The restriction of Ω to Δp(U) is called curvature form for Δp(U), and the restric-

tion of Ω̃ to Δ̃n−p(U) is called co-curvature form for Δp(U), or just curvature
form for Δ̃n−p(U).

It is seen that the restriction of Ω to Δp(U) is given by

Ω|Δp(U)(Xi, Xj) = −dαm(Xi, Xj)Xm = αm([Xi, Xj ])

i, j = 1, 2, ..., p, m = p + 1, ..., n

and the restriction of Ω̃ to Δ̃n−p(U) is given by

Ω̃|Δ̃n−p(U)(Xm, Xn) = −dαi(Xm, Xn)Xi = αi([Xm, Xn])

i = 1, 2, ..., p, m, n = p + 1, ..., n.

Clearly, Ω selects those Lie brackets in P(U) which ‘stick out’ of Δp(U) and Ω̃

selects those Lie brackets in P̃(U) which ‘stick out’ of Δ̃n−p(U).
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2.6. Curvature in Terms of Projections in Tangent Bundle

From the above we see that every distribution Δp(M) in TM defines a projection

Px; Tx(M) → Tx(M), x ∈ M , and inversely, every section P of TM ⊗ T ∗
M , i.e.,

P ∈ Λ1(M, TM ), with constant kernel: ker(Px) = p , defines a p-dimensional

distribution Δp(M) on M and corresponding (n − p)-codistribution Δ∗
n−p(M).

Let P
(1,p)
V (x) projects on the subspace generated by { ∂

∂x1 , . . . , ∂
∂xp

}, then the ver-

tical subspace at x ∈ M is the image of P
(1,p)
V (x), or of the kernel of P

(1,p)
H (x) =

IdTM − P
(1,p)
V (x). The local horizontal vector fields Xa and vertical one-forms

are αi are given by

Xa =
∂

∂xa
+ N i

a(x)
∂

∂xi
, αi = dxi − N i

a(x)dxa.

The corresponding projections are

P
(1,p)
V (x) = αi ⊗

∂

∂xi
=
[
dxi − N i

a(x)dxa
]
⊗

∂

∂xi

P
(1,p)
H (x) = dxa ⊗ Xa = dxa ⊗

(
∂

∂xa
+ N j

a(x)
∂

∂xj

)
·

Clearly, P
(1,p)
H (x) projects on the subspace generated by ∂

∂xa
+ N j

a
∂

∂xj
, so, the

horizontal subspace at x ∈ M is the image of P
(1,p)
H (x), or the kernel P

(1,p)
V (x),

and we have 〈αi, Xa〉 = 0.

If we want to call the subspace generated by { ∂
∂xp+1 , . . . , ∂

∂xn
} vertical, then the

local horizontal vector fields Xi and vertical one-forms are αa are given by

Xi =
∂

∂xi
+ Na

i (x)
∂

∂xa
, αa = dxa − Na

i (x)dxi.

The corresponding projections should look like

P
(p+1,n)
V (x) = αa ⊗

∂

∂xa
=
[
dxa − Na

i (x)dxi
]
⊗

∂

∂xa

P
(p+1,n)
H (x) = dxi ⊗ Xi = dxi ⊗

(
∂

∂xi
+ Na

i (x)
∂

∂xa

)
·

In both cases, of course, we have P = PV ⊕ PH .

Definition 1. The projections in TM of constant rank are cold nonlinear, or gen-
eral, connections.
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In general the curvature RP and co-curvature R̃P forms are given by

RP ([ , ], X, Y ) + R̃P ([ , ], X, Y )

= PV

([
PH(X), PH(Y )

])
+ PH

([
PV (X), PV (Y )

])
.

Recalling the introduced curvature and co-curvature of a distribution as introduced

in the previous subsection and identifying KerPV with Δp(M), and ImPV with

Δn−p(M) we can write

RP = Ω|Δp(M), R̃P = Ω|Δn−p(M).

We are going now to see how these curvature forms look locally in terms of

the projection components N i
a, or Na

i . In the first case we have to compute

Ωj
ab = αj([Xa, Xb]), a < b, and in the second case we have to compute Ωa

ij =

αa([Xi, Xj ]), i < j, where i, j = 1, 2, . . . , p, a, b = p + 1, p + 2, . . . , n

Ωj
ab =

∂N j
b

∂xa
−

∂N j
a

∂xb
+ Nk

a

∂N j
b

∂xk
− Nk

b

∂N j
a

∂xk

Ωa
ij =

∂Na
j

∂xi
−

∂Na
i

∂xj
+ N b

i

∂Na
j

∂xb
− N b

j

∂Na
i

∂xb
·

If we would like to obtain the two curvature forms directly from the corresponding

vertical one-forms αi, i = 1, 2, ..., p, or from αa, a = p + 1, ..., n, then we have

to compute the corresponding horizontal projections of dαi and dαa. Since αi =
dxi − N i

adxa then

dαi = −d(N i
adxa) = −

∂N i
a

∂xj
dxj ∧ dxa −

∂N i
a

∂xb
dxb ∧ dxa.

Now, in this case we have that dxa are horizontal, so we have to find the horizontal

part of dxj . Since the restriction of dxj to Δp(M) is equal to N j
a dxa, we obtain

dαi|Δn−p(M) = −

(
∂N i

a

∂xb
−

∂N i
b

∂xa
+

∂N i
a

∂xj
N j

b −
∂N i

b

∂xj
N j

a

)
dxb ∧ dxa, b < a.

In the same way for the second case we obtain

dαa|Δp(M) = −

(
∂Na

i

∂xj
−

∂Na
j

∂xi
+

∂Na
i

∂xb
N b

j −
∂Na

j

∂xb
N b

i

)
dxj ∧ dxi, j < i.

Hence, for Ω|Δp(M) and Ω|Δn−p we obtain respectively

Ω|Δp(M) = −
(
dαa|Δp(M)

)
⊗

∂

∂xa

=

(
∂Na

i

∂xj
−

∂Na
j

∂xi
+

∂Na
i

∂xb
N b

j −
∂Na

j

∂xb
N b

i

)
dxj ∧ dxi ⊗

∂

∂xa
, j < i
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Ω|Δn−p(M) = −
(
dαi|Δn−p(M)

)
⊗

∂

∂xi

=

(
∂N i

a

∂xb
−

∂N i
b

∂xa
+

∂N i
a

∂xj
N j

b −
∂N i

b

∂xj
N j

a

)
dxb ∧ dxa ⊗

∂

∂xi
, b < a.

3. Physical Interpretation

An integrable distribution Δp on M may contain many non-integrable subdis-

tributions Δp1

1 , Δp2

2 , ..., p1, p2, ... < p. Clearly, the corresponding curvature

forms Ωp1

1 , Ωp2

2 , ... of these subdistributions do NOT take values outside Δp, so

such a picture of available “intercommunication” between subdistributions of a

higher dimensional integrable distribution by means of their curvature forms sug-

gests the idea to try this geometrical approach as a possible model of a time-

stable continuous physical system built of relatively time-stable and continuously

time-recognizable subsystems existing through some permanent interaction, i.e.,

through a permanent energy-momentum inter-exchange.

We formulate the basic assumptions:

• Any physical system with a dynamical structure is characterized by some

internal energy-momentum redistributions, i.e., identifiable internal energy-

momentum fluxes, during evolution.

• Any time-stable (i.e., compatible) system of energy-momentum fluxes can

be represented mathematically (directly or indirectly) by a an appropriate

completely integrable distribution Δ on a manifold.

• A shuffling local symmetry ζ of a completely integrable distribution Δ =
{X1, ..., Xp} may be considered to define the allowed space-time propaga-

tion of the corresponding physical system.

• The two-dimensional subdistributions {ζ, Xi}, i = 1, 2, ..., p, defined by the

local shuffling symmetry ζ and any of the constituents Xi ∈ Δ may be

considered as mathematical models of the elementary structural time-stable

subsystems of the physical system considered.

• The time-stability of the physical system of interacting energy-momentum

fluxes can be considered mathematically in terms of the NON-integrability

of these two-dimensional subdistributions {ζ, Xi}, and the corresponding

curvature forms Ωi = Ω(ζ,Xi) to be considered as the main interaction (i.e.,

energy-momentum transfer) agents between any two such subsystems.
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• The projection of Ωi(Xi, ζ) on the corresponding two-dimensional volume

form of any subdistribution {ζ, Xj}, j �= i, to be considered as the trans-

ferred energy-momentum from {ζ, Xi} to {ζ, Xj}.

Classically, this projection corresponds to the local flow of the vector

field Ωi(Xi, ζ) across the two-surface represented locally by the corresponding

volume two-form.

Shortly speaking, if Δ1 and Δ2 characterize two locally interacting physical sys-

tems, (i.e., physical fields), or two locally interacting subsystems of a larger physi-

cal system, it seems reasonable to assume as a working tool the following geometriza-

tion of the concept of local physical interaction:

Two nonintegrable distributions Δ1 and Δ2 on a manifold will be said to interact
infinitesimally, or locally, if some of the nonzero values of the corresponding two
curvature forms Ω1/Ω2 live respectively in Δ2/Δ1.

In this way, since any physical interaction between two physical field systems

is necessarily accompanied with available energy-momentum exchange between

them, we could understand it mathematically as nonintegrability of each of the two

corresponding distributions. This interaction could be naturally measured directly

or indirectly by the corresponding curvatures.

For example, if Δ is an integrable three-dimensional distribution represented by

the set of vector fields (X1, X2, X3) then we may have, in general, three differ-

ent non-integrable, i.e., geometrically interacting two-dimensional subdistributions

(X1, X2), (X1, X3) and (X2, X3). Finally, some interaction with the outside world

can be described by curvatures of distributions (and their subdistributions) in which

elements of Δ and vector fields outside Δ are involved (such processes will not be

considered here).

In other words we launch the general idea to consider the concept of Frobenius
curvature as a natural and universal mathematical tool for describing local physical
interaction between/among the relatively stable subsystems of the physical world.

Following this principle, the Frobenius curvature appears as appropriate mathemat-

ical tool describing formally the possible ability two continuous physical systems

to recognize each other as physically interacting partners. More comments on this

subject can found in [3].

4. The Notion of Photon-like Object (PhLO)

We introduce the following physical notion about PhLO [3]
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PhLO are real massless time-stable physical objects with an intrinsically
compatible translational-rotational dynamical structure.

We give now some explanatory comments, beginning with the term real. First we

emphasize that this term means that we consider PhLO as really existing physical
objects, not as appropriate and helpful but imaginary (theoretical) entities. Accord-

ingly, PhLO necessarily carry energy-momentum, otherwise, they could hardly be

detected by physical means. Second, PhLO can undoubtedly be created and de-
stroyed, so, no point-like and infinite models are reasonable: point-like objects

are assumed to have no structure, so they can not be destroyed since there is no

available structure to be destroyed. Creation of infinite physical objects (e.g. plane

waves) requires infinite quantity of energy to be transformed from one kind to

another during finite time-periods, which seems also unreasonable. Accordingly,

PhLO are spatially finite and have to be modelled like such ones, which is the only

possibility to be consistent with their ‘created-destroyed’ nature. It seems hardly

reasonable to believe that PhLO can not be created and destroyed, and that spa-

tially infinite and indestructible physical objects may exist at all. Third, ‘spatially

finite’ implies that PhLO may carry only finite values of physical (conservative

or non-conservative) quantities. In particular, the most universal physical quantity

seems to be the energy-momentum, so the model must allow finite integral values

of energy-momentum to be carried by the corresponding solutions. Fourth, ‘spa-

tially finite’ means also that PhLO propagate, i.e., they do not ‘move’ like classical

particles along trajectories, therefore, partial differential equations should be used

to describe their evolution in time.

The term massless characterizes physically the way of propagation in terms of ap-

propriate dynamical quantities: the integral four-momentum p of a PhLO should

satisfy the relation pμpμ = 0, meaning that its integral energy-momentum vector

must be isotropic, i.e., to have zero module with respect to Minkowski pseudo-

metric in R
4. If the object considered has spatial and time-stable structure, so that

the translational velocity of every point where the corresponding field functions are

different from zero must be equal to c, we have in fact null direction in the space-

time intrinsically determined by a PhLO. Such a direction is formally defined by a

null vector field ζ̄, ζ̄2 = 0. The integral trajectories of this vector field are isotropic

(or null) straight lines as is traditionally assumed in physics, except in presence of

gravity. It follows that with every PhLO a null straight line direction is necessarily
associated, so, canonical coordinates (x1, x2, x3, x4) = (x, y, z, ξ = ct) on R

4

may be chosen such that in the corresponding coordinate frame ζ̄ to have only two

non-zero components of magnitude 1: ζ̄μ = (0, 0,−ε, 1), where ε = ±1 accounts

for the two directions along the coordinate z (further such a coordinate system will

be called ζ̄-adapted and will be of main usage). It seems important to emphasize
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that our PhLO propagates as a whole along the ζ̄-direction, so the corresponding

energy-momentum tensor field Tμν(x, y, z, ξ) of the model must satisfy the cor-

responding local isotropy condition, namely, TμνT
μν = 0 (summation over the

repeated indices is throughout used). All this means also, that the vector field ζ̄
should be considered as a shuffling local symmetry of a PhLO.

The term translational-rotational means that besides the translational component

along ζ̄, the propagation necessarily demonstrates some rotational (in the gen-

eral sense of this concept) component in such a way that both components are
compatible and exist simultaneously, and this is an intrinsic property. It seems

reasonable to expect that such kind of dynamical behavior should require some

distinguished spatial shapes. Moreover, if the Planck relation E = hν must be re-

spected throughout the evolution, the rotational component of propagation should

have time-periodical nature with time period T = ν−1 = h/E = const, and one

of the two possible, left or right, orientations. It seems reasonable also to expect

spatial periodicity of PhLO, which somehow to be related to the time periodicity.

The term dynamical structure means that the propagation is supposed to be neces-

sarily accompanied by an internal energy-momentum redistribution, which may be

considered in the model as energy-momentum exchange between (or among) some

appropriately defined subsystems. It could also mean that PhLO live in a dynam-

ical harmony with the outside world, i.e., any outside directed energy-momentum
flow should be accompanied by a parallel inside directed energy-momentum flow.

5. PhLO Dynamical Structure in Terms of Frobenius Curvature

We consider the Minkowski space-time M = (R4, η) with sign(η) = (−,−,−, +)
related to the standard coordinates (x1, x2, x3, x4) = (x, y, z, ξ = ct), the natural

volume form ωo =
√
|η|dx1 ∧ dx2 ∧ dx3 ∧ dx4 = dx ∧ dy ∧ dz ∧ dξ, and

the Hodge star ∗ defined by α ∧ ∗β = −η(α, β)ωo. We recall the reader that

the Hodge ∗ introduces complex structure in Λ2(M) [4]. In view of our concept

of PhLO we introduce the null vector field ζ̄, ζ̄2 = 0, which in the ζ̄-adapted

coordinates (throughout used further) is assumed to look as follows

ζ̄ = −ε
∂

∂z
+

∂

∂ξ
, ε = ±1.

Let us denote the corresponding to ζ̄ completely integrable three-dimensional Pfaff

system by Δ∗(ζ̄). Thus, Δ∗(ζ̄) can be generated by any three linearly independent

one-forms (α1, α2, α3) which annihilate ζ̄, i.e.,

α1(ζ̄) = α2(ζ̄) = α3(ζ̄) = 0, α1 ∧ α2 ∧ α3 �= 0.
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Instead of (α1, α2, α3) we introduce the notation (A, A∗, ζ) and define ζ to be the

η-corresponding one-form to ζ̄:

ζ = εdz + dξ, so 〈ζ, ζ̄〉 = 0

where 〈 , 〉 is the coupling between forms and vectors.

Now, since ζ is closed, it defines one-dimensional completely integrable Pfaff sys-

tem, so, we have the corresponding completely integrable distribution (Ā, Ā∗, ζ̄) :
〈ζ, Ā〉 = 〈ζ, Ā∗〉 = 0. We shall restrict our further study to PhLO of electromag-

netic nature according to the following

Definition 2. We shall call a PhLO electromagnetic if the following conditions
hold

1. the vector fields (Ā, Ā∗) have no components along ζ̄

2. (Ā, Ā∗) are η-corresponding to (A, A∗) respectively

3. 〈A, Ā∗〉 = 0, 〈A, Ā〉 = 〈A∗, Ā∗〉.

Remark 3. These relations formalize knowledge from Classical Electrodynamics
(CED). In fact, our vector fields (Ā, Ā∗) are meant to represent what we call in
CED electric and magnetic components of a free time-dependent electromagnetic
field, where, as is well known, the translational propagation of the field energy-
momentum along a fixed null direction with the velocity ‘c’ is possible only if the
two invariants I1 = B

2 − E
2 and I2 = 2E.B are zero, because only in such a

case the electromagnetic energy-momentum tensor Tμν satisfies TμνT
μν = 0 and

has unique null eigen direction. So it seems naturally to consider this property as
intrinsic for the field and to choose it as a starting point. Moreover, in such a case
the relation TμνT

μν = (I1)
2 + (I2)

2 = 0 is equivalent to E
2 + B

2 = 2|E × B|
and this relation shows that this is the only case when the field momentum can not
be made equal to zero by means of frame change.

From the above conditions it follows that in the ζ̄-adapted coordinate system we

have

A = u dx + p dy, A∗ = −ε p dx + ε u dy

Ā = −u
∂

∂x
− p

∂

∂y
, Ā∗ = ε p

∂

∂x
− ε u

∂

∂y

where ε = ±1, and (u, p) are two smooth functions on M .

The completely integrable three-dimensional Pfaff system (A, A∗, ζ) contains three

two-dimensional subsystems: (A, A∗), (A, ζ) and (A∗, ζ). We have the following
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Proposition 4. The following relations hold

dA ∧ A ∧ A∗ = 0, dA∗ ∧ A∗ ∧ A = 0

dA ∧ A ∧ ζ = ε
[
u(pξ − εpz) − p(uξ − εuz)

]
ωo

dA∗ ∧ A∗ ∧ ζ = ε
[
u(pξ − εpz) − p(uξ − εuz)

]
ωo.

Proof: Immediately verified. �

These relations say that the two-dimensional Pfaff system (A, A∗) is completely in-

tegrable for any choice of the two functions (u, p), while the two two-dimensional

Pfaff systems (A, ζ) and (A∗, ζ) are NOT completely integrable in general, and

the same curvature factor

R = u(pξ − εpz) − p(uξ − εuz)

determines their nonintegrability.

Correspondingly, the three-dimensional completely integrable distribution (or dif-

ferential system) Δ(ζ̄) contains three two-dimensional subsystems (Ā, Ā∗), (Ā, ζ̄)
and (Ā∗, ζ̄). We have the

Proposition 5. The following relations hold

[Ā, Ā∗] ∧ Ā ∧ Ā∗ = 0

[Ā, ζ̄] = (uξ − εuz)
∂

∂x
+ (pξ − εpz)

∂

∂y

[Ā∗, ζ̄] = −ε(pξ − εpz)
∂

∂x
+ ε(uξ − εuz)

∂

∂y
·

Proof: Immediately verified. �

From these last relations it follows that the distribution (Ā, Ā∗) is completely in-

tegrable, and it can be easily shown that the two distributions (Ā, ζ̄) and (Ā∗, ζ̄)
would be completely integrable only if the same curvature factor

R = u(pξ − εpz) − p(uξ − εuz)

is zero (the elementary proof is omitted).

As it should be, the two projections

〈A, [Ā∗, ζ̄]〉 = −〈A∗, [Ā, ζ̄]〉 = −εu(pξ − εpz) + εp(uξ − εuz) = −εR
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are nonzero and give (up to a sign) the same factor R. The same curvature factor

appears, of course, as coefficient in the exterior products [Ā∗, ζ̄] ∧ Ā∗ ∧ ζ̄ and

[Ā, ζ̄] ∧ Ā ∧ ζ̄. In fact, we obtain

[Ā∗, ζ̄] ∧ Ā∗ ∧ ζ̄ = −[Ā, ζ̄] ∧ Ā ∧ ζ̄ = −εR
∂

∂x
∧

∂

∂y
∧

∂

∂z
+ R

∂

∂x
∧

∂

∂y
∧

∂

∂ξ
·

On the other hand, for the other two projections we obtain

〈A, [Ā, ζ̄]〉 = 〈A∗, [Ā∗, ζ̄]〉 =
1

2

[
(u2 + p2)ξ − ε(u2 + p2)z

]
.

Clearly, the last relation may be put in terms of the Lie derivative Lζ̄ as

1

2
Lζ̄(u

2 + p2) = −
1

2
Lζ̄〈A, Ā〉 = −〈A, Lζ̄Ā〉 = −〈A∗, Lζ̄Ā

∗〉.

Remark 6. Further we shall denote
√

u2 + p2 ≡ φ.

Proposition 7. There is a function ψ(u, p) such, that

Lζ̄ψ =
u(pξ − εpz) − p(uξ − εuz)

φ2
=

R

φ2
·

Proof: It is immediately verified that ψ = arctan p
u

is such one. �

We note that the function ψ has a natural interpretation of phase because of the

easily verified now relations u = φ cos ψ, p = φ sinψ, and φ acquires the status

of amplitude, i.e., energy density. Since the transformation (u, p) → (φ, ψ) is

non-degenerate this allows to work with the two functions (φ, ψ) instead of (u, p).

From Proposition 3 we have

R = φ2Lζ̄ψ = φ2(ψξ − εψz) → Lζ̄ψ =
R

T (∂ξ, ∂ξ)
=

∗ε(dA ∧ A ∧ ζ)

T (∂ξ, ∂ξ)

where T (∂ξ, ∂ξ) is the coordinate-free definition of the energy density.

This last formula shows something very important: at any φ �= 0 the curvature

R will NOT be zero only if Lζ̄ψ �= 0, which admits in principle availability of

rotation. In fact, lack of rotation would mean that φ and ψ are running waves along

ζ̄. The relation Lζ̄ψ �= 0 means, however, that rotational properties are possible

in general, and some of these properties are carried by the phase ψ. It follows that

in such a case the translational component of propagation along ζ̄ (which is sup-

posed to be available) must be determined essentially, and most probably entirely,
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by φ. In particular, we could expect the relation Lζ̄φ = 0 to hold, and if this hap-

pens, then the rotational component of propagation will be represented entirely by

the phase ψ, and, more specially, by the curvature factor R �= 0, so, the objects

we are going to describe may have compatible translational-rotational dynamical

structure. Finally, this relation defines, in fact, the phase function ψ.

We are going now to represent some relations, analogical to the energy-momentum

relations in classical electrodynamics, determined by some two-form F , in terms

of the Frobenius curvatures given above.

The two nonintegrable Pfaff systems (A, ζ) and (A∗, ζ) carry two volume two-

forms

G = A ∧ ζ and G∗ = A∗ ∧ ζ

and the two corresponding distributions define the two-vectors

Ḡ = Ā ∧ ζ̄ and Ḡ∗ = Ā∗ ∧ ζ̄.

Making use now of the Hodge ∗-operator, we can verify the relation: G∗ = ∗G.

Now G and Ḡ∗ define the (1,1)-tensor, called stress-energy-momentum tensor T ν
μ ,

according to the rule

T ν
μ = −

1

2

[
GμσḠνσ + (G∗)μσ(Ḡ∗)νσ

]

and the divergence of this tensor field can be represented in the form

∇νT
ν
μ =

[
i(Ḡ)dG

]
μ

+
[
i(Ḡ∗)dG∗

]
μ

where Ḡ and Ḡ∗ coincide with the metric-corresponding contravariant tensor fields,

and i(Ḡ) = i(ζ̄) ◦ i(Ā), i(Ḡ∗) = i(ζ̄) ◦ i(Ā∗), i(X) is the standard insertion op-

erator in the exterior algebra of differential forms on R
4 defined by the vector field

X . So, we shall need the quantities

i(Ḡ)dG, i(Ḡ∗)dG∗, i(Ḡ∗)dG, i(Ḡ)dG∗.

Having in view the explicit expressions for A, A∗, ζ, Ā, Ā∗ and ζ̄ we obtain

i(Ḡ)dG = i(Ḡ∗)dG∗ =
1

2
Lζ̄

(
φ2
)
. ζ

and

i(Ḡ∗)dG = −i(Ḡ)dG∗

=
[
u(pξ − εpz) − p(uξ − εuz)

]
dz + ε

[
u(pξ − εpz) − p(uξ − εuz)

]
dξ = εR ζ.
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If F and H are correspondingly two and three forms on M we have the relation

∗(F ∧ ∗H) = i(F̄ )H = F μνHμνσdxσ, μ < ν.

Therefore, since G∗ = ∗G,

i(Ḡ∗)dG = − ∗ (δ ∗ G ∧ ∗G) i(Ḡ)dG∗ = ∗(δG ∧ G)

and

δ ∗ G ∧ ∗G = δG ∧ G = εR ∗ ζ.

In the following formulae we must keep in mind the relations dζ = 0, 〈A, Ā∗〉 =
〈A∗, Ā〉 = 〈ζ, Ā∗〉 = 〈ζ, Ā〉 = 0, and (Ā)2 = (Ā∗)2 = 〈A, Ā〉 = 〈A∗, Ā∗〉 =
−(u2 + p2) = −Φ2 = −|A|2 = −|A∗|2 = −|Ā|2 = −|Ā∗|2.

In view of these formulae and the required duality in the definition of the curvature

form the two distributions (Ā, ζ̄) and (Ā∗, ζ̄) determine the following two curva-

ture forms Ω and Ω∗

Ω = −d
−A∗

|A∗|
⊗

Ā∗

|Ā∗|
= d

A∗

|A∗|
⊗

Ā∗

|Ā∗|
, Ω∗ = −d

−A

|A|
⊗

Ā

|Ā|
= d

A

|A|
⊗

Ā

|Ā|
·

Denoting ZΩ ≡ Ω(Ā, ζ̄), Z∗
Ω ≡ Ω(Ā∗, ζ̄), ZΩ∗ ≡ Ω∗(Ā, ζ̄) and Z∗

Ω∗ ≡ Ω∗(Ā∗, ζ̄)
we obtain

2ZΩ = −
εR

φ2
Ā∗, Z∗

Ω = −
Ā∗

2φ2
Lζ̄(φ

2)

ZΩ∗ = −
Ā

2φ2
Lζ̄(φ

2), Z∗
Ω∗ =

εR

φ2
Ā.

The following relations express the connection between the curvatures and the

energy-momentum characteristics

i(ZΩ)(A ∧ ζ) = 0, i(ZΩ)(A∗ ∧ ζ) = εR.ζ = −i(Ḡ)dG∗ = i(Ḡ∗)dG

i(ZΩ∗)(A∗ ∧ ζ) = 0, i(Z∗
Ω∗)(A ∧ ζ) = −εR.ζ = i(Ḡ)dG∗ = −i(Ḡ∗)dG

i(Z∗
Ω)(A ∧ ζ) = 0, i(Z∗

Ω)(A∗ ∧ ζ) =
1

2
Lζ̄(φ

2).ζ = i(Ḡ)dG = i(Ḡ∗)dG∗

i(Z∗
Ω∗)(A∗ ∧ ζ) = 0, i(ZΩ∗)(A ∧ ζ) =

1

2
Lζ̄(φ

2).ζ = i(Ḡ)dG = i(Ḡ∗)dG∗.

Recalling that in this null-field case we have always fulfilled the equality

GμσGνσ = (∗G)μσ(∗G)νσ
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it follows from the above relations and from the local conservation law ∇νT
ν
μ = 0

that the two subsystems of our PhLO, described by G and ∗G, live in a dynamical

equilibrium, i.e., each loses as much energy-momentum as it gains locally. So, we

obtain the equations

i(Ḡ)dG = 0, i(Ḡ∗)dG∗ = 0, i(Ḡ∗)dG + i(Ḡ)dG∗ = 0

describing the dynamical behaviour of PhLO.

Finally, the local representative of the spin properties of a PhLO appears to be the

one-half of the Fröliher-Nijenhuis bracket of A ⊗ ζ [2]. In fact, the computation

shows

[A ⊗ ζ, A ⊗ ζ] =
[
u(pξ − ε uz) − p(uξ − ε uz)

]
dx ∧ dy ⊗ ζ = Rdx ∧ dy ⊗ ζ.

6. Conclusion

Resuming, we can say that in case of photon-like objects Frobenius integrability

viewpoint suggests to make use of one completely integrable three-dimensional

distribution (respectively Pfaff system) consisting of one isotropic and two space-

like vector fields (respectively one-forms), such that the corresponding two-dimen-

sional spatial subdistribution (Ā, Ā∗) (respectively Pfaff system (A, A∗)) defines

a completely integrable system, and the rest two two-dimensional subdistribu-

tions (Ā, ζ̄) and (Ā∗, ζ̄) (respectively Pfaff systems (A, ζ) and (A∗, ζ)) are NON-

integrable in general and give the same (up to a sign) curvature. This curvature

may be used to build quantities, physically interpreted as energy-momentum in-

ternal exchanges between the corresponding two subsystems (Ā, ζ̄) and (Ā∗, ζ̄)
(respectively (A, ζ) and (A∗, ζ)). Moreover, rotational component of propagation,

i.e., spin properties, will be available only if the curvature R is nonzero, i.e., only

if an internal energy-momentum exchange takes place.
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