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Abstract. We formulate the equation of motion of a charged particle in a Rie-
mannian manifold with a closed two form. Since a two-step nilpotent Lie group
has natural left-invariant closed two forms, it is natural to consider the motion of
a charged particle in a simply connected two-step nilpotent Lie groups with a left
invariant metric. We study the behavior of the motion of a charged particle in the
above spaces.

1. Introduction

Let 2 be a closed two-form on a connected Riemannian manifold (M, ( , )), where
(,) is a Riemannian metric on M. We denote by A" (M) the space of m-forms
on M. We denote by ¢(X) : A™(M) — A™ (M) the interior product operator
induced from a vector field X on M, and by £ : T(M) — T*(M), the Legendre
transformation from the tangent bundle 7'(M ) over M onto the cotangent bundle
T* (M) over M, which is defined by

L:T(M)—-T*(M), uw L(u), L(u)(v)= (u,v), uveT(M). (1)

A curve z(t) in M is referred as a motion of a charged particle under electromag-
netic field €2, if it satisfies the following second order differential equation

Vit = —Lu(3)Q) ()

where V is the Levi-Civita connection of M. Here V ;2 means the acceleration of
the charged particle. Since —L£~!(:(#)2) is perpendicular to the direction & of the
movement, —£ ! (1()$2) means the Lorentz force. The speed || is a conservative
constant for a charged particle. When €2 = 0, then the motion of a charged particle
is nothing but a geodesic. The equation (2) originated in the theory of relativity
(see [2] for details).

In this paper, we deal with the motion of a charged particles in a simply con-
nected two-step nilpotent Lie group N with a left invariant Riemannian metric.
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Since a two-step nilpotent Lie group has a non-trivial center Z, we can construct
a left-invariant closed two form €2,, from an element ag € Z specified below
and consider the motion of a charged particle under the electromagnetic field €2,,,.
H. Naitoh and Y. Sakane proved that there are no closed geodesics in a simply
connected nilpotent Lie group. In contrast with geodesics, there exist motions of
charged particles which are periodic. Kaplan defined a H-type Lie group, which
is a kind of two-step nilpotent Lie groups. We study the motion of a charged parti-
cle in a H-type Lie group more explicitly than in a general two-step nilpotent Lie

group.

2. Charged Particles in Two-step Nilpotent Lie Groups

Let N be a simply connected two-step nilpotent Lie group with a left-invariant
Riemannian metric ( , ). Denote by n the vector space consisting of all left-invariant
vector fields on N. Since n is two-step nilpotent, n has a non-trivial center 3. Let
n = 3@ 3" be an orthogonal direct sum decomposition of n, then [3%, 3] C 3. For
ag € 3, we define a linear transformation ¢, on 3 by

<¢ao(X)7Y> = <a07[X7Y]>7 X,YezL_

We extend ¢, to a linear transformation on n by ¢ = 0 on 3, which is also denoted
by ¢q,. We can regard ¢,, as a left-invariant (1, 1)-tensor on N. Then ¢g, is
skew-symmetric with respect to the left-invariant Riemannian metric (, ) since

<¢a0(X)7Y> + <X, ¢a0(Y)> = <a07 [Xa Y]> + <a0, [Ya X]> =0

for any left invariant vector fields X,Y € n. Define a left-invariant two-form 2,
on N by
Qao (X, Y) = (X, 0o (Y)), X, Yen

then a simple calculation implies that 2,, is closed. In fact, for any X;, X2 and
X3 in n we have
3!(an0)(X17 XQ) X3) = _6 an([Xlu X?]) XS)
= -6 <[X17 X2]7 ¢ao(X3)> =0
where we denote by & the cyclic sum, and the last equality follows from the fact

that [ X1, X5] € 3 and ¢(X3) € 3. The equation of motion of the charged particle
under the electromagnetic field €2, is

Vit = (bao(i')' G)
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Here a curve in a manifold is simple if it is a simply closed periodic curve, or
if it does not intersect itself. Since NV is simply connected, the one dimensional
de-Rham cohomology group vanishes. Hence we get the following theorem using
Theorem 9 in [2].

Theorem 1. The motion of a charged particle (3) in a simply connected two-step
nilpotent Lie group is simple.

Now we will construct explicitly a simply connected two step nilpotent Lie group
with a left-invariant Riemannian metric from an (abstract) two-step nilpotent Lie
algebra n with an inner product (,). In order to do this, we recall a Hausdorff
formula for a Lie group (see [1, p. 106]), which states that

1
expXexpY = exp <X—|—Y—|—2[X,Y]+...>'

If the Lie group is two-step nilpotent, then the higher terms + - - - on the right hand
side vanish. Based on the Hausdorff formula, we define a Lie group structure on n
itself by

1
X Y=X+Y+ XY, XYen

The identity element in this group is 0, and the inverse element of x € n is equal
to —x. We denote by N = (n,-) the so obtained Lie group. The center of N
coincides with 3. Denote by Lie(N) the Lie algebra consisting of all left-invariant
vector fields on N. Then Lie(/V) is identified with n as a Lie algebra as mentioned
below. Since N is a Euclidean space as a manifold, we can identify T (/N') with
n as vector spaces. The identification induces a Lie algebra structure on T((NV).
For X € Ty(N), we denote by X € Lie(N) the left-invariant vector field on N
such that Xo = X. The mapping defined by n = Ty(N) — Lie(N), X — X
gives an isomorphism as Lie algebras. Hence [V is a simply connected two-step
nilpotent Lie group whose Lie algebra is n. The inner product (,) on n induces a
left-invariant Riemannian metric (, ) on V. Using this notation, we have

an(X>}~/) = <Xa¢1~/> = <a~07 [?7X]> = <a03 [Y> X]>

The exponential mapping exp : n — N is equal to identity mapping. Hence for
X € Tp(N), we have

dt 2

Since the Riemannian metric on N is left-invariant, the left action of /N on NV itself
is isometric. Hence X € Ty (V) induces a Killing vector field X* on N by

- d d t
Xm:*(x'tX)\tzo:a <x+tX+[x,X]> € T,(N).
|t=0

X; = &(eXth)xht:O = &(tX +x+ §[Xv 2))j=0 € Tu(N).
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The Killing vector field X * is right-invariant.
Lemma 2. The mapping defined by

n—n, X—X+= [X x]
is a linear isomorphism.

Proof: Since the mapping is clearly linear, it is sufficient to prove that it is injective.
In order to do this, we study the kernel of the mapping. Suppose that X € n
satisfy the condition X + 5 [X z] = 0. Decompose X as X = Xy + Xy where
X, € 3 and X5 € 3, then X1 + (X2 + 5 [Xl, x]) = 0. This implies X; = 0 and
X9+ 3 [Xl, x] = 0. Hence we have X5 = 0, hence, X = 0. [ |

By the lemma above, we have T,,(N) = span{X} ; X € n} for any z in N. The
Killing vector field X* is an infinitesimal automorphlsm of ¢.

Lemma 3. Let X be in Ty(N) = n. For a fixed x € N, we have X} = W,., where
we set W = X + [X, z].

Proof: Since

~ d t
Wy = — (2o +tX +t[X, 2] + Z[z, X + [X, 2]
de 2 1t=0
d «
= —|(x+tX+ < [X x| =X,
de |t=0
we have the assertion. [ |

Lemma 4. Define a one-form 14, on N by
NMao(X3) = (v, X],a0), X €n.
Then o(X™*)Qqy = d(nay (X™)) for any X inn.

Proof: Let X and Y be in n. By Lemma 3, we have

(X)) (Ya) = Quo(X, Y2)
= Quy(Wy, V2)
= an(X [ ])7Y)
= <a07[Y [ ,QZH> = <a0,[Y,X]>.
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Using the above equation, we have also

(0o (X)) (Ya) = Ya(a(X™))
d

dt Nao (X;:k—l—tY-i—%[q:,Y] ) [t=0
d t
- &qx +tY + §[$7 Y]a X]a CL~0>
= (Y, X], a0) = («(X7)Qa0) (Ya)-
Hence we get d(1,,(X™)) = (X ™)Q4q,- [

Denote by 7,,(IN) — Tp(IN); v — vy the usual parallel translation in the Euclidean

space n: Take a curve c(t) in N such that ¢(0) = z,¢(0) = v. Then v, =

%(c(t) — Z)|t=o- The following lemma gives a relation between the two linear

isomorphisms L1 : T,(N) — To(N) and Ty (N) — To(N), v + vy,
Lemma5. L;'v = v, — §[z,vy] for v € Ty(N).

Proof: Take a curve ¢(t) in N such that ¢(0) = x,¢(0) = v. Then

Ly'v = L= % (—x +c(t) — %[a:, c(t)]>

|t=0
d 1 1
- F -Gt -a)  —u-geu)
Hence we have the assertion. [ |

Similarly we define 7,(3Y) — To(31),u — us1 and T3(3) — To(3), w — w;.
Since ;3 is abelian, we have L;'w = w; for w € T,(3). Hence we can write
w = w;. Letx € nand v € T,(n). Expressing  and v as ¢ = y + z and
v = vy + vo, where y € 31, 2 € 3,01 € Ty(37) and vy € T(3) we obtain

Lt = (o) + (1= Sl (o] ) @

Proposition 6. Let x(t) = y(t) + 2(t) be a curve in n, where y(t) € 3+ and
z(t) € 3. Assume that y(0) = 0. Then x(t) describes the motion of a charged
particle (3) if and only if

9(B)51 = Px(0)4aey(t) = 9(0),  2() = S[y(), 9(1);2] = 2(0).  (5)
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Proof: Taking the inner product of (3) and the Killing vector field X * for X € n,

we have d
S XT) = QX E) = (U(X)Q)(0).
Using Lemma 4 we find

d d

(% X7) = [d(X)(@) = F0(Xzq)-

Since T, (N) = span{ X}; X € n}, the equation (3) is equivalent to

%(@(t)’X;(tﬁ — (X)) = 0.

By the definition of 7, we have
n(X2) = (@), X1, a0) = (ae (y(£)), X).

Since (, ) is left invariant
(&, X5) = (Lg'd, Ly X;)

= (i + (= YD X + (X))

= (5. X) + <z _ é[y,yf],x + [X,x]>

where we have used Lemma 3 and equation (4). Hence the equation (3) is equiva-

lent to

d
dt

1

(<y.31_ - ¢a0(y)aX> + <Z - §[yaygl]vX + [Xayb) = 0.

Taking X € 3, we have

where we have used the initial condition y(0) = 0. Next, taking X € 3, we have

% (<ZJ§L B ¢ao(y)7X> + <7;(0), [X,y]>) =0.

Taking into account the initial condition y(0) = 0, we finally have

Y(t)5 = 2(0)+aoy(t) = 9(0).
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Proposition 7. The motion of a charged particle (3) with y(0) = 0 is given by the
equations

t
1) = 5D 103010y [ eXD(—10201100) O}
: 1 .
£(0) = 20) + (0) + 5 [ (0. @50 16:0)100)iO).
Proof: Using the first equation of (5) with y(0) = 0, we have

t
(1) =:expt¢é«»+aojﬁ exXP(—t63(0)4aq ) (0)dL.

Hence
G2(0)+ao¥(t) = (exP P10y 40, — 1)¥(0)
which implies that

D2(0)+ao¥(t) + 9(0) = (exPtds(0)+ao)¥(0).

Using the second and the first equation from (5)
1 [t
(1) = 2(0)+ 200 + 5 [ wlo).i0)lar
1 [t
= 20+ £2(0) + 5 [ W) Dx0a00(0) + O

= 20+ £2(0) + 5 [ W0 (exp1:0)20 )OI

Hence we get the assertion. ]

When ¢;(0)4q, = 0, then, using the above Proposition, we get y(t) = t3(0) and

z(t) = 2(0) + t2(0) + ;/0 [ty(0),y(0)]dt = 2(0) + t£(0).

Lemma 8. The equation of motion (3) implies the following relation

(=10, 20) + a0) + 5 w(0), 5(0)) = H0)P + (2(0),a0) + 5y -

Proof: Taking the inner product of the second equation of (5) with 2(0) + ag, we
have

1], 20) + ag) = O + (2(0), ao).

(2,2’(0) +a0> 2
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Using equation (5) again produces

<[y7 yf—]v Z(O) + a0> = <¢2(0)+(z0y’ 3);,L>
= <y;,L —4(0), 3‘/3L>
(), 50)).

= 19,0 1> = @y, 9(0)) = |9, [* —
Hence

(4210, 200) + a0) + 50(0) 3(0)) = HO)P + (2(0),a0) + 5oy [
]

Applying the lemma above for geodesics, we can re-demonstrate the following
theorem of Naitoh-Sakane.

Theorem 9. (Naitoh-Sakane [4, Corrolary 3.3]) Every geodesic in any simply con-
nected two-step nilpotent Lie group with a left-invariant Riemannian metric does
not intersect itself.

Proof: Let z(t) = y(t) + 2(t) € N be a geodesic with y(0) = 0. Applying
Lemma 8 with ag = 0

d . 1 . . 1.
— ( (2(1):2(0)) + S (y(1),9(0)) ) = [2(0)* + S 9,1 > 0.
dt 2 2

Hence (z(t), 2(0)) + £ (y(t),9(0)) is monotone increasing. Thus z(t) is not peri-
odic. Since we have already proved that x(¢) is simple by Theorem 1, we get the
assertion. ]

The author thinks that the above proof is easier than the original proof of Naitoh-
Sakane.

3. Charged Particles in H-type Lie Groups

In this section, we study the motion of a charged particle in a simply connected
H-type Lie group. First we review the definition of H-type Lie algebra according
to Kaplan. Let (U, (,)) and (V, (,)) be finite-dimensional real vector spaces with
inner products (,). Denote by End(V') the vector space consisting of all linear
transformations on V. We assume that there exists a linear mapping j : U —
End(V') such that

j@?=—laPL, (el =lallal, a€U zeV. @
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In other words, V is a Clifford module over the Clifford algebra generated by U.
By (6) we have

(j(a)z,j(b)x) = (a,b)|x?,  (j(a)z,j(a)y) = |al*(z,y)
Gla)z,y) + (z,j(a)y) =0, abelU, zyecV.

Define a bi-linear mapping [,] : V x V — U via the formula

(@, [z,9]) = (la)z,y),  acU wzyeV. (7

Then [, ] is alternative. Substituting j(b)x into y, we have

(a, [z, j(b)a]) = (j(a)z, j(b)z) = (a,b)|z|*.
Hence
[z,j(b)z] = |z[*b, beU, zeV. (8)
We denote by n = U @ V the orthogonal direct sum of U and V, and define a Lie
algebra structure on n by

l[a+z,b+y] = [z,y] € U, a,beU, xz,yeV.

Then the Lie algebra n is called H-type. Since the H-type Lie algebra n is a kind
of two-step nilpotent Lie algebra with an inner product, we can define a Lie group
structure on n with a left-invariant Riemannian metric, whose Lie algebra is n itself
as we mentioned in the previous section. For ag € U, we consider the equation

Vi = j(ao)d ©))

of motion of a charged particle. If we express its trajectory as z:(t) = y(t) + z(t)
where y(t) € V, z(t) € U, then (9) is equivalent to

y(t)v = 3(2(0) + ao)y(t) = 4(0) (10)

where Ty (V') — V,w +— wy denotes the usual parallel translation in V. Here we
have used equation (5).

Theorem 10. Ler x(t) = y(t) + 2(t) € N (wherey(t) € V, z(t) € U) is a motion
of a charged particle (9) with x(0) = 0.

1) When 2(0) + ag = 0, then x(t) = t(0).
2) When %(0) + ag # 0, then

=" i) +

tl5(0)|?
2|Z(0) + a0|2

e e () + a0

(0o - L)

2(t)=1t2(0) + [9(0)[*(2(0)+ ao).
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The curve y(t) is a circle in V. The motion of a charged particle is periodic if and
only if
19(0)1?

o=~ (3fop +1)

In this case x(t) is an elliptic motion.

Remark 11. When x(t) is a geodesic, the condition ag = 0 implies the theorem of
Kaplan [3].

Proof: 1) is clear from (10). We will show 2). Using the first equation of (10), we
have
sin(t|2(0) 4 aol) . 1 — cos(t|2(0) + aol)

t) = - "
VO = 0+ ao] Y 2(0) + agf?
which implies that

7(2(0) + a0)3(0)

sin(t]2(0) + ao|)
2(0) + ao|

y(t)v = cos(t[2(0) + aol)y(0) + 7(2(0) + a0)y(0).

Using the equation above, we have
1 —cos(t|2(0) + aol) .
12(0) + aol?
Further the second equation of (10) gives
) ) 1 — cos(t|2(0) + agl)
2(t) = 2(0) + -
0= 20 50+ aol?
1 — cos(t|2(0) + aopl)
2|2(0) + aol?
where we have used the equation (8). Since
1 f 2(0)+ao \ . sin(|2(0) + ap|?) .
et (o i) = ==y
2(0) + ao|” \|2(0) + ao| 12(0) + ao

cos(|2(0) + aglt) . [ 2(0) +ap .
EEOET ’(\z'<o>+aor>y(0>

ly(t)v,y(t)] =

[9(0),4(2(0) + a0)y(0)]
(11)

= (0) + (2(0) + ao)[5(0)|?

y(t) —

the curve y(t) is a circle in V' whose center is \2(0)1+a0|j (égggizgo y(0) and the

radius is B (|y)(0+)(|1 B - The periodic condition is as follows
x(t) is periodic < 2(0) + __WOF O)F (2(0) +ap) =0
2|2(0) + ao|?

=~ (st )
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In this case, since

00 [ HO)N . 2O [ (OR .
"0+ Lo <|z<o>|> 10 = G (Sm <2|z<o>rt> (§(0) +2(0))

eos (Ly(?())‘n )i () 1)

the curve z(t) is an elliptic such that the ratio of the long axis to the short axis is
equal to /[5(0)[ + [2(0)[?/15(0)]. u
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