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Abstract. We formulate the equation of motion of a charged particle in a Rie-

mannian manifold with a closed two form. Since a two-step nilpotent Lie group

has natural left-invariant closed two forms, it is natural to consider the motion of

a charged particle in a simply connected two-step nilpotent Lie groups with a left

invariant metric. We study the behavior of the motion of a charged particle in the

above spaces.

1. Introduction

Let Ω be a closed two-form on a connected Riemannian manifold (M, 〈 , 〉), where

〈 , 〉 is a Riemannian metric on M . We denote by
∧m(M) the space of m-forms

on M . We denote by ι(X) :
∧m(M) → ∧m−1(M) the interior product operator

induced from a vector field X on M , and by L : T (M) → T ∗(M), the Legendre

transformation from the tangent bundle T (M) over M onto the cotangent bundle

T ∗(M) over M , which is defined by

L : T (M) → T ∗(M), u �→ L(u), L(u)(v) = 〈u, v〉 , u, v ∈ T (M). (1)

A curve x(t) in M is referred as a motion of a charged particle under electromag-
netic field Ω, if it satisfies the following second order differential equation

∇ẋẋ = −L−1(ι(ẋ)Ω) (2)

where ∇ is the Levi-Civita connection of M . Here ∇ẋẋ means the acceleration of

the charged particle. Since −L−1(ι(ẋ)Ω) is perpendicular to the direction ẋ of the

movement, −L−1(ι(ẋ)Ω) means the Lorentz force. The speed |ẋ| is a conservative

constant for a charged particle. When Ω = 0, then the motion of a charged particle

is nothing but a geodesic. The equation (2) originated in the theory of relativity

(see [2] for details).

In this paper, we deal with the motion of a charged particles in a simply con-

nected two-step nilpotent Lie group N with a left invariant Riemannian metric.
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Since a two-step nilpotent Lie group has a non-trivial center Z, we can construct

a left-invariant closed two form Ωa0
from an element a0 ∈ Z specified below

and consider the motion of a charged particle under the electromagnetic field Ωa0
.

H. Naitoh and Y. Sakane proved that there are no closed geodesics in a simply

connected nilpotent Lie group. In contrast with geodesics, there exist motions of

charged particles which are periodic. Kaplan defined a H-type Lie group, which

is a kind of two-step nilpotent Lie groups. We study the motion of a charged parti-

cle in a H-type Lie group more explicitly than in a general two-step nilpotent Lie

group.

2. Charged Particles in Two-step Nilpotent Lie Groups

Let N be a simply connected two-step nilpotent Lie group with a left-invariant

Riemannian metric 〈 , 〉. Denote by n the vector space consisting of all left-invariant

vector fields on N . Since n is two-step nilpotent, n has a non-trivial center z. Let

n = z⊕ z⊥ be an orthogonal direct sum decomposition of n, then [z⊥, z⊥] ⊂ z. For

a0 ∈ z, we define a linear transformation φa0
on z⊥ by

〈φa0
(X), Y 〉 = 〈a0, [X, Y ]〉, X, Y ∈ z⊥.

We extend φa0
to a linear transformation on n by φ = 0 on z, which is also denoted

by φa0
. We can regard φa0

as a left-invariant (1, 1)-tensor on N . Then φa0
is

skew-symmetric with respect to the left-invariant Riemannian metric 〈 , 〉 since

〈φa0
(X), Y 〉 + 〈X, φa0

(Y )〉 = 〈a0, [X, Y ]〉 + 〈a0, [Y, X]〉 = 0

for any left invariant vector fields X, Y ∈ n. Define a left-invariant two-form Ωa0

on N by

Ωa0
(X, Y ) = 〈X, φa0

(Y )〉, X, Y ∈ n

then a simple calculation implies that Ωa0
is closed. In fact, for any X1, X2 and

X3 in n we have

3!(dΩa0
)(X1, X2, X3) = −S Ωa0

([X1, X2], X3)

= −S 〈[X1, X2], φa0
(X3)〉 = 0

where we denote by S the cyclic sum, and the last equality follows from the fact

that [X1, X2] ∈ z and φ(X3) ∈ z⊥. The equation of motion of the charged particle

under the electromagnetic field Ωa0
is

∇ẋẋ = φa0
(ẋ). (3)
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Here a curve in a manifold is simple if it is a simply closed periodic curve, or

if it does not intersect itself. Since N is simply connected, the one dimensional

de-Rham cohomology group vanishes. Hence we get the following theorem using

Theorem 9 in [2].

Theorem 1. The motion of a charged particle (3) in a simply connected two-step
nilpotent Lie group is simple.

Now we will construct explicitly a simply connected two step nilpotent Lie group

with a left-invariant Riemannian metric from an (abstract) two-step nilpotent Lie

algebra n with an inner product 〈 , 〉. In order to do this, we recall a Hausdorff

formula for a Lie group (see [1, p. 106]), which states that

expX expY = exp

(
X + Y +

1

2
[X, Y ] + · · ·

)
.

If the Lie group is two-step nilpotent, then the higher terms + · · · on the right hand

side vanish. Based on the Hausdorff formula, we define a Lie group structure on n

itself by

X · Y = X + Y +
1

2
[X, Y ], X, Y ∈ n.

The identity element in this group is 0, and the inverse element of x ∈ n is equal

to −x. We denote by N = (n, ·) the so obtained Lie group. The center of N
coincides with z. Denote by Lie(N) the Lie algebra consisting of all left-invariant

vector fields on N . Then Lie(N) is identified with n as a Lie algebra as mentioned

below. Since N is a Euclidean space as a manifold, we can identify T0(N) with

n as vector spaces. The identification induces a Lie algebra structure on T0(N).

For X ∈ T0(N), we denote by X̃ ∈ Lie(N) the left-invariant vector field on N

such that X̃0 = X . The mapping defined by n = T0(N) → Lie(N), X �→ X̃
gives an isomorphism as Lie algebras. Hence N is a simply connected two-step

nilpotent Lie group whose Lie algebra is n. The inner product 〈 , 〉 on n induces a

left-invariant Riemannian metric 〈 , 〉 on N . Using this notation, we have

Ωa0
(X̃, Ỹ ) = 〈X̃, φỸ 〉 = 〈ã0, [Ỹ , X̃]〉 = 〈a0, [Y, X]〉.

The exponential mapping exp : n → N is equal to identity mapping. Hence for

X ∈ T0(N), we have

X̃x =
d

dt
(x · tX)|t=0 =

d

dt

(
x + tX +

t

2
[x, X]

)
|t=0

∈ Tx(N).

Since the Riemannian metric on N is left-invariant, the left action of N on N itself

is isometric. Hence X ∈ T0(N) induces a Killing vector field X∗ on N by

X∗
x =

d

dt
(exp tX)x|t=0 =

d

dt
(tX + x +

t

2
[X, x])|t=0 ∈ Tx(N).
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The Killing vector field X∗ is right-invariant.

Lemma 2. The mapping defined by

n → n, X �→ X +
1

2
[X, x]

is a linear isomorphism.

Proof: Since the mapping is clearly linear, it is sufficient to prove that it is injective.

In order to do this, we study the kernel of the mapping. Suppose that X ∈ n

satisfy the condition X + 1
2 [X, x] = 0. Decompose X as X = X1 + X2 where

X1 ∈ z⊥ and X2 ∈ z, then X1 + (X2 + 1
2 [X1, x]) = 0. This implies X1 = 0 and

X2 + 1
2 [X1, x] = 0. Hence we have X2 = 0, hence, X = 0. �

By the lemma above, we have Tx(N) = span{X∗
x ; X ∈ n} for any x in N . The

Killing vector field X∗ is an infinitesimal automorphism of φ.

Lemma 3. Let X be in T0(N) = n. For a fixed x ∈ N , we have X∗
x = W̃x, where

we set W = X + [X, x].

Proof: Since

W̃x =
d

dt

(
x + tX + t[X, x] +

t

2
[x, X + [X, x]]

)
|t=0

=
d

dt

(
x + tX +

t

2
[X, x]

)
|t=0

= X∗
x

we have the assertion. �

Lemma 4. Define a one-form ηa0
on N by

ηa0
(X∗

x) = 〈[x, X], a0〉, X ∈ n.

Then ι(X∗)Ωa0
= d(ηa0

(X∗)) for any X in n.

Proof: Let X and Y be in n. By Lemma 3, we have

(ι(X∗
x)Ωa0

)(Ỹx) = Ωa0
(X∗

x, Ỹx)

= Ωa0
(W̃x, Ỹx)

= Ωa0
(X + [X, x]), Y )

= 〈a0, [Y, X + [X, x]]〉 = 〈a0, [Y, X]〉.
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Using the above equation, we have also

d(ηa0
(X∗))(Ỹx) = Ỹx(ηa0

(X∗))

=
d

dt
ηa0

(X∗
x+tY + t

2
[x,Y ]

)|t=0

=
d

dt
〈[x + tY +

t

2
[x, Y ], X], a0〉

= 〈[Y, X], a0〉 = (ι(X∗
x)Ωa0

)(Ỹx).

Hence we get d(ηa0
(X∗)) = ι(X∗)Ωa0

. �

Denote by Tx(N) → T0(N); v �→ vn the usual parallel translation in the Euclidean

space n: Take a curve c(t) in N such that c(0) = x, ċ(0) = v. Then vn =
d
dt

(c(t) − x)|t=0. The following lemma gives a relation between the two linear

isomorphisms L−1
x : Tx(N) → T0(N) and Tx(N) → T0(N), v �→ vn.

Lemma 5. L−1
x v = vn − 1

2 [x, vn] for v ∈ Tx(N).

Proof: Take a curve c(t) in N such that c(0) = x, ċ(0) = v. Then

L−1
x v = L−xv =

d

dt

(
−x + c(t) − 1

2
[x, c(t)]

)
|t=0

=
d

dt

(
c(t) − x − 1

2
[x, c(t) − x]

)
|t=0

= vn −
1

2
[x, vn].

Hence we have the assertion. �

Similarly we define Ty(z
⊥) → T0(z

⊥), u �→ uz⊥ and Tz(z) → T0(z), w �→ wz.

Since z is abelian, we have L−1
z w = wz for w ∈ Tz(z). Hence we can write

w = wz. Let x ∈ n and v ∈ Tx(n). Expressing x and v as x = y + z and

v = v1 + v2, where y ∈ z⊥, z ∈ z, v1 ∈ Ty(z
⊥) and v2 ∈ Tz(z) we obtain

L−1
x v = (v1)z⊥ +

(
v2 −

1

2
[y, (v1)z⊥ ]

)
. (4)

Proposition 6. Let x(t) = y(t) + z(t) be a curve in n, where y(t) ∈ z⊥ and
z(t) ∈ z. Assume that y(0) = 0. Then x(t) describes the motion of a charged
particle (3) if and only if

ẏ(t)z⊥ − φż(0)+a0
y(t) = ẏ(0), ż(t) − 1

2
[y(t), ẏ(t)z⊥ ] = ż(0). (5)
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Proof: Taking the inner product of (3) and the Killing vector field X∗ for X ∈ n,

we have
d

dt
〈ẋ, X∗〉 = Ω(X∗, ẋ) = (ι(X∗)Ω)(ẋ).

Using Lemma 4 we find

d

dt
〈ẋ, X∗〉 = (d(η(X∗)))(ẋ) =

d

dt
η(X∗

x(t)).

Since Tx(N) = span{X∗
x ; X ∈ n}, the equation (3) is equivalent to

d

dt
(〈ẋ(t), X∗

x(t)〉 − η(X∗
x(t))) = 0.

By the definition of η, we have

η(X∗
x(t)) = 〈[x(t), X], a0〉 = 〈φa0

(y(t)), X〉.

Since 〈 , 〉 is left invariant

〈ẋ, X∗
x(t)〉 = 〈L−1

x ẋ, L−1
x X∗

x〉

=

〈
ẏz⊥ + (ż − 1

2
[y, ẏz⊥ ]), X + [X, x]

〉
= 〈ẏz⊥ , X〉 +

〈
ż − 1

2
[y, ẏz⊥ ], X + [X, x]

〉
where we have used Lemma 3 and equation (4). Hence the equation (3) is equiva-

lent to

d

dt

(
〈ẏz⊥ − φa0

(y), X〉 + 〈ż − 1

2
[y, ẏz⊥ ], X + [X, y]〉

)
= 0.

Taking X ∈ z, we have

ż(t) − 1

2
[y(t), ẏ(t)z⊥ ] = ż(0)

where we have used the initial condition y(0) = 0. Next, taking X ∈ z⊥, we have

d

dt

(
〈ẏz⊥ − φa0

(y), X〉 + 〈ż(0), [X, y]〉
)

= 0.

Taking into account the initial condition y(0) = 0, we finally have

ẏ(t)z⊥ − φż(0)+a0
y(t) = ẏ(0).

�
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Proposition 7. The motion of a charged particle (3) with y(0) = 0 is given by the
equations

y(t) = exp tφż(0)+a0

∫ t

0
exp(−tφż(0)+a0

)ẏ(0)dt

z(t) = z(0) + tż(0) +
1

2

∫ t

0
[y(t), (exp tφż(0)+a0

)ẏ(0)]dt.

Proof: Using the first equation of (5) with y(0) = 0, we have

y(t) = exp tφż(0)+a0

∫ t

0
exp(−tφż(0)+a0

)ẏ(0)dt.

Hence

φż(0)+a0
y(t) = (exp tφż(0)+a0

− 1)ẏ(0)

which implies that

φż(0)+a0
y(t) + ẏ(0) = (exp tφż(0)+a0

)ẏ(0).

Using the second and the first equation from (5)

z(t) = z(0) + tż(0) +
1

2

∫ t

0
[y(t), ẏ(t)z⊥ ]dt

= z(0) + tż(0) +
1

2

∫ t

0
[y(t), φż(0)+a0

y(t) + ẏ(0)]dt

= z(0) + tż(0) +
1

2

∫ t

0
[y(t), (exp tφż(0)+a0

)ẏ(0)]dt.

Hence we get the assertion. �

When φż(0)+a0
= 0, then, using the above Proposition, we get y(t) = tẏ(0) and

z(t) = z(0) + tż(0) +
1

2

∫ t

0
[tẏ(0), ẏ(0)]dt = z(0) + tż(0).

Lemma 8. The equation of motion (3) implies the following relation

d

dt
(〈z(t), ż(0) + a0〉 +

1

2
〈y(t), ẏ(0)〉) = |ż(0)|2 + 〈ż(0), a0〉 +

1

2
|ẏz⊥ |2.

Proof: Taking the inner product of the second equation of (5) with ż(0) + a0, we

have

〈ż, ż(0) + a0〉 −
1

2
〈[y, ẏz⊥ ], ż(0) + a0〉 = |ż(0)|2 + 〈ż(0), a0〉.
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Using equation (5) again produces

〈[y, ẏz⊥ ], ż(0) + a0〉 = 〈φż(0)+a0
y, ẏz⊥〉

= 〈ẏz⊥ − ẏ(0), ẏz⊥〉

= |ẏz⊥ |2 − 〈ẏz⊥ , ẏ(0)〉 = |ẏz⊥ |2 −
d

dt
〈y(t), ẏ(0)〉.

Hence

d

dt
(〈z(t), ż(0) + a0〉 +

1

2
〈y(t), ẏ(0)〉) = |ż(0)|2 + 〈ż(0), a0〉 +

1

2
|ẏz⊥ |2.

�

Applying the lemma above for geodesics, we can re-demonstrate the following

theorem of Naitoh-Sakane.

Theorem 9. (Naitoh-Sakane [4, Corrolary 3.3]) Every geodesic in any simply con-
nected two-step nilpotent Lie group with a left-invariant Riemannian metric does
not intersect itself.

Proof: Let x(t) = y(t) + z(t) ∈ N be a geodesic with y(0) = 0. Applying

Lemma 8 with a0 = 0

d

dt

(
〈z(t), ż(0)〉 +

1

2
〈y(t), ẏ(0)〉

)
= |ż(0)|2 +

1

2
|ẏz⊥ |2 > 0.

Hence 〈z(t), ż(0)〉 + 1
2〈y(t), ẏ(0)〉 is monotone increasing. Thus x(t) is not peri-

odic. Since we have already proved that x(t) is simple by Theorem 1, we get the

assertion. �

The author thinks that the above proof is easier than the original proof of Naitoh-

Sakane.

3. Charged Particles in H-type Lie Groups

In this section, we study the motion of a charged particle in a simply connected

H-type Lie group. First we review the definition of H-type Lie algebra according

to Kaplan. Let (U, 〈 , 〉) and (V, 〈 , 〉) be finite-dimensional real vector spaces with

inner products 〈 , 〉. Denote by End(V ) the vector space consisting of all linear

transformations on V . We assume that there exists a linear mapping j : U →
End(V ) such that

j(a)2 = −|a|2I, |j(a)x| = |a||x|, a ∈ U, x ∈ V. (6)
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In other words, V is a Clifford module over the Clifford algebra generated by U .

By (6) we have

〈j(a)x, j(b)x〉 = 〈a, b〉|x|2, 〈j(a)x, j(a)y〉 = |a|2〈x, y〉
〈j(a)x, y〉 + 〈x, j(a)y〉 = 0, a, b ∈ U, x, y ∈ V.

Define a bi-linear mapping [ , ] : V × V → U via the formula

〈a, [x, y]〉 = 〈j(a)x, y〉, a ∈ U, x, y ∈ V. (7)

Then [ , ] is alternative. Substituting j(b)x into y, we have

〈a, [x, j(b)x]〉 = 〈j(a)x, j(b)x〉 = 〈a, b〉|x|2.

Hence

[x, j(b)x] = |x|2b, b ∈ U, x ∈ V. (8)

We denote by n = U ⊕ V the orthogonal direct sum of U and V , and define a Lie

algebra structure on n by

[a + x, b + y] = [x, y] ∈ U, a, b ∈ U, x, y ∈ V.

Then the Lie algebra n is called H-type. Since the H-type Lie algebra n is a kind

of two-step nilpotent Lie algebra with an inner product, we can define a Lie group

structure on n with a left-invariant Riemannian metric, whose Lie algebra is n itself

as we mentioned in the previous section. For a0 ∈ U , we consider the equation

∇ẋẋ = j(a0)ẋ (9)

of motion of a charged particle. If we express its trajectory as x(t) = y(t) + z(t)
where y(t) ∈ V, z(t) ∈ U , then (9) is equivalent to

ẏ(t)V − j(ż(0) + a0)y(t) = ẏ(0) (10)

where Ty(V ) → V, w �→ wV denotes the usual parallel translation in V . Here we

have used equation (5).

Theorem 10. Let x(t) = y(t)+ z(t) ∈ N (where y(t) ∈ V, z(t) ∈ U) is a motion
of a charged particle (9) with x(0) = 0.

1) When ż(0) + a0 = 0, then x(t) = tẋ(0).

2) When ż(0) + a0 �= 0, then

y(t)=
sin(t|ż(0) + a0|)

|ż(0) + a0|
ẏ(0) +

1 − cos(t|ż(0) + a0|)
|ż(0) + a0|2

j(ż(0) + a0)ẏ(0)

z(t)= tż(0) +
t|ẏ(0)|2

2|ż(0) + a0|2
(ż(0) + a0) −

sin(t|ż(0)+ a0|)
2|ż(0) + a0|3

|ẏ(0)|2(ż(0)+ a0).
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The curve y(t) is a circle in V . The motion of a charged particle is periodic if and
only if

a0 = −
( |ẏ(0)|2

2|ż(0)|2 + 1

)
ż(0).

In this case x(t) is an elliptic motion.

Remark 11. When x(t) is a geodesic, the condition a0 = 0 implies the theorem of
Kaplan [3].

Proof: 1) is clear from (10). We will show 2). Using the first equation of (10), we

have

y(t) =
sin(t|ż(0) + a0|)

|ż(0) + a0|
ẏ(0) +

1 − cos(t|ż(0) + a0|)
|ż(0) + a0|2

j(ż(0) + a0)ẏ(0)

which implies that

ẏ(t)V = cos(t|ż(0) + a0|)ẏ(0) +
sin(t|ż(0) + a0|)

|ż(0) + a0|
j(ż(0) + a0)ẏ(0).

Using the equation above, we have

[y(t)V , ẏ(t)] =
1 − cos(t|ż(0) + a0|)

|ż(0) + a0|2
[ẏ(0), j(ż(0) + a0)ẏ(0)].

Further the second equation of (10) gives

ż(t) = ż(0) +
1 − cos(t|ż(0) + a0|)

2|ż(0) + a0|2
[ẏ(0), j(ż(0) + a0)ẏ(0)]

(11)

= ż(0) +
1 − cos(t|ż(0) + a0|)

2|ż(0) + a0|2
(ż(0) + a0)|ẏ(0)|2

where we have used the equation (8). Since

y(t) − 1

|ż(0) + a0|
j

(
ż(0) + a0

|ż(0) + a0|

)
ẏ(0) =

sin(|ż(0) + a0|t)
|ż(0) + a0|

ẏ(0)

− cos(|ż(0) + a0|t)
|ż(0) + a0|

j

(
ż(0) + a0

|ż(0) + a0|

)
ẏ(0)

the curve y(t) is a circle in V whose center is 1
|ż(0)+a0|

j
(

ż(0)+a0

|ż(0)+a0|

)
ẏ(0) and the

radius is
|ẏ(0)|

|ż(0)+a0|
· The periodic condition is as follows

x(t) is periodic ⇔ ż(0) +
|ẏ(0)|2

2|ż(0) + a0|2
(ż(0) + a0) = 0

⇔ a0 = −
( |ẏ(0)|2

2|ż(0)|2 + 1

)
ż(0).
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In this case, since

x(t) +
2|ż(0)|
|ẏ(0)|2 j

(
ż(0)

|ż(0)|

)
ẏ(0) =

2|ż(0)|
|ẏ(0)|2

(
sin

( |ẏ(0)|2
2|ż(0)| t

)
(ẏ(0) + ż(0))

+ cos

( |ẏ(0)|2
2|ż(0)| t

)
j

(
ż(0)

|ż(0)|

)
ẏ(0)

)
the curve x(t) is an elliptic such that the ratio of the long axis to the short axis is

equal to
√
|ẏ(0)|2 + |ż(0)|2/|ẏ(0)|. �
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