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STAR PRODUCT AND STAR EXPONENTIAL
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Communicated by Ivaïlo M. Mladenov

Abstract. Here we extend the star products by means of complex symmetric

matrices. In this way we obtain a family of star products. Next we consider the

star exponentials with respect to these star products, and finally we obtain several

interesting identities.

1. Introduction

In order to express the elements in Weyl algebra, we need to fix the ordering of the

generators in monomials because of their non-commutativity. The ordering yields

a linear isomorphism between the Weyl algebra and the space of all complex poly-

nomials and the isomorphism naturally induces an associative product in the space

of polynomials. This product is called a star product. For example, the normal

ordering induces normal product, anti-normal ordering induces the anti-normal

product and the Weyl ordering yields the Moyal product, respectively.

The so obtained star product algebra is isomorphic to the Weyl algebra, and

then these are mutually isomorphic (see for example Omori-Maeda-Miyazaki-

Yoshioka [1]). As an extension of these star products, Omori-Maeda-Miyazaki-

Yoshioka [2] introduced a family of star products parameterized by the space of

all complex symmetric matrices. Then a geometric picture is given for the family

parameterized by the space of complex matrices. The family forms an algebraic

bundle over the space of all complex symmetric matrices.

When one has to exponentiate elements in the star product algebra, one needs to

deal with the infinite sum of the power series with respect to the Plank constant.

Then, in order to discuss the convergence of these series it is necessary to intro-

duce a topology and to take the completion of the star product algebra. A typical

topology is a formal power series topology. Under this topology, the star prod-

uct is well-defined as a formal power series in Plank constant with coefficients of

smooth functions. Hence one can exponentiate any element of the star product al-

gebra. Also, under this topology, it is proved that star products can be considered
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on any symplectic manifold (see [3] and [4]), and further on any Poisson manifold

(cf. [5]).

On the other hand, in [6], a different topology is proposed. This permits to deal

with the Plank constant as a number, not as a formal parameter. Families of semi-

norms and their topologies are introduced into the space of complex polynomials.

Taking the completion, we obtain a family of Fréchet spaces consisting of holo-

morphic functions. It is shown that the star products are well-defined for certain

classes of these topological spaces and each of them becomes a Fréchet topologi-

cal algebra. In these spaces, star exponentials are investigated for the elements of

the algebra, especially for the linear elements and quadratic elements, by means

of geometric methods.

In this paper, a survey of these topological spaces and some main results concern-

ing the star exponentials together with some concrete examples is presented. The

paper is organized as follows. First we explain the general setting by introduc-

ing the concept of q-number functions. Then we consider the examples of star

exponential and its application.

This paper is based mainly on the talk given by the second author at Conference

on Geometry, Integrability and Quantization in Varna 2009.

2. A Family of Star Products

In this section, we introduce a family of star products parameterized by the space

of all complex symmetric matrices. Using the intertwiners, we give a geometric

picture for the family of star products.

2.1. Star Products

For simplicity, we consider star products of two variables (u1, u2). The general

case for 2m variables (u1, u2, · · · , u2m) is similar.

Let us fix the skew symmetric matrix

J =

(
0 1
−1 0

)
. (1)

For an arbitrary complex symmetric matrix K ∈ SC(2) we put

Λ = J + K =

(
λ11 λ12

λ21 λ22

)
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and consider a bi-derivation acting on the pair p1(u1, u2), p2(u1, u2) in the space

P(C2) of the complex polynomials by the formula

p1

(←−
∂ Λ

−→
∂

)
p2 = p1

⎛⎝ 2∑
k,l=1

λkl

←−
∂ uk

−→
∂ ul

⎞⎠ p2 =
2∑

k,l=1

λkl∂uk
p1∂ul

p2. (2)

Now we define a star product ∗K on the space of complex polynomials p1(u1, u2),
p2(u1, u2) by

p1 ∗K
p2 = p1 exp

(
i�

2

←−
∂ Λ

−→
∂

)
p2 = p1p2 +

i�

2
p1

(←−
∂ Λ

−→
∂

)
p2

(3)

+ · · · + 1

n!

(
i�

2

)n

p1

(←−
∂ Λ

−→
∂

)n

p2 + · · ·

Proposition 1. For an arbitrary complex symmetric matrix K ∈ SC(2) the star
product ∗K is associative on the space of all complex polynomials P(C2).

We remark here that the definition of star products ∗
K

is an extension of star

products given by standard ordering problems. For example, if we put K = 0,

then the product becomes the Moyal product. Similarly, for K =

(
0 1
1 0

)
we

obtain the normal product and for K =

(
0 −1

−1 0

)
the anti-normal product.

These are products on polynomials and the so obtained algebras are all isomorphic

to the Weyl algebra. For an arbitrary K ∈ SC(2), the product ∗
K

satisfies the

canonical commutation relations

[uk, ul]∗
K

= uk ∗
K

ul − ul ∗K
uk = i�δkl, k, l = 1, 2 (4)

and hence it follows that all algebras (P(C2), ∗K) are isomorphic to the Weyl

algebra W2 with two generators u1, u2. Actually, we have algebra isomorphisms

IK2

K1
between any two of these algebras (P(C2), ∗K1

), (P(C2), ∗K2
). The algebra

isomorphism (intertwiners)

IK2

K1
: (P(C2), ∗K1

) → (P(C2), ∗K2
) (5)

are explicitly given by

IK2

K1
(p) = exp

(
i�

4
(K2 − K1)∂

2

)
p (6)
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where

(K2 − K1)∂
2 =

2∑
kl=1

(K2 − K1)kl∂uk
∂ul

. (7)

We have the relations

Proposition 2. i) IK3

K2
IK2

K1
= IK3

K1
, ii) (IK2

K1
)−1 = IK1

K2
.

By differentiating the intertwiner with respect to K, we obtain an infinitesimal

intertwiner at K
∇κ(p) = d

dt
IK+tκ
K (p)|t=0

= i�
4 κ∂2p (8)

where

κ∂2p =

2∑
i,j

κij∂i∂jp.

Then the infinitesimal intertwiner satisfies

∇κ(p1 ∗K
p2) = ∇κ(p1) ∗K

p2 + p1 ∗K
∇κ(p2) (9)

for any p1(u1, u2), p2(u1, u2) ∈ P(C2).

3. q-number Polynomials

In the star product algebras
{
(P(C2), ∗K)

}
K∈SC(2)

, the algebras (P(C2), ∗K1
)

and (P(C2), ∗K2
) are mutually isomorphic by the intertwiner IK2

K1
and the ele-

ments p1 ∈ (P(C2), ∗K1
) and p2 ∈ (P(C2), ∗K2

) are identified when

p2 = IK2

K1
(p1). (10)

A naturally geometric picture follows for the family of star product algebras{
(P(C2), ∗K)

}
K∈SC(2)

. To describe it, we introduce an algebra bundle over

SC(2) whose fibres consist of the Weyl algebra in the following way.

1. Algebra bundle. We consider the trivial bundle

π : P = P(C2) × SC(2) → SC(2) (11)

whose fibre over K ∈ SC(2) consists of the star product algebra

π−1(K) = (P(C2), ∗K) (12)
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2. Flat connection and parallel translation. On this bundle, we regard the

infinitesimal intertwiner ∇ as a flat connection and the intertwiner IK2

K1
as

its parallel translation.

We consider a section p̃ ∈ Γ(P) of this bundle satisfying

p̃(K2) = IK2

K1
(p̃(K1)). (13)

This means that p̃ is parallel

∇κp̃(K) = 0. (14)

3. q-number polynomial

We denote by P(P) the space of all parallel sections, and call an element

p̃ ∈ P(P) q-number polynomial.

Due to the identities IK3

K2
IK2

K1
= IK3

K1
and (IK2

K1
)−1 = IK1

K2
the intertwiners

naturally induce the star product ∗ on P(P). Then the algebra (P(P), ∗) is

regarded as a geometric realization of the Weyl algebra.

4. q-number Functions

Here we introduce a locally convex topology into the star product algebras by

means of a system of semi-norms.

Then we take the completion of the algebras and consider the star exponentials.

4.1. Topology

We introduce a topology into P(C2) by a system of semi-norms in the following

way. Let ρ be a positive number. For every s > 0 we define a semi-norm in the

space of polynomials by

|p|s = sup
u∈C2

|p(u1, u2)| exp (−s|u|ρ) . (15)

Then the system of semi-norms {| · |s}s>0 defines a locally convex topology Tρ

on P(C2).
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4.2. Fréchet Space Eρ(C
2)

Definition 3. We take the completion of P(C2) with respect to the topology Tρ,
we obtain a Fréchet space Eρ(C

2).

Proposition 4. For a positive number ρ, the Fréchet space Eρ consists of entire
functions on the complex plane C

2 with finite semi-norm for every s > 0, namely

Eρ(C
2) =

{
f ∈ H(C2) ; |f |s < +∞, for all s > 0

}
. (16)

Continuity for the case 0 < ρ ≤ 2.

As to the continuity of star products and intertwiners, the Fréchet space Eρ(C
2),

0 < ρ ≤ 2 is very good, namely, we have the following

Theorem 5. On Eρ(C
2), 0 < ρ ≤ 2 every product ∗K is continuous, and every

intertwiner IK2

K1
: (Eρ(C

2), ∗K1
) → (Eρ(C

2), ∗K2
) is continuous.

Continuity as a bimodule for the case ρ > 2.

As to the spaces Eρ(C
2) for ρ > 2, the situation is no so good, but still we have

the following.

Theorem 6. If ρ > 2, take ρ′ > 0 such that

1

ρ′
+

1

ρ
= 1

then every star product ∗K defines a continuous bilinear product

∗K : Eρ(C
2) × Eρ′(C

2) → Eρ(C
2), Eρ′(C

2) × Eρ(C
2) → Eρ(C

2).

This means that (Eρ(C
2), ∗K) is a continuous Eρ′(C

2)-bimodule.

4.3. q-number Functions

The case 0 < ρ ≤ 2.

Due to the previous theorem, we can introduce a similar concept as q-number

polynomials into the Fréchet spaces. Namely, the star product ∗K is well defined

on Eρ(C
2) and then we can consider the trivial bundle

π : Eρ = Eρ(C
2) × SC(2) → SC(2) (17)
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with fibre over the point K ∈ SC(2) consisting of

π−1(K) = (Eρ(C
2), ∗K). (18)

The intertwiners IK2

K1
are well defined for any K1, K2 ∈ SC(2) and then the bundle

Eρ has a flat connection ∇ and the parallel translation is the intertwiner.

The space of flat sections of the bundle denoted by Fρ is naturally equipped with

the star product ∗ and can be regarded as a completion of the Weyl algebra W2.

Remark to the case ρ > 2.

For the case ρ > 2, it is not clear at present whether the intertwiners are well-

defined and whether the product ∗K are well defined. However the flat connection

∇ is still well defined on π : Eρ = Eρ(C
2) × SC(2) → SC(2), so we can define a

space Fρ of all parallel sections of this bundle even for ρ > 2.

For ρ > 2, we are trying to extend the product ∗K and also the intertwiners IK2

K1

by means of some regularizations, for example, Borel-Laplace transform, or finite

part regularization. We hope to construct such a concept in the near future.

5. Star Exponential

The space of all q-number functions Fρ is a complete topological algebra for all

ρ, 0 < ρ ≤ 2 (even for ρ > 2 under some regularization). We can consider

exponential element

exp∗ t

(
H

i�

)
=

∞∑
n=0

tn

n!

H

i�
∗ · · · ∗ H

i�︸ ︷︷ ︸
n

(19)

in this algebra.

For a q-number polynomial H ∈ P(P), we define the star exponential exp∗ t(H/i�)
by the differential equation

d

dt
exp∗ t

(
H

i�

)
=

H

i�
∗ exp∗ t

(
H

i�

)
, exp∗ t

(
H

i�

)
|t=0 = 1. (20)

Remark 7. We set the Fréchet space

Eρ+(C2) = ∩λ>ρEλ(C2) (21)

and we denote by Eρ+ the corresponding bundle and by Fρ+ the space of the flat
sections of this bundle.
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When H ∈ P(P) is a linear element, then exp∗ t
(

H
i�

)
belongs to the good space

F1+(⊂ F2).

On the other hand, the most interesting case is provided by the quadratic form

H ∈ P(P). In this case we can solve the differential equation explicitly, but the

star exponential belongs to the space F2+, which is difficult to treat at present.

Although general theory related to the space F2+ is not yet established, we present

a concrete example of the star exponential of the quadratic forms and its applica-

tion.

6. Examples

Let us vary the parameter K ∈ SC(2) as for some K we can obtain interesting

identities in the algebra of ∗
K

product.

The linear case

Here we consider a liner q-number polynomial. It can be written in a general form

as

H = a1u + a2v = 〈a, u〉, a1, a2 ∈ C.

Star exponential in H belongs to the space of q-number functions F1+. The star

exponential exp∗ t
(

H
i�

)
at K, which is denoted by exp∗K

t
(

H
i�

)
, is explicitly given

by the formula

exp∗K
t

(
H

i�

)
= exp 1

4�
〈aK, a〉 exp 1

i�〈a, u〉.

Hence, if the real part satisfies an inequality like

Re 1
4�
〈aK, a〉 < 0 (22)

and the term exp t2

4�
〈aK, a〉 is rapidly decreasing with respect to t, we can con-

sider the integral ∫ ∞

−∞

e−et

exp∗K
t

(
z +

H

i�

)
dt.

Then we can define the star gamma function by

Γ∗(z) =

∫ ∞

−∞

e−et

exp∗ t

(
z +

H

i�

)
dt. (23)

This is evaluated at every K and the value Γ∗K
(z) of the star gamma function at

K is given by the integral, where K satisfies the condition (22).
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We have the identity for K satisfying (22)

Γ∗K
(z + 1) =

(
z +

H

i�

)
∗

K
Γ∗K

(z).

Quadratic case

In this paragraph, we construct a Clifford algebra by means of the star exponential

exp∗ t(2u∗v
i� ) for certain K. In what follows, we describe a rough sketch of the

construction.

First we consider a generic point in SC(2), i.e.,

K =

(
τ ′ κ
κ τ

)
∈ SC(2).

Next in the star product ∗
K

algebra, we write the generator u = u1, v = u2

satisfying

[u, v]∗
K

= −i�.

Then the star exponential of H = 2u ∗ v is explicitly given at a general point K
as

exp∗
K

t

(
2u ∗ v

i�

)
=

2e−t

√
D

exp

[
et − e−t

i�D

(
(et − e−t)τu2 + 2�uv + (et − e−t)τ ′v2

)]
where

D = �2 − (et − e−t)τ ′τ, � = et + e−t − κ(et − e−t). (24)

In the sequel, we assume τ ′ = 0, that is, we take the point

K =

(
0 κ
κ τ

)
. (25)

We have a limit

lim
t→−∞

�00 = exp∗
K

t

(
2u ∗ v

i�

)
=

2

1 + κ
exp

(
− 1

i�(1 + κ)
(2uv − τ

1 + κ
u2)

)
which we call a vacuum.

Then we state
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Lemma 8. i) �00 ∗K
�00 = �00, ii) v ∗

K
�00 = �00 ∗K

u = 0.

Putting t = πi, we have the identity

exp∗
K

πi

(
2u ∗ v

i�

)
= 1. (26)

Using

v ∗
K

(u ∗
K

v) = (v ∗
K

u) ∗
K

v = (u ∗
K

v + i�) ∗
K

u

we see that the star exponential satisfies

v ∗
K

exp∗K
t

(
2u ∗ v

i�

)
= exp∗K

t

(
2v ∗ u

i�

)
∗

K
v

= exp∗K
t

(
2u ∗ v + 2i�

i�

)
∗

K
v = e2t exp∗K

t

(
2u ∗ v

i�

)
∗

K
v.

Then the integral 1
2

∫ 0
−∞

exp∗
K

t(2v∗u
i� )dt converges and we can define

1

2

∫ 0

−∞

exp∗
K

t

(
2v ∗ u

i�

)
dt = (v ∗

K
u)−1

+ (27)

and
◦
v = u ∗

K
(v ∗

K
u)−1

+ . (28)

Then we have

Lemma 9. The element
◦
v is the right inverse of v satisfying

v ∗
K

◦
v = 1,

◦
v ∗

K
v = 1 − �00.

Now we fix an integer l. By putting

t = tl =
πi

2l

we obtain 2l roots of the unity

Ωl = exp∗K

πi

2l

(
2u ∗ v

i�

)
, �l = exp 2

(
πi

2l

)
(29)

such that

Ω2l

l∗K
= Ωl ∗K

· · · ∗
K

Ωl︸ ︷︷ ︸
2l

= 1, �2l

l = 1.

Finally we have
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Lemma 10. We have the following relation

Ωk
l∗K

∗
K

um
∗K

∗
K

�00 ∗K
vm
∗

K
= �km

l um
∗

K
∗

K
�00 ∗K

vm
∗

K
.

Now we take appropriate complex numbers a0, a1, · · · , a2l−1 so that the element

E =

2l−1∑
k=0

akΩ
k
l∗K

obeys to the identities

E ∗
K

um
∗K

∗
K

�00 ∗K
vm
∗K

=

{
∗

K
um
∗K

∗
K

�00 ∗K
vm
∗K

· · · 0 ≤ m ≤ 2l−1 − 1

0 · · · 2l−1 ≤ m ≤ 2l − 1.

We see that this is equivalent to

2l−1∑
k=0

ak�
km
l =

{
1 · · · 0 ≤ m ≤ 2l−1 − 1

0 · · · 2l−1 ≤ m ≤ 2l − 1.

The complex numbers a0, a1, · · · , a2l−1 are uniquely determined by these equa-

tions. Then we have

Lemma 11. The element E satisfies

E ∗
K

E = 1

and the element F = 1 − E satisfies

F ∗
K

F = 1, E ∗
K

F = F ∗
K

E = 0.

Further we have

Lemma 12. E ∗
K

(v)2
l−1

∗
K

= (v)2
l−1

∗
K

∗
K

F, (
◦
v)2

l−1

∗
K

∗
K

F = E ∗ (
◦
v)2

l−1

∗
K

where

(v)2
l−1

∗
K

= v ∗
K
· · · ∗

K
v︸ ︷︷ ︸

2l−1

and (
◦
v)2

l−1

∗
K

=
◦
v ∗

K
· · · ∗

K

◦
v︸ ︷︷ ︸

2l−1

.
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Finally we can set

ξ = E ∗
K

(v)2
l−1

∗
K

, η = (
◦
v)2

l−1

∗
K

∗
K

F.

Then we have

Theorem 13. The elements ξ and η of the ∗
K

product algebra satisfies the iden-
tities

ξ ∗
K

ξ = η ∗
K

η = 0

ξ ∗
K

η + ξ ∗
K

η = 1.

Acknowledgements

The authors would like to express their thanks to Professor Ivaïlo M. Mladenov

and Professor Gaetano Vilasi for the useful discussions and encouragement. The

second author was partially supported by the Grant-in-Aid for Scientific Research

(# 21540096).

References

[1] Omori H., Maeda Y., Miyazaki N. and Yoshioka A., Strange Phenomena
Related to Ordering Problems in Quantization, J. Lie Theory 13 (2003) 481–

510.

[2] Omori H., Maeda Y., Miyazaki N. and Yoshioka A., Star Exponential Func-
tions as Two-valued Elements, In: The Breadth of Symplectic and Poisson

Geometry, Progr. Math. 232, J. Marsden and T. Ratiu (Eds), Birkhauser,

Boston, 2005, pp.483–492.

[3] Omori H., Maeda Y. and Yoshioka A., Weyl Manifolds and Deformation
Quantization, Adv. Math. 85 (1991) 224-255.

[4] Fodosov B., A Simple Geometrical Construction of Deformation Quantiza-
tion, J. Diff. Geom. 40 (1994) 213–238.

[5] Kontsevich M., Deformation Quantization of Poisson Manifolds, Lett. Math.

Phys. 66 (2003) 157–216.

[6] Omori H., Maeda Y., Miyazaki N. and Yoshioka A., Deformation Quanti-
zation of Fréchet Poisson Algebras, - Convergence of the Moyal Product - ,

In: Conference Moshé Flato 1999, Quantizations, Deformations and Sym-

metries vol III, Math. Phys. Studies 22, Kluwer, 2000 pp 233–246.



Star Product and Star Exponential 111

Toshio Tomihisa

Department of Mathematics

Faculty of Science

Tokyo University of Science

162-8601, Kagurazaka 1-3, Shinjyuku-ku

Tokyo, JAPAN

E-mail address: j1107705@ed.kagu.tus.ac.jp

Akira Yoshioka

Department of Mathematics

Faculty of Science

Tokyo University of Science

162-8601, Kagurazaka 1-3, Shinjyuku-ku

Tokyo, JAPAN

E-mail address: yoshioka@rs.kagu.tus.ac.jp


