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Abstract. In this paper we give a presentation of the basic vacuum relations of

Extended Electrodynamics in terms of linear connections.

1. Linear Connections

Linear connections are first-order differential operators in vector bundles. If

such a connection ∇ is given and σ is a section of the bundle, then ∇σ is one-

form on the base space valued in the space of sections of the vector bundle,

so if X is a vector field on the base space then i(X)∇σ = ∇Xσ is a new

section of the same bundle [2]. If f is a smooth function on the base space then

∇(fσ) = df ⊗ σ + f∇σ, which justifies the differential operator nature of ∇:

the components of σ are differentiated and the basis vectors in the bundle space

are linearly transformed.

Let ea and εb, a, b = 1, 2, . . . , r be two dual local bases of the corresponding

spaces of sections < εb, ea >= δb
a, then we can write

σ = σaea, ∇ = d ⊗ id + Γb
μadx

μ ⊗ (εa ⊗ eb), ∇(ea) = Γb
μadx

μ ⊗ eb

and therefore

∇(σmem) = dσm⊗em+σmΓb
μadx

μ <εa, em> ⊗ eb =
[
dσb + σaΓb

μadx
μ
]
⊗eb

where Γb
μa are the components of ∇ with respect to the coordinates {xμ} on the

base space and with respect to the bases {ea} and {εb}.

Since the elements (εa ⊗ eb) define a basis of the space of (local) linear maps

of the local sections, it becomes clear that in order to define locally a linear

connection it is sufficient to specify some one-form θ on the base space and a
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linear map

φ = φb
aε

a ⊗ eb in the space of sections. Then

∇(σ) = dσa ⊗ ea + θ ⊗ φ(σ)

defines a linear connection with components Γb
μa = θμφ

b
a in these bases. So,

locally, any linear connection ∇ can be written as

∇ = d ⊗ (εa ⊗ ea) + Ψb
μadx

μ ⊗ (εa ⊗ eb).

Let Ψ1 and Ψ2 be two one-forms valued in the space of linear maps in a vector

bundle. A map (Ψ1,Ψ2) → (∧,�)(Ψ1,Ψ2) is defined by (we shall write just �

for (∧,�) and the usual ◦ will mean just composition)

�(Ψ1,Ψ2) = (Ψ1)
b
μa(Ψ2)

n
νmdxμ ∧ dxν ⊗ [ ◦ (εa ⊗ eb, ε

m ⊗ en)
]

= (Ψ1)
b
μa(Ψ2)

n
νmdxμ ∧ dxν ⊗ [ < εa, en > (εm ⊗ eb)

]
= (Ψ1)

b
μa(Ψ2)

a
νmdxμ ∧ dxν ⊗ (εm ⊗ eb) μ < ν.

In the case of trivial vector bundles, the curvature of ∇ is given by [2][
d(Ψb

μadx
μ)
]
⊗ (εa ⊗ ea) + �(Ψ,Ψ).

2. Some Facts From the Clasical and the Extended Electrodynamics

We recall now some facts from the Classical Electrodynamics (CED) and from

the Extended Electrodynamics (EED) [1]. The vector bundle under considera-

tion is the (trivial) bundle Λ2(M) of two-forms on the Minkowski space-time

M . Recall that if (F, ∗F ) is a CED vacuum solution, i.e., dF = 0, d ∗ F = 0,

then the combinations

F = aF − b ∗ F, F∗ = b F + a ∗ F
where (a, b) are two arbitrary real numbers, also give a CED vacuum solution

and, since on Minkowski space the corresponding Hodge star ∗2 satisfies the

relation ∗2 = −id Λ2(M), we obtain F∗ = ∗F . The two corresponding energy

tensors are related by

T (F ,F∗) = (a2 + b2)T (F, ∗F ).

Recall the real representation of complex numbers z = aI + bJ where I is the

unit matrix in R
2 and J is the standard complex structure matrix in R

2 with
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columns (0,−1)T , (1, 0)T . So, we obtain an action of the linear group G of

matrices α = aI + bJ on the CED vacuum solutions. This is a commutative

group G and its Lie algebra G just adds the zero (2 × 2) matrix to G, and (I, J)

define a natural basis of G. So, having a CED vacuum solution, we have in fact

a two-parameter family of vacuum solutions. Hence, we can define a G-valued

two-form Ω on M by Ω = F ⊗ I + ∗F ⊗ J , and the equation dΩ = 0 is

equivalent to dF = 0, d ∗ F = 0.

Consider the new basis (I ′, J ′) in G given by

I ′ = aI + bJ, J ′ = −bI + aJ.

Accordingly, the “new” solution Ω′, i.e., the old solution in the new basis of G,

will be

Ω′ = F ⊗ I ′ + ∗F ⊗ J ′ = F ⊗ (aI + bJ) + ∗F ⊗ (−bI + aJ)

= (aF − b ∗ F ) ⊗ I + (b F + a ∗ F ) ⊗ JF ⊗ I + F ∗ ⊗ J.

In view of this we may consider this transformation as nonessential, i.e., we may

consider (F, ∗F ) and (F ,F∗) as two different representations in corresponding

bases of G of the same solution.

Such an interpretation is approporiate and useful if the field shows some invari-
ant properties with respect to this class of transformations. For example, if the

Lorentz invariants

I1 =
1

2
FμνF

μν = (B2 − E
2), I2 =

1

2
Fμν(∗F )μν = 2E.B

where E and B are the corresponding electric and magnetic components of F ,

are zero: I1 = I2 = 0, (the so called “null field case”) then all the above

transformations keep unchanged these zero-values of I1 and I2. In fact, under

such a transformation (F, ∗F ) → (F ,F∗) the two Lorentz invariants transform

to (I ′
1
, I ′

2
) in the following way

I ′1 = (a2 − b2) I1 + 2ab I2, I ′2 = −2ab I1 + (a2 − b2) I2

and the determinant of this transformation is (a2 + b2)2 �= 0. So, a null field,

i.e., a field with zero invariants I1 and I2, stays a null field under these trans-

formations. Moreover, NO non-null field can be transformed to a null field by

means of these transformations, and, conversely, NO null field can be trans-

formed to a non-null field in this way. Hence, the Lorentz invariance and the

dual G-invariance of I1 and I2 hold simultanoiusly only in the null-field case.
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Further we are going to pay due respect to this invariance, keeping in mind the

basic fact that only in this case the velocity of the energy propagation of the field

is equal to “c” and follows straight lines, so this is intrinsic property of the field.

In order to come to the equations of EED we can recall that every bilinear map

ϕ : G × G → W , where W is some linear space with basis {ei}, i = 1, 2, . . . ,

defines corresponding product in the G-valued differential forms by means of

the relation

ϕ(Ωi
1 ⊗ ei,Ω

j
2
⊗ ej) = Ωi

1 ∧ Ωj
2
⊗ ϕ(ei, ej).

Recall now the following identity in Minkowski space

I1δ
ν
μ ≡ 1

2
FαβF

αβδν
μ = FσμF

σν − (∗F )σμ(∗F )σν

and the standard energy-tensor Qν
μ of electromagnetic field

Qν
μ = −1

2

[
FσμF

σν + (∗F )σμ(∗F )σν
]
.

We see that under I1 = 0 the two fields F and ∗F carry the same energy-

momentum during propagation. Moreover, there is NO interaction stress-energy-

momentum between F and ∗F as it is seen from the expression for Qν
μ.

Corollary 1. The two fields F and ∗F may interact only in regime of dynamical
equilibrium, i.e., any energy-momentum loss of F/ ∗ F should be compensated
by equal gain of ∗F/F : F � ∗F .

EED makes use of these facts assuming that the corresponding dynamical equa-

tions must have local energy-momentum exchange physical sense, so the sym-

metry F � ∗F must be respected.

Now, let ϕ = ∨, where “∨” is the symmetrized tensor product in G. We consider

the expression ∨(Ω, ∗dΩ).

∨(Ω, ∗dΩ) = (F ∧ ∗dF ) ⊗ I ∨ I(∗F ∧ ∗d ∗ F ) ⊗ J ∨ J
+(F ∧ ∗d ∗ F ⊗ + ∗ F ∧ ∗dF ) ⊗ I ∨ J.

The vacuum EED equations are ∨(Ω, ∗dΩ) = 0, or equivalently

F ∧ ∗dF = 0, (∗F ) ∧ ∗d ∗ F = 0, F ∧ ∗d ∗ F + (∗F ) ∧ ∗dF = 0.

In terms of the codifferential δ = ∗d∗ these equations look like

δ ∗ F ∧ F = 0, δF ∧ ∗F = 0, δF ∧ F − δ ∗ F ∧ ∗F = 0.
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Correspondingly in components we obtain

1

2
Fαβ(dF )αβμ ≡ (∗F )μν(δ ∗ F )ν = 0

1

2
(∗F )αβ(d ∗ F )αβμ ≡ Fμν(δF )ν = 0

1

2
(∗F )αβ(dF )αβμ +

1

2
Fαβ(d ∗ F )αβμ ≡ (δ ∗ F )νFνμ + (δF )ν(∗F )νμ = 0.

3. Basic Property of the Nonlinear Solutions

All nonlinear solutions to the EED vacuum equations, namely, those satisfying

dF �= 0, d ∗ F �= 0, have zero invariants: I1 = I2 = 0, so, they minimize the

quantity I2
1

+ I2
2
≥ 0. Moreover, for any nonlinear solution defined by F there

exists a canonical coordinate system on M , called further F -adapted, in which

F and ∗F look as follows

F = A ∧ ζ, ∗F = A∗ ∧ ζ

A = udx+ pdy, A∗ = pdy − udz, ζ = εdz + dξ, ε± 1

and (u, p) are two functions on M , satisfying the equation

u (uξ − εuz) + p (pξ − εpz) = 0.

As for the energy-momentum tensor Tμν of the vacuum solutions, considered as

a symmetric two-form on M , it is defined in terms of Ω as follows

T (X,Y ) =
1

2
∗ g[i(X)Ω, ∗ i(Y )Ω

]
= −1

2
XμY ν

[
FμσFν

σ + (∗F )μσ(∗F )ν
σ
]

= XμY νTμν

where (X,Y ) are two arbitrary vector fields on M , g is the metric in G defined

by g(α, β) = 1

2
tr(α.β∗), and β∗ is the transposed to β. Note that g(I, J) = 0,

which elliminates the corresponding coefficient which reads

Fμσ(∗F )νσ + (∗F )μσF
νσ =

1

2
Fαβ(∗F )αβδν

μ

so, in a g-NONorthogonal basis of G this coefficient will appear.
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Finally, recall the generalization of Lie derivative LK with respect to the k-

vector K, acting in the exterior algebra of differential forms according to the

formula LK = i(K)d − (−1)k
di(K). Then, in view of the relations

FμνF
μν = (∗F )μνF

μν = 0, the above equations acquire the form

LF̄F = 0, L∗F̄ (∗F ) = 0, LF̄ (∗F ) + L(∗F̄ )F = 0

where F̄ and ∗F̄ are the η-corresponding two-vectors. In terms of the two-form

Ω and

Ω̄ = F̄ ⊗ e1 + ∗F̄ ⊗ e2 these three equations can be united in one as follows

L∨

Ω̄
Ω = LF̄F ⊗ e1 ∨ e1 +L∗F̄ ∗F ⊗ e2 ∨ e2 + (LF̄ ∗F +L∗F̄F )⊗ e1 ∨ e2 = 0.

4. Linear Connection Interpretation of the Nonlinear Part of the EED

If I is the identity in Λ2(M) and J = ∗ is the complex structure in Λ2(M) then

a representation ρ of G in Λ2(M) is given by

ρ(α) = aI + bJ .

Also, a representation ρ′ of the corresponding Lie algebra G is defined by the

same relation. So, if α : M → G is a map then ρ′(α) is a linear map in Λ2(M),

and recalling our one-form ζ = εdz + dξ we define a linear connection ∇ in

Λ2(M) by

∇ = d ⊗ id Λ2(M) + ζ ⊗ ρ′(α(u, p))

= d ⊗ id Λ2(M) + ζ ⊗ (uI + pJ ), α ∈ G.

Two other connections ∇̄ and ∇∗ are defined by

ρ′(ᾱ(u, p)) = ρ′(α(u,−p)) = uI − pJ
(ρ′)∗(α(u, p)) = ρ′(α.J) = ρ′(α(−p, u)) = −pI + uJ

and we introduce for further use

χ = uI + pJ , χ̄ = uI − pJ , χ∗ = −pI + uJ .

Denoting

Ψ = ζ ⊗ χ, Ψ̄ = ζ ⊗ χ̄, Ψ∗ = ζ ⊗ χ∗
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we have (because ζ ∧ ζ = 0)

�(Ψ,Ψ) = �(Ψ, Ψ̄) = �(Ψ,Ψ∗) = 0.

Now, since

Ψ = u ζ ⊗ I + p ζ ⊗ J
Ψ̄ = u ζ ⊗ I − p ζ ⊗ J
Ψ∗ = − p ζ ⊗ I + u ζ ⊗ J

we obtain for the corresponding curvatures

R = d(u ζ) ⊗ I + d(p ζ) ⊗ J
R̄ = d(u ζ) ⊗ I − d(p ζ) ⊗ J
R∗ = d(−p ζ) ⊗ I + d(u ζ) ⊗ J .

By direct calculation we obtain also

∗ 1

6
Tr
[
�(Ψ̄, ∗dΨ)

]
= −ε[u (uξ − εuz) + p (pξ − εpz)

]
dz

−[u (uξ − εuz) + p (pξ − εpz)
]
dξ

1

6
Tr [�(Ψ∗, ∗dΨ)] = ε

[
p (uξ − εuz) − u (pξ − εpz)

]
dx ∧ dy ∧ dz

+
[
p (uξ − εuz) − u (pξ − εpz)

]
dx ∧ dy ∧ dξ

= δF ∧ F = δ ∗ F ∧ ∗F = ε
1

6
Tr [�(Ψ, ∗dΨ∗)]

where δ is the coderivatie. Denoting by |R|2 the quantity 1

6
|∗ Tr

[
�(R∧ ∗ R̄)

] |
we obtain (in the F -adapted coordinate system)

|R|2 =
1

6
| ∗ Tr

[
�(dΨ, ∗dΨ̄)

] |= (uξ − εuz)
2+ (pξ − εpz)

2 = |δF |2 = |δ ∗ F |2.

Finally we note the relations

1

6
tr(χ) =

1

6
tr(u I + pJ ) = u

and
1

6
tr
[
(χ ◦ χ̄)

]
=

1

6
tr
[
(u I + pJ ) ◦ (u I − pJ )

]
= u2 + p2.
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These relations allow to introduce two characteristic functions for any nonlinear

solution: the phase-function ψ and the scale factor L as

ψ = arccos
1

6
trχ√

1

6
tr(χ ◦ χ̄)

, L =

√
1

6
tr(χ ◦ χ̄)√

1

6
|R|

=

√
tr(χ ◦ χ̄)

|R| ·

Since the nonlinear solutions of the two equations

δF ∧ ∗F = 0, δ ∗ F ∧ F = 0

i.e., those satisfyiing δF �= 0 and δ ∗ F �= 0, are parametrized by two functions

(u, p) and satisfy the relations

u (uξ − εuz) + p (pξ − εpz) = 0, uξ − εuz �= 0, pξ − εpz �= 0

in the corresponding F -adapted coordinate system, we obtain that on those so-

lutions the following relation holds

Tr
[
�(Ψ̄, ∗dΨ)

]
= 0

and that the equation

δF ∧ F = δ ∗ F ∧ ∗F
is equivalent to

Tr [�(Ψ, ∗dΨ∗)] = εTr [�(Ψ∗, ∗dΨ)] .

It can easily be shown (we leave this to the reader) that the non-zero value of the

squared curvature invariant |R|2 guarantees availability of rotational component

of propagation.

5. Conclusion

The linear connection ∇ is defined through ζ ⊗ ρ′(α(u, p)). We note that the

two-form Fo = dx ⊗ ζ gives the possibility to consider a nonlinear solution

F (u, p) as an appropriately defined linear map

ρ′(α(u, p)) = uI + pJ

in Λ2(M), since the action of ρ′(α(u, p)) on Fo gives F .
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This special importance of ζ is based on the fact that it intrinsically defines the

translational part of the dynamical befavior of the solution, and its uniqueness

is determined by the fact that all nonlinear solutions of EED equations have

zero invariants: FμνF
μν = Fμν(∗F )μν = 0. As for the rotational part of the

dynamical behavior of the solution it is available only if the curvature R iz

nonzero and is locally represented by any of the two three-forms F ∧ δF =

∗F ∧ δ ∗ F �= 0. For all nonlinear solutions we have δF �= 0 and δ ∗ F �= 0, and

all finite nonlinear solutions have finite energy density

0 < φ2 =
1

6
tr(F ◦ F̄ ) =

1

6
tr(χ ◦ χ̄) = (u2 + p2) <∞.

The nonzero finite scale factor 0 < L <∞ separates those finite nonlinear solu-

tions which carry spin momentum, and this happens only when |δF | = |R| �= 0.

The spin momentum is carried by any of the two three-forms δF∧F = δ∗F∧∗F ,

determining the energy-momentum exchange between F and ∗F . Clearly, on the

linear Maxwell solutions these three-forms are zero.

Hence, in terms of curvature we can say that the nonzero curvature invariant |R|,
is responsible for availability of rotational component of propagation, in other

words, the spin properties of a nonlinear solution require non-zero curvature.

From physical viewpoint the corresponding dynamical process that generates

these spin properties is the mutual energy-momentum exchange between the

two field components F and ∗F during propagation. It has the following three

characteristic properies:

- it is permanent, i.e., it occurs constantly during propagation

- it is simultanious in the both directions: F � ∗F
- it is in equal quantities.

It follows that F and ∗F live in a permanent dynamical equilibrium. They carry

always the same quantities of energy-momentum[
FμνF

μν = 0
]

⇒ FμσF
νσ = (∗F )μσ(∗F )νσ.

This dynamical equilibrium is quantitatively described by the equation

δF ∧ F = δ ∗ F ∧ ∗F
or by

Tr [�(Ψ, ∗dΨ∗)] = εTr [�(Ψ∗, ∗dΨ)] .
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