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Abstract.

It is shown that the Bohm equations for the phase S and squared modulus ρ of

the quantum mechanical wave function can be derived from the classical ensem-

ble equations admiting an aditional momentum ps of the form proportional to the

osmotic velocity in the Nelson stochastic mechanics and using the variational prin-

ciple with appropriate change of variables. The possibility to treat gradS and ps

as two parts of the momentum of quantum ensemble particles is considered from

the view point of uncertainty relations of Robertson - Schrödinger type on the

examples of the stochastic image of quantum mechanical canonical coherent and

squeezed states.

1. Introduction

The uncertainty (indeterminacy) principle in quantum physics, which quantita-

tively is expressed in the form of uncertainty relations (URs) [13, 14, 24, 25] is

commonly regarded as the most radical departure from the classical physics.

However in the recent decades publications have appeared [5, 11, 12, 21, 23] in

which inequalities are introduced in Nelson stochastic mechanics (SM) [19] and

discussed as Heisenberg-type URs. The equations of motion in this mechanics

coincide with the David Bohm equations [1] (the continuity equation and the

modified Hamilton-Jacobi equation, the latter known also as Hamilton-Jacobi-

Madelung (HJM) equation) for the phase S and squared modulus |ψ|2 ≡ ρ of

the Schrödinger wave function ψ. Bohm equations for S and ρ have been later

derived from ‘the stochastic variational principles of control theory’ by Guerra

and Marra [9], and by Reginatto [23], using the ‘principle of minimum Fisher

information’ [6].
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Hall and Reginatto [12] introduced the so called ‘exact UR’ and showed that it

‘leads from classical equations of motion to the Schrödinger equation’ and to un-

certainty inequality of the form of Heisenberg UR. They derived the continuity

equation and the modified HJ equation from a variational principle, introducing

into the Lagrangian of the HJ equation an additional momentum pN of the classi-

cal particle assuming that its first moment and its covariance with the ‘classical’

moment ∇S are universally vanishing. From some general consideration they

‘derived’ that the variance of this extra momentum should be proportional to the

Fisher information of the coordinate probability density ρ. As a result their La-

grangian takes the form of Reginatto’ Lagrangian, wherefrom the Bohm equations

are derived [23] and the product of coordinate and pN variances equals constant

for any ρ (which in fact is a minimization of the Cramer-Rao inequality). This

equality and the related uncertainty principle are called ‘exact’ UR and ‘exact’

uncertainty principle. The system described by the so derived Bohm equations is

interpreted in [12] as ‘quantum ensemble’. If ∇S/m and the variance of pN/m
are identified with the current velocity and the mean squared osmotic velocity the

formal connection to the Nelson SM is established [12].

However no particular underlying physical model was assumed for the fluctua-

tions of the momentum pN - they were regarded as fundamentally nonanalyz-

able [12]. Having no model for pN one has to postulate infinitely many constraints

in order to recover the statistical properties of quantum mechanical momentum p̂.

The two constraints postulated in [12] (namely pN = 0 and ∇S · pN = 0) ensure

the coinsidence only of the first two moments of ∇S + pN and p̂.

It is our aim here to introduce a model for such additional momentum to account

partially for the quantum fluctuations and to examin its properties and consistency.

(‘Partially’, because no classical model, we believe, could provide the ‘full’ ac-

count). Another our aim is to briefly review the URs in the Nelson stochastic me-

chanics (SM) from the point of view of the more precise Robertson-Schrödinger

(R-S) inequality. Unlike the Heisenberg UR the R-S UR in quantum mechanics

involves all the three second moments of the two quantum observables Â and B̂,

the variances (ΔÂ)2, (ΔB̂)2 and the squared covariance (ΔAB)2. If the covariance

is vanishing then the R-S UR recovers the Heisenberg UR.

In the next section we briefly review the Heisenberg and Robertson-Schrödinger

URs (R-S UR). In the third section we recall the main features of the Hall and

Reginatto ‘quantum ensemble’ approach and Nelson SM. A model of additional

momentum ps is introduced, its potential Ss being interpreted as the intensity

dependent part of the quantum wave function phase S. It is shown that Bohm

equations for S and ρ can be derived from the Reginatto variational principle con-
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sidering the probability density ρ and S− ≡ S−Ss as new independent variables.

In Section 4 the stochastic analogues of the R-S URs are reviewed and discussed

in connection with the introduced auxilliary momentum model ps and on the ex-

ample of S and ρ corresponding to canonical coherent and squeezed states. In

Section 5 the first and second moments of coordinate and the related momenta

and URs are calculated on the example of stochastic images of canonical coherent

and squeezed states (CS and SS) and compared with the corresponding moments

and URs in quantum mechanics. Nelson SM images of canonical CS and SS have

been discussed previously in several papers: of CS in [10,16–18,22] and of SS and

CS - in [16–18, 22] in the context of ‘stochastic mechanics and control theory’.

2. Robertson-Schrödinger UR in Quantum Mechanics

The indeterminacy principle was introduced in 1927 by Heisenberg [13] who

demonstrated the impossibility of simultaneous precise measurement of the canon-

ical quantum observables x̂ and p̂ (the particles coordinate and momentum) by

positing an approximate relation δp δx ∼ �, where � is the Plank constant.

Heisenberg considered this inequality as the “direct descriptive interpretation” of

the canonical commutation relation between the operators of the coordinate and

momentum: [x̂, p̂] = i�, [x̂, p̂] ≡ x̂p̂ − p̂x̂. A rigorous proof of the Heisen-

berg relation was soon published by Kennard and Weyl [14] who established the

inequality

(Δp̂)2(Δx̂)2 ≥ �/4 (1)

where (Δp̂)2 and (Δx̂)2 are the variances (dispersions) of p̂ and x̂, defined by

Weyl for every quantum state |ψ〉 via the formula (Δp̂)2 := 〈ψ|(p̂ − 〈ψ|p̂|ψ〉)2|ψ〉,
and similarly (Δx̂)2 is defined. In correspondence with the classical probability

theory the standard deviation ΔÂ is considered as a measure for the uncertainty

(indeterminacy) of the quantum observable Â in the corresponding state |ψ〉. The

inequality (1) became known as the Heisenberg UR.

The extension of (1) to the case of two arbitrary quantum observables (Hermitian

operators Â and B̂) was made by Robertson and Schrödinger [24, 25], who estab-

lished more precise inequality, that involves all the three second moments of the

two observables,

(ΔÂ)2(ΔB̂)2 − (ΔAB)2 ≥ 1

4

∣∣∣〈[Â, B̂]〉
∣∣∣2 (2)

where ΔAB is the covariance (which in mathematical literature is denoted usually

as Cov(AB) ) of Â and B̂, ΔAB := (1/2)〈ÂB̂ + B̂Â〉 − 〈Â〉〈B̂〉.
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In the case of coordinate and momentum observables relation (2) takes the shorter

form

(Δx̂)2(Δp̂)2 − (Δxp)
2 ≥ �2/4. (3)

The inequality (2) is referred either as Schrödinger or Robertson-Schrödinger UR

(R-S UR). In states with vanishing covariance the R-S UR (3) recovers the Heisen-

berg’s one, equation (1). The minimization of (1), i.e., the equality in (1), means

the equality in (3), the inverse being not true. Thus the R-S UR provides a more

stringent limitation (from below) to the product of two variances. Besides the R-S

UR is more symmetric than the Heisenberg UR: the equality in it is invariant un-

der nondegenerate linear transformations of the two observables (in the case of x
and p R-S UR is invariant under linear canonical transformations) [26]. Despite

these advantages the relation (3) and/or (2) are lacking in almost all quantum me-

chanics text books. The interest in R-S relation has been renewed in the last three

decades [2, 4, 27] (50 years after its discovery) in connection with the description

and experimental realization of the squeezed states of the electromagnetic radia-

tion (see the ‘squeezed review’ [4, 26]).

3. ‘Quantum Ensemble’ and Stochastic Mechanics

The quantum-classical relations are subject of a host of publications, which started

from the early days of quantum mechanics. Aiming to provide an alternative

interpretation of quantum mechanics in terms of ‘hidden variables’ David Bohm

[1] noted that the phase S = � argψ and the squared modulus |ψ|2 ≡ ρ of the

quantum-mechanical particle wave function ψ obeys a system of classical-type

equations, namely the probability conservation equation and a modified Hamilton-

Jacobi equation

∂ρ

∂t
+

1

m
div (ρ∇S) = 0,

∂S

∂t
+

1

2m
(∇S)2 + V (x, t) + Vq = 0 (4)

where V is the external particle potential, and Vq (the so called ‘quantum poten-

tial’ [1]) is given by

Vq =
�2

8m

(
(∇ρ)2
ρ2

− 2
∇2ρ

ρ

)
.

Pursuing the classical interpretation and derivation of the Schrödinger equation

Nelson [19] had derived equations for the velocity fields in the forward and back-

ward Fokker-Planck equations of a diffusion process and, noting that the ‘osmotic’

velocity u is a gradient (u = D∇ ln ρ, ρ being the probability density of the
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process, D - the diffusion coefficient) and supposing that the current velocity v

is also a gradient, v = (1/m)∇S, he had established that with D = �/2m the

probability density ρ and the current velocity potential S satisfy the Bohm equa-

tions (4), i.e., ψ :=
√
ρ exp(iS/�) obey the Schrödinger equation. This theory is

known as Nelson SM.

Reginatto [23] noted that the Bohm equations (and thereby the Schrödinger equa-

tion) can be obtained from the variational principle and the principle of minimum

Fisher information [6] applied to the ‘classical ensemble of particles’. In this

derivation Reginatto started from the classical Hamilton-Jacobi (HJ) equation (we

consider the case of n = 1, and external potential V )

∂S

∂t
+

1

2m
(∇S)2 + V (x, t) = 0. (5)

Supposing that the coordinates are subject to fluctuations described by the prob-

ability density ρ he had postulated the validity of the continuity equation of the

same form as in (4)
∂ρ

∂t
+

1

m
div (ρ∇S) = 0 (6)

and noted that it can be derived from the functional

ΦA =

∫
ρ

(
∂tS +

1

2m
∇S · ∇S + V

)
d3xdt (7)

as extremal equation with respect to variation of the classical action S. (As noted

in [23] the variation with respect to ρ trivially results into HJ equation (5)). Phys-

ical system which motion is described by the equations (5) and (6) is called clas-
sical ensemble of particles [12, 23].

To obtain the second of the Bohm equations (4) the principle of minimal Fisher

information was applied by adding to ΦA the term [23]

Φ′

A = λ

∫
IF(ρ)dt, IF =

∫
1

ρ
∇ρ · ∇ρd3x, (8)

where IF is the Fisher information of the probability density ρ(x, t), and the mul-

tiplier λ is put equal to �2/8m. Thus the Bohm equations (4) are derived from the

action functional

ΦB = ΦA + Φ′

A
(9)

=

∫ [
ρ

(
∂tS +

1

2m
∇S · ∇S + V

)
+

�2

8m

1

ρ
∇ρ · ∇ρ

]
d3xdt
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by independent variation of ρ and S. In fact Bohm equations have been derived

previously from the same action functional (9) by Guerra and Moratto [9] but with

no reference to Fisher information.

By different argumentation the same action functional (9) has been derived and

used later in [12], where the term 2mλIF is interpreting as a variance (σp
N
)2 of an

additional momentum pN, subjected to the constraints (of vanishing first moment

and vanishing covariance with ∇S)

〈pN〉 = 0, 〈pN · ∇S〉 = 0. (10)

This variance obeys the inequality (in the one-dimensional case)

(σx)2(σpN
)2 ≥ �2/4 (11)

which directly stems from well known Cramer-Rao inequality (σx)2IF ≥ 1, where

(σx)2 is the variance (the squared uncertainty) of x. The authors of [12] consider

the total momentum of the particle p as a sum of ∂xS and pN. Then, in view of

(10) and (11), one gets

(σx)2(σp)
2 ≥ (σx)2(σpN

)2 ≥ �2/4. (12)

The authors argue that this is a derivation of Heisenberg UR.

However no particular underlying physical model was assumed for the fluctua-

tions of the momentum pN - they were regarded as ‘fundamentally nonanalyz-

able’. Despite the proclaimed ‘nonanalizability’ of pN the authors of [12] suc-

ceeded to find that its variance should be proportional to the Fisher information

of ρ, resorting in this way to the Reginatto functional (9), wherefrom they derive

the Bohm equations for ρ and S. The so derived equations (4) are referred to as

equations of motion of quantum ensemble [12, 23].

We note that in fact the second constraint in (10) simply reduces the functional

(6) in [12] to Reginatto functional (9), which ensures the variational derivation of

the Bohm equations for ρ and S. Retaining the idea of introducing an additional

stochastic momentum however there is an alternative way to derive variationally

the Bohm equations, namely the change the independent variables. In this way one

may expect to introduce a model of an analizable additional stochastic momentum

ps to account partially for the quantum momentum fluctuations.

We consider the total momentum p of the particle as a sum of two parts

p = pc + ps (13)
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supposing that the first one stems from the deterministic classical motion and the

second one is induced by the coordinate randomization. We suppose further that

both pc and ps are gradients of corresponding potentials (actions)

pc = ∇S, ps = ∇Ss (14)

where the momentum potential S originates from the classical HJ equation, and

the potential Ss - from the coordinate stochasticity. In the absence of stochasticity

S is the classical particle action that obey the HJ equation. We make the natural

anzatz that the potential Ss depends on x and t via the coordinate probability

distribution ρ(x, t) only: Ss = Ss(ρ(x, t)).

Supposing that coordinate stochasticity induces new momentum part it is then nat-

ural to expect that the latter in turn will affect the particle action S. The simplest

way to take into account this ‘feed back’ is to suppose that part of S becomes

ρ-dependent. We suppose that this part is proportional to Ss, and denote the dif-

ference by S−. So that we put

S = S− + Ss(ρ) (15)

and treat S− and ρ as independent fields. Next we put S = S− + Ss(ρ) into the

Reginatto action functional (9) and apply the variational principle to the resulting

functional

ΦB′ =

∫
ρ

(
∂t(S− + Ss) +

1

2m
∇(S− + Ss) · ∇(S− + Ss)

)
d3xdt

(16)

+

∫
ρ

(
V +

�2

8m

1

ρ2
∇ρ · ∇ρ

)
d3xdt

treating δS− and δρ as independent variations, vanishing at the end points. The

resulting equations of the extremals read

∂ρ

∂t
+

1

m
div

(
ρ∇S− +

∂Ss

∂ρ
∇ρ
)

= 0 (17)

∂S−
∂t

+
1

2m
(∇(S− + Ss))

2 − 1

m

∂Ss

∂ρ

(∇ρ · ∇S− + ρ∇2S−
)

− 1

m

∂Ss

∂ρ

((
ρ∇2ρ+ (∇ρ)2) ∂Ss

∂ρ
+ ρ(∇ρ)2∂

2Ss

∂ρ2

)
= 0. (18)

Putting here S− = S − Ss and using again the continuity equation we obtain the

Bohm equations (4) for ρ and S, as desired. Taking into account that
√
ρ exp(iS/�)
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satisfies the Schrödinger equation we see that the ps-potential Ss has the meaning

of ρ-dependent part of the wave function phase.

We note that this result is valid for any differential function Ss(ρ) (but not if

Ss depends on ∇ρ). One can use this freadom to subject Ss to some desired

constraints. One natural constraint is the vanishing average of ps, ps = 0. This

can be satisfied with Ss = λ ln(l3ρ), where l is a length parameter (so that l3ρ be

dimensionless), i.e.,

ps =
λ

ρ
∇ρ. (19)

This ensures the coincidence of total momentum average p :=
∫
ρ(x, t)pd3x,

with the average 〈p̂〉 of quantum momentum p̂ in the corresponding state ψ =√
ρ exp(iS/�) (using the known equality 〈p̂〉 = pc [17]). Furthemore we fix

the parameter λ as �/2, i.e., we use ps = �(∇ρ)/2ρ. To shorten the notation

herefrom we consider the one-dimensional motion only.

Formally the quantities ps/m, ∇S/m and p = (ps + ∇S)/m coincide with

the osmotic, current and forward velocities u, v, v+ in the Nelson SM, where

many of their properties are thoroughly examined (see for example [16–18, 22]

and references there in). Our interest here is focused on the properties related to

the possibility ps to describe (at least partially) nonclassical fluctuations of the

quantum-mechanical momentum p̂. In this aim we compare statistical properties

of ps with those of ‘nonclassical part’ p̂nc of p̂ [11], p̂nc := p̂− pc, pc = ∂S/∂x.
Hall [11] found the first two moments of pnc as

〈p̂nc〉 = 0, 〈p̂2
nc〉 = 〈p̂2〉 − 〈p2

c〉 = (Δp̂)2 − (Δpc)
2 (20)

(δx)2(Δp̂nc)
2 =

�2

4
(21)

where δx is the Fisher length, (δx)2 = 1/IF, the equality (21) being refered as

‘exact’ UR. The above three properties are shared by ps too (established in terms

of the osmotic momentum mu earlier, see e.g. [5, 17] and references their in ):

〈ps〉 = 0, 〈p2
s 〉 = 〈p̂2〉 − 〈p2

c〉 = (Δp̂)2 − (σpc
)2 (22)

(δx)2(σps
)2 =

�2

4
(23)

where σps
, σpc

are variances of ps, pc: (σpc
)2 := p2

c − pc
2. Further common

properties of p̂nc and ps could be revieled on examples of some specific states

only.

We however have to note here an important difference in the properties of p̂nc

and ps: the linear correlation between pc and ps (i.e., the covariance Cpspc
may
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not vanish, while the covariance Δpncpc
of p̂nc and pc vanishes in all states [11].

Cpspc
may vanish in some specific families of states only, e.g. in ρ corresponding

to the cannonical CS. (It is not vanishing e.g. in squeezed states - see Section 5).

When Cpspc
�= 0 the total second moment p ≡ pc + ps is not equal to that of p̂.

With nonvanishing ps-pc covariance the Hall and Reginatto scheme of derivation

of “quantum ensemble” equations (i.e., Bohm equations (4)), is not applicable.

Therefore if ensemble interpretation is applied to our scheme (with ps) of deriva-

tion of Schrödinger equation, the resulting nonclassical ensemble could be called

“semi-quantum” or, more briefly ps-ensemble. And if one interpretes pc/m and

ps/m as current and osmotic velocities respectively then Nelson SM scheme is

applicable.

4. R-S Type URs for Stochastic System

Inequalities of the type of Robertson-Schrödinger UR (R-S URs) can be naturally

and easily constructed for classical stochastic systems using the semi-definiteness

of the covariance matrix (the matrix of dispersions [8]) of two random quantities.

Gnedenko [8] proved that all principal minors of the matrix of dispersions of any

n random quantities are nonnegative. For n = 2 this means that the product of

the two variances is greater or equal to their squared covariance. Thus for any two

random observables ξ, η the following inequality is valid

σ2
ξ σ

2
η ≥ C2

ξη (24)

where σ2
ξ is the variances of ξ, σ2

ξ = ξ2 − ξ 2, and Cξη is the covariance, Cξη =

ξη − ξ η. Here ξ is the mean value of ξ. If the random quantity ξ admits a proba-

bility density ρ(ξ, t) one has ξ =
∫
ρ(ξ, t)ξ dξ. The inequality (24) is minimized

iff ξ and η are linearly dependent [8]. For brevity the stochastic quantity and its

values are denoted with the same letter.

We see that the inequality (24) is of almost the same form as the R-S UR (2) in

quantum mechanics, the mean commutator of the two observables being missing

only. Therefore the inequalities of the form (24) in stochastic mechanics and in

any probability theory could be naturally called the R-S type URs. For given two

quantities ξ, η such inequality should briefly be referred to as ξ-η UR.

Next we construct and discuss the R-S type URs for the coordinate and momen-

tums of the stochastic particle. In the ’semi-quantum ensemble’ interpretation we

have to treat ps+pc ≡ p as total particle momentum and compare the x-pUR with

x̂-p̂ UR in quantum mechanics. Similarly URs between any other pair of the set
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(x, pc, ps, p) is to be compared with UR of the corresponding quantum pair from

(x̂, p̂c, p̂nc, p̂). In the stochastic mechanics interpretation the set (x, pc, ps, p)
coinsides with (x, mv, mu, mv+), where v, u, v+ are current, osmotic and for-

ward velocities.

In stochastic mechanics x-mu UR (the osmotic UR) was established in [21] and

[5] in the ‘Heisenberg form’ (σx)2(σmu)2 ≥ �2/4, which we rewrite as

(σx)2(σps
)2 ≥ �2/4. (25)

In [16,17] the osmotic inequality was extended to the processes with non constant

diffusion coefficient ν(x, t) in the form (σx)2(σu)2 ≥ ν 2. Comparing (25) with

(24) we see that the squared x-ps covariance is universally constant and equaled

to �2/4. The covariance itself is

Cxps
= −�/2. (26)

In Heisenberg UR in quantum mechanics the universal term �2/4 comes from the

nonvanishing commutator of coordinate and momentum operators. We now see

that in SM and in ‘quantum ensemble’ aproach this term comes from the x-ps

covariance. The constancy of the covariance Cxps
is, in fact, due to the vanishing

first moment of our ps. Due to this property the variance of ps is proportional to

the Fisher information (as required in [12] for the variance of their ‘nonanalyz-

able’ pN), and the x-ps UR (25) coincides with the known Cramer-Rao inequality

σ2
x IF ≥ 1. For Gaussian ρ(x, t) one has IF(ρ) = 1/σ2

x [20]. Therefore for Gauss

distribution the UR (25) is minimized along with the Cramer-Rao inequality. The

UR (25) is to be compared with the x̂-p̂nc UR (Δx̂)2(Δp̂nc)
2 ≥ �2/4 [11] and

with the chain inequalities (12).

Unlike Cxps
the covariances of other pairs of the set {x, pc, ps, p}, though having

to obey the R-S type URs (24), do not take universally fixed values. In the next

section we shall discuss this on the (one-dimensional) examples, comparing the

calculated moments with the corresponding ones in quantum mechanics.

5. Examples: Coherent States and Squeezed States

In these section we calculate the first and second moments of x, ps, pc and p =
ps+pc and the related R-S types of URs in ‘stochastic states’ ρ(x, t) corresponding

to the Glauber CS and canonical SS in quantum mechanics, and compare them

with the related quantum moments. Nelson stochastic mechanics (SM) images of

CS and SS have been discussed previously in several papers: of CS in [10–18]
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and of SS and CS - in [16–18, 22] in the context of ‘stochastic mechanics and

control theory’. Here we write these images and the related moments and URs

in more standard quantum optical and quantum mechanical parameters (see e.g.

[2, 4, 26–28]).

a) Glauber coherent states. Glauber CS [7] are defined as eigenstates |α〉 of the

boson annihilation operator â,

â|α〉 = α|α〉, â =
1√
2�

(
x̂
√
mω +

i√
mω

p̂

)
(27)

where x̂ and p̂ are coordinate and momentum operators, and m and ω are pa-

rameters of dimension of mass and frequency correspondingly. For the harmonic

oscillatorm is the mass of the particle, and ω is the oscillator frequency. These CS

have been introduced by Glauber in 1963 [7] and are known as the most classical
quantum states. In |α〉 the first and second moments of x̂ and p̂ read

〈α|x̂|α〉 =

√
2�

mω
Reα, 〈α|p̂|α〉 =

√
2�mω Imα (28)

(Δx̂)2 =
l2

2
, (Δp̂)2 =

�2

2l2
, Δxp = 0. (29)

where l2 = �/mω (the length parameter). We see that the moments minimize

R-S UR (3) on the lowest possible level (which is the equality in the Heisenberg

UR): (Δx̂)2(Δp̂)2 = �/4.

To perform the comparison with the moments in ‘semiclassical ensemble’ and in

SM we need the time-dependent CS, i.e., eigenstates of â that obey the Schrödinger

equation. The first requirement can be met if the CS wave function depends,

up to a x-independent phase factor, on t through the eigenvalue α: ψα(x, t) =
exp(iϕ(t))ψα(t)(x), âψα(x, t) = α(t)ψα(x, t). Such stable CS ψα(x, t) ex-

ist for the stationary harmonic oscillator Hamiltonian, Ĥ = −(�2/2m)∂xx +
(mω2/2)x2 with α(t) = α exp(−iωt), ϕ(t) = −ωt/2 and

ψα(t)(x)=

(
1

πl2

) 1

4

exp

[
−1

2

(x
l
− α(t)

√
2
)2

+
1

2

(
α2(t) − |α(t)|2)] (30)

where l =
√

�/mω (the length parameter). For the stable CS ψα(t)(x) the first

and the second moments of x̂ and p̂ are given by the same formulas (28), (29) but

with the time-dependent eigenvalue α(t).
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Next we put |ψα(t)(x)|2 = ρcs(x, t) and calculate the stochastic moments of x
and ps. Formula in (30) readily shows that (we put α1 = Reα, α2 = Imα)

x = l
√

2α2(t) and σ2
x =

l2

2
(31)

and provides ps = −� (x− x) /l2, wherefrom

ps = 0, and σ2
ps

=
�2

2l2
· (32)

We see that x-ps UR (25) is minimized [16]: σ2
xσ

2
ps

= �2/4.

To find the first and second moments of pc and the ‘total momentum’ p = pc + ps

we need the action S(x, t),

S(x, t) =
�

l
α2(t)

√
2x− �α1(t)α2(t) − �

ωt

2
· (33)

Then we get pc = �
√

2α2(t) and

p = pc =

∫
pc ρcs(x, t) dx =

�

l

√
2α2(t) (34)

verifying the known coincidence of x and p with quantum means 〈x̂〉 and 〈p̂〉
[5, 16].

Next we calculate the second moments of pc and p and the related covariances.

The covariance Cxps
, as noted in the previous section, is universally equal to

−�/2. The correlation between pc and ps in ρcs turned out to be vanishing:

Cpcps
= pcps = 0. (35)

Thus the required in [12] properties (10) of the ‘nonanalyzable’ momentum pN

are satisfied by ps in ρcs and the first two moments of ps and p̂nc and that of p and

p̂ do coincide. The third and higher moments of ps and p̂nc, however are found

to coinside at all times in the ground state only. For example 〈p3
s 〉 = 0, while

〈p̂3
nc〉 = 〈p̂〉3 + 〈p̂〉/2 − 〈p̂〉2, 〈p̂〉 =

√
2Imα(t).

For the rest two variances and covariances in ρcs we get

Cxpc
= 0, Cxp = Cxpc

+ Cxps
= −�/2

(36)

σpc
= 0, σ2

p = σ2
ps

=
�2

2l2
·

Note the vanishing variance of the momentum pc := ∂S/∂x in ρcs. As we shall

see below this is again a particular property of ρcs.
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Now one can easily check that the R-S type URs (11) for all the coordinate-

momentum pairs x-pc, x-ps and x-p are minimized in ρcs. In particular the chain

inequalities [5, 21]

(Δx̂)2(Δp̂)2 ≥ σ2
xσ

2
ps

≥ �2/4 (37)

are also minimized. These minimizations follow from the fact that in ρcs all quan-

tities x, ps, pc are linearly dependent [8]. We note that in terms of the SM veloc-

ities u = ps/m, v = gradS/m all the above CS-related moments and URs (25),

(37) were considered previously [5, 21] [16, 18].

In quantum mechanics CS |α〉 are regarded as the ‘most classical’ states. They

can be uniquely determined as states minimizing the inequality [26]

(Δ˜̂x)2 + (Δ˜̂p)2 ≥ 1 (38)

where x̃ and ˜̂p are dimensionless coordinate and momentum. One can see that

in ρcs the sum σ2
x̃ + σ2

p̃ also equals unity. However in other states the inequality

σ2
x̃ + σ2

p̃ ≥ 1 may be violated, as we shall see on the example of squeezed states.

b) Squeezed States. Squeezed states (SS) are defined as quantum states in which

the variance (uncertainty) of coordinate or the variance of the momentum is less

than its value in the ground state of the oscillator. The SS are known as nonclas-
sical states since they exhibit many nonclassical properties. The famous example

of SS are the eigenstates of the linear combination of Bose creation and annihi-

lation operators ũâ + ṽâ† ≡ Â [28], which we rewrite in terms of x̂ and p̂ as

μx̂/l + iνlp̂/� (μ = (ũ+ ṽ)/
√

2, ν = (ũ− ṽ)/
√

2),

(μx̂/l + iνlp̂/�)|α;μ, ν〉 = α|α;μ, ν〉 (39)

where α is a complex number, l is the length parameter, and

|u|2 − |v|2 = 2Re(μ∗ν) = 1 (40)

which are to ensure [Â, Â†] = 1. It was noted in [27] that SS |α;μ, ν〉 are states

that minimize the R-S UR and coincide with the ‘correlated CS’ of ref. [2]. That is

why they are also called generalized intelligent states or R-S intelligent states [27].

In the coordinate representation the SS wave functions take the form of exponen-

tial of a quadratic. These states are time-stable for any quadratic in x̂ and p̂Hamil-

tonian, in particular for the harmonic oscillator with constant or time-dependent

frequency ω(t). The normalized time-dependent wave function of an initial SS
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|α;μ0, ν0〉 reads

ψαμ0ν0
(x, t) =

(
lν(t)

√
2π
)
−

1

2

exp

[
− μ(t)

2l2ν(t)

(
x− l

μ(t)
α

)2
]

(41)

× exp

[
−1

2

(
|α|2 − μ∗(t)

μ(t)
α2

)]

where α is constant, and μ(t), ν(t) (μ(0) = μ0, ν(0) = ν0) satisfy certain first or-

der equations, which can be reduced to the classical harmonic oscillator equation

ε̈ + ω(t)2ε = 0 through the substitutions μ(t) = −iε̇/
√

2ω0, ν(t) = ε
√
ω0/2,

ω0 being constant of inverse time dimension [3, 26]. With such μ(t), ν(t) the op-

erator Â is a dynamical invariant of the nonstationary oscillator, i.e., dÂ/dt = 0.

The family of stable SS includes the family of CS as a subset: If ε(0) = 1/
√
ω0

and ε̇(0) = i
√
ω0 (that is μ0 ≡ μ(0) = 1/

√
2, ν0 ≡ ν(0) = 1/

√
2) then the wave

function (41) represents the time-evolution of an initial Glauber CS |α〉. In fact, in

terms of ε, ε̇ the wave functions (41) have been constructed and discussed earlier

in [15] as time evolved CS for quadratic systems.

The first and the second moments of x̂ and p̂ in SS (41) read [3, 26]

〈x̂〉 = 2lRe(α(t)ν∗(t)), 〈p̂〉 = 2
�

l
Im(α(t)μ∗(t)) (42)

(Δx̂)2 = l2|ν(t)|2, (Δp̂)2 =
�2

l2
|μ(t)|2, Δxp = �Im(μ∗(t)ν(t)) (43)

the second moments saturating the R-S UR (3).

To calculate the stochastic moments in ρss = |ψαμ0ν0
(x, t)|2 we have to find the

momentum potentials S and Ss = (�/2) ln ρss (furthermore we skip the argument

t of α(t), μ(t) and ν(t))

S(x, t) = − �

2l2
Im
(μ
ν

)
x2 +

�

l
Im
(α
ν

)
x+ g1(t) (44)

ρss(x, t) =
1

|ν|l√2π
exp

[
− 1

2l2|ν|2 [x− 2lRe(αν∗)]2 + g2(t)

]
(45)

where the terms g1(t), g2(t) are x-independent,

g1(t) = −1

2
Im

(
α2

μν

)
− 1

2
arg(ν) +

1

2
Im

(
α2μ∗

μ

)
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g2(t) =
2

|ν|2 Re2(αν∗) + Re
(
α2/μν
)

+ Re
(
μ∗α2/μ

)− |α|2 .

The first moments of x and p in ρss coincide with the quantum means 〈x̂〉, 〈p̂〉,
equations (42). For the second moments of x, pc, ps, p = ps + pc we find

Cxpc
= −�Im(μν∗), Cpspc

=
�2

2l2|ν|2 Im(μν∗)

Cxp = −�

(
1

2
+ Im(μν∗)

) (46)

σ2
x = l2|ν|2, σ2

p =
�2

l2|ν|2
(

1

2
+ Im(μν∗)

)2

σ2
pc

=
�2

l2
|μ|2 sin2(δϕ), σ2

ps
=

�2

4l2|ν|2
(47)

where δϕ = argμ− arg ν. From (46) and (47) it follows that the R-S URs for all
pairs of observables x, pc, ps, p are minimized in ρss,

σ2
xσ

2
pc

= C2
xpc

= �2Im2(μν∗), σ2
xσ

2
p = C2

xp = �2

(
1

2
+ Im(μν∗)

)2

(48)

σ2
xσ

2
ps

= C2
xps

=
�2

4
, σ2

pc

σ2
ps

= C2
pcps

=
�4

4l4|ν|4 Im2(μν∗), (49)

as expected due to the linearity of pc, ps, p in terms of x.

In ρss however, unlike the case of ρcs, the dimensionless variances of x and mo-

mentum p (or ps) are no more equal and none of the stochastic momentum un-

certainties coincides identically with the quantum uncertainty Δp̂. These second

moment’s differences could be interpreted as due to the ‘nonclassicality’ of the

SS. The calculations shows that the variance of ‘semi-quantum ensembe’ moment

p = ps + pc can be greater or less than (Δp̂)2. The ratio

rp =
[
(Δp̂)2 − σ2

p

]
/(Δp̂)2

could be used to described the deviation of momentum fluctuations in ps-ensemble

state ρψ from quantum fluctuations in ψ. For SS ψαμν it takes the form

rp = − Im(μν∗)

|μν|2 (50)

and its value is oscillating between ±1. It shows that the two variances coinside

in states with μ and ν phase difference equal to 2nπ. Due to the nonvanishing

covariance Cpc ps
the variance of p may vanish for certain values of μ, ν. In such

states the variances σ2
x and σ2

p could not preserve the inequalities (1) and (38).
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Conclusion

It has been shown that the Bohm equations, which are equivalent to the Schrödinger

equations, Hamilton-Jacobi equation admiting an additional particle momentum

ps of the form of stochastic mechanics osmotic momentum and using the change

of variables. The variational functional is similar that of Reginatto and Hall

[11, 23] which incorporates Frieden [6] information. The fluctuations of ps, clas-

sical momentum ∂S/∂x ≡ pc and the ‘total particle momentum’ p = ps + pc and

the uncertainty relations (URs) are examined and compared corresponding quan-

tum ones on the example of canonical coherent and squeezed states variances) of

p and quantum p̂ and the related coincide, while in SS they reveal differences.

The latter are due to the nonvanishing deviation of variance of p from that of p̂
bounded between ±1. Thus in the ensemble interpretaion, our ‘ps-ensemble’ can

only approximately and partially reproduce statistical properties of ‘quantum en-

semble’. The correspondence with the Nelson stochastic mechanics is obtained

via the identification of ps/m, pc/m and p/m with the osmotic, current and for-

ward particle velocities.
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