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DEFECTS IN FOUR-DIMENSIONAL CONTINUA:
A PARADIGM FOR THE EXPANSION OF THE UNIVERSE?
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Abstract. The presence of defects in material continua is known to produce inter-

nal permanent strained states. Extending the theory of defects to four dimensions

and allowing for the appropriate signature, it is possible to apply these concepts to

space-time. In this case a defect would induce a non-trivial metric tensor, which

can be interpreted as a gravitational field. The image of a defect in space-time can

be applied to the description of the Big Bang. A review of the four-dimensional

generalisation of defects and an application to the expansion of the universe will

be presented.

1. Introduction

The correspondence between the space-time description typical of the general rel-

ativity theory (GR) and the geometrical properties of continua has remote roots in

the ether theories of the XIXth century (see some interesting references to 1839

Mac Cullagh theory in a review by A. Unzicker [23]). More specifically a for-

mal link between moving dislocations and special relativity was pointed out by

Frank [4] in 1949, then variously discussed by a number of other authors (cited

in Section 2.1 of [23]). It is the very geometrization of space-time which imme-

diately suggests a correspondence with material continua, their metric properties,

and the theory of elasticity. This long known analogy has been, and is now and

then, revived, but has never been taken too seriously and/or used as a constitutive

theory of space-time. There are of course philosophical reasons for this mistrust,

in a description of our universe basically dualistic (space-time on one side, mat-

ter/energy on the other), where the attribute of “reality”, whatever it is, is easily as-

signed to matter/energy and rather ambiguously recognized for space-time. Even

within the framework of relativity it is in practice hardly accepted the idea that

time (apart from signature) is really like the other dimensions of space and that

space-time with its metric properties is something more than a simple conceptual
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artifact. In the present work I shall review the essentials of an interpretation of

space-time as a real, though peculiar, continuum where defects play a fundamen-

tal role and I will draw some cosmological conclusions from this approach. I am

in fact trying to be consistent and to seriously take space-time as an existing real

entity, most in the sense of what Einstein said in an address delivered on May 5th,

1920, at the University of Leyden: “. . . according to the general theory of relativ-
ity space is endowed with physical qualities; in this sense, therefore, there exists
an ether. . . . But this ether may not be thought of as endowed with the quality
characteristic of ponderable media, as consisting of parts which may be tracked
through time . . . ” [3]. There is a specific motivation to try and explore again

the present description of space-time. Since nine years or so the observation of

cosmic phenomena has evidenced what has reasonably been interpreted as an ac-

celerated expansion of the universe. This behaviour has been initially recognized

considering the apparent magnitude of type Ia supernovae [14, 16] (SnIa). SnIa’s

are a special type of supernovae which are commonly thought to be originated

from white dwarfs in binary systems, with an implosion mechanism based on the

reaching of the Chandrasekhar mass limit [6]. This mechanism leads to a more or

less fixed absolute luminosity which makes SnIa’s allegedly good standard can-

dles (see [1,8]). The fact that the observed luminosity of such supernovae appears

to be systematically smaller than what expected from their cosmic redshift, sug-

gests the idea of an accelerated expansion. The discovery of the acceleration has

stimulated an intense and vast theoretical effort in order to explain the unexpected

behaviour. In general the attempts of finding the reasons for the acceleration are

based on some mechanism able to produce a negative pressure on space-time,

which is mostly attributed to some “dark” (i.e., otherwise unseen) energy com-

ponent present in the universe. This dark energy ranges from the simplest (and

most effective) cosmological constant, uselessly introduced by Einstein in order

to avoid the whole expansion of the universe, to more sophisticated variants of

some exotic energy fluid endowed with a non-standard equation of state. Other

attempts, instead of directly introducing dark actors, concentrate in looking for

heuristic forms of the space-time Lagrangian, other than the standard Einstein-

Hilbert one. The approach which is outlined here tries rather to build on the

analogy with known, even though enlarged and extended, properties of continua.

As we shall see the results are interesting and promising.
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2. Elasticity in N Dimensions

Suppose that we have a featureless material continuum. Perfect homogeneity is

assumed. In the view of a physicist, and assuming by default that all appropriate

mathematical conditions are fulfilled, it is natural to associate with the contin-

uum an Euclidean appropriately dimensioned manifold with the related geometry.

Each point in the continuum will naturally be labelled by Cartesian coordinates

(or any other sound coordinate system). If now, in the case of a real continuum,

we consider a boundary and apply to it a set of forces globally in equilibrium,

what happens is that our manifold will be stretched, or, in other terms, each point

within the chosen boundary will be moved away from its original position. If we

remove the applied forces, we expect the induced strain to be nullified bringing

each point back to its former rest position. We know this is essentially a simple

pictorial description of elasticity. In terms of coordinates of a given point, la-

belling the unstrained situation by means of ξ’s and the strained one by means of

x’s, we may write

xμ = ξμ + uμ (1)

ranging the μ apex from 1 to N (dimension of the manifold). The uμ’s are the

components of the displacement N -vector leading from the original unstrained

to the final strained position. In practice the elastic deformation is described by

giving a peculiar displacement vector field. The displacement field will in general

not be uniform, otherwise we would have a rigid translation neutralizable by a

simple coordinate transformation. The coordinates uμ’s may be expressed equally

well in terms of the x’s (intrinsic coordinates) or of the ξ’s (extrinsic coordinates).

So far we may use also that x’s are differentiable functions of ξ’s, i.e.,

dxμ =
∂xμ

∂ξν
dξν . (2)

In practice we may compare two distinct manifolds, the unstrained or reference

one and the strained or natural one [12], whose points are in one to one corre-

spondence. Comparing corresponding lengths in the two manifolds leads to the

definition of the strain tensor [7]

εμν =
1

2

(
∂uμ

∂ξν
+

∂uν

∂ξμ
+ ηαβ

∂uα

∂ξμ

∂uβ

∂ξν

)
(3)

which enters the metric tensor of the strained manifold expressed in extrinsic co-

ordinates

gμν = ημν + 2εμν . (4)
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In equations (3) and (4) ημν means a component of the metric tensor of the refer-

ence manifold. As previously written we should expect this to correspond to an

Euclidean geometry, however, in order to apply our approach to space-time, we

shall allow for a Minkowski geometry. Actually the problem of the origin of the

Lorentzian signature from a fully symmetric N -dimesional manifold is an open

one. We know that we may formally go from the Euclidean to the Minkowskian

geometry introducing an imaginary coordinate that will act as time (Wick’s rota-

tion), however no physically based mechanism for that has been found until now.

According to the assumptions made so far and to equation (2) we expect also

ημν = gαβ
∂xα

∂ξμ

∂xβ

∂ξν
· (5)

De SaintVenant’s integrability condition for equation (5) is

Rαβμν ≡ 0 (6)

where Rαβμν is a generic element of the Riemann tensor for the natural manifold.

When condition (6) is satisfied, globally defined xμ
(
ξ1, ξ2, . . .

)
’s exist and in the

same time the strain of the natural manifold cannot be perceived from inside, or,

which is the same, the metric in intrinsic coordinates always turns to be globally

Euclidean (Minkowskian).

All this is typical of pure elasticity and the corresponding deformations are not

seen from within the deformed medium.

3. Defects

The scenario outlined in the previous section becomes richer when the notion

of defect is introduced. A defect may be reduced to its essentials generalizing

equation (1) to the case of a singular displacement field. Differently stated, we

may substitute equation (2) with

dxμ = Φμ
ν dξν

where now Φμ
ν dξν is a non-integrable vector-valued one-form.

A complete classification of defects exists according to the peculiarities of Φμ
ν .

Consider for instance a closed path in the manifold such that∮
Φμ

ν dxν = −bμ �= 0. (7)
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Figure 1. Schematic representation of a dislocation. The pictorial view on

the left is apparently applied to a crystal, but this is absolutely not needed.

On the right a closed path in the real manifold is transposed to the reference

manifold evidencing the Burgers vector.

The quantity bμ produced by the integration in (7) is a component of the Burgers

N -vector which expresses the fact that a closed contour in the reference manifold

does not correspond to a closed one in the natural manifold, and vice-versa. Burg-

ers vector measures the size of the non-closure. If the defect which is the origin of

this behaviour is thought to be localized in the manifold, then we are considering

a linear (or edge) defect whose direction is given by the Burgers vector. Figure 1

shows a typical dislocation in a crystal. Using a lattice makes the graph clearer

but is not necessary; a closed contour encircling the edge of the singularity corre-

sponds to an open path in the reference manifold, as it can be seen on the right,

where also the Burgers vector is drawn.

The integral in (7) may be transformed by means of Stoke’s theorem, becoming

bμ = −
∫∫

T
μ
αβ dxβ ∧ dxα.

Now the integration is over the oriented surface enclosed in the former integration

path. T
μ
αβ is a dislocation density and corresponds (as being anti-symmetric in α

and β) to the torsion tensor of the manifold.

Another well known type of edge defect is obtained when condition (6) is not

fulfilled. In this case parallelly transporting a vector n along a closed contour

ends with a rotated vector with respect to the initial one: we have a disclination.

It is indeed

δnν =

∮
dnν = −

∫∫
Rν

μαβnμ dxα ∧ dxβ �= 0.
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The curvature tensor is now interpreted as a disclination density.

When considering space-time we have a four-dimensional manifold with Lorentz-

ian signature. What has been written concerning defects still holds and it is re-

markable that curvature (then gravity) can be read as a consequence of the pres-

ence of defects in the manifold. In the case of space-time edge defects can be

qualified in terms of the Poincaré group. In fact a general deformation of the con-

tinuum may be thought as a combination of a translation and a local rotation. If r
is the N -vector localizing a point in a given manifold and a given reference frame,

the new position after the deformation has been applied may be written [15]

r′ = T (r) + Λ(r)r.

T (r) respectively Λ(r) correspond to local translation and Lorentz transformation

operators. Within this approach the presence of a defect is expressed in terms of

the soldering one form, which introduces the singular behaviour of the displace-

ment field in the typical line element (then the metric tensor)

ω = dx + ΓT + ΓLx, ds2 = ημνω
μ ⊗ ων

and ΓT respectively ΓL represent the translation and the Lorentz connection. By

this method ten separate types of edge defects of space-time are found [15].

In order to complete the analogy between continuous media and Riemannian man-

ifolds we may recall that, at least in the linear elasticity theory, there is a rather

simple proportionality law between strains and stresses, which is the general form

of Hooke’s law

σμν = Cμν
αβεαβ (8)

where Cμναβ is the elastic modulus tensor, peculiar to any given material contin-

uum.

We may think to generalize (8) to any number of dimensions, and, even more,

to space-time, although in this case the interpretation of the stress tensor σ is not

at all obvious. This generalization may be useful when looking for appropriate

Lagrangians describing the state of a given manifold, with or without defects.

By the way, in an isotropic medium (which could be the case of space-time) the

elastic modulus tensor assumes the simple form

Cαβγδ = ληαβηγδ + μ (ηαγηβδ + ηαδηβγ)

depending on two parameters only: the Lamé coefficients λ and μ. The Hooke’s

law becomes

σμν = λημνε + 2μεμν (9)

where ε = εα
α is the trace of the strain tensor.
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Figure 2. A point defect obtained by contraction towards the center of an

initial hollow sphere.

3.1. A Point Defect

Edge defects are not the only possibility. A simple and interesting case is the one

of a point defect, which is graphically schematized in Figure 2. The imagined

process goes back to Vito Volterra [24], who studied plastic deformations and

defects at the beginning of the XX century. We may think of digging out of a

continuum a sphere of the material (whatever it is), then close the hole left behind,

by pulling inwardly on the walls.

In order to avoid the problems of singularities, Volterra applied his ideal process

outside a fixed reference surface in the medium surrounding the defect, but we

may think to go on until the center. Of course we will produce a singularity (the

actual point defect) and induce everywhere a spherically symmetric strained state.

The displacement vector field is easily written

u = (ψ(r), 0, 0, . . . ). (10)

The only non-zero component is of course the radial one and it will depend on the

distance r from the center (the defect) only.

From (10) it is also easy to find the induced strain tensor. Let us specialize to a

four-dimensional manifold. The “radial” coordinate, with Lorentzian signature, is

indeed time (τ , measured in meters). Let us then use polar coordinates (arbitrary

origin for three-space) for the space submanifold. The non-zero components of
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the strain tensor will be

ε00 =
1

2

[
2
dψ

dτ
+

(
dψ

dτ

)2
]

εrr =
ψ2

2

εθθ =
ψ2

2
r2

εφφ =
ψ2

2
r2 sin2 θ.

(11)

Using equation (4) we are now able to write the typical line element in the strained

manifold

ds2 =

(
1 +

dψ

dτ

)2

dτ2 − (1 − ψ2
) (

dr2 + r2dθ2 + r2 sin2 θdφ2
)
.

The presence of the defect is expressed by the discontinuity of the derivative of

ψ in the origin, whereas ψ(0) is finite and measures the “size” of the defect.

Excluding the origin, it is possible to redefine time choosing

dt =

(
1 +

dψ

dτ

)
dτ

which gives

t = τ + ψ + T0.

In the origin (t = τ = 0) it is

ψ(0) = −T0.

This change in the time coordinate, transforms the line element into

ds2 = dt2 − a2(t)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
(12)

with

a2(t) = 1 − ψ2(t). (13)

In (12) we immediately recognize a Robertson-Walker (RW) line element, which

is not a surprise since RW’s is the most general line element for the assumed

symmetry. However here we have established a correspondence between the RW

metric and the presence of a defect in the origin, treating the manifold as a material

continuum.
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Figure 3. Phase space of a point particle interacting with an isotropic homo-

geneous medium. Changing x into a, the scale factor of a RW universe, the

phase space stays unchanged.

4. A Lagrangian for Space-Time

The correspondence found in the previous section between the metric of a con-

tinuum with a point defect and the one of a RW universe is suggestive, however

in order to treat a universe with matter an appropriate Lagrangian is needed. As

it is well known, there is no general recipe for building Lagrangians, so we may

proceed in a more or less formal way or try to look for analogies with already

known situations.

There is indeed a very simple analogy we may consider. It is synthesised in

Figure 3. The phase space of a point particle interacting with an homogeneous

isotropic medium is simply bidimensional: the motion of the particle can only

be straight and the relevant parameters are just the position x and speed dx/dt
of the particle. If we now consider a RW universe we see that its phase space is

also bidimensional, so it suffices to change the position of the particle with the

scale factor of the universe, a, and the speed with the rate of change of a, ȧ, and

Figure 3 is converted into the phase space of the universe. In this case the free

motion corresponds to an inertial expansion (linear increase of a) and the effect of

a braking force is the equivalent of a decelerated expansion while a driving force

corresponds to accelerated expansion.

Let us then examine the system composed of a point particle and an homogeneous

isotropic medium. There exists a simple situation in which viscous motion can be

described by means of the action integral [2, 19]

S =
m

2

∫
e(αt+βx)/mẋ2 dt. (14)
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The Lagrangian in (14) is rather naive, but it can be recast in a relativistic invariant

form, as

S = m

∫
eγ·γ ds = m

∫
eημνγμxν

ds (15)

where the exponent contains the scalar given by the internal product of two four-

vectors, γ = (α, β, β, β) (whose components are the “viscous” coefficients of

the medium) and r = (t, x, y, z), which corresponds to the position vector of the

particle in space-time and ds is the line element of the world-line of the particle.

The interaction with the medium is here described by a modification, or, to say

better, an extension of the usual relativistic free-particle Lagrangian.

Exploiting the analogy between the phase spaces, we may conjecture from (15)

an action integral for space-time as such [20]

S =

∫
e−gμνγμγν

R
√−g d4x. (16)

The exponent in (16) is the simplest scalar we can build combining the configu-

ration “coordinates” of our manifold (the components of the metric tensor) with a

four-vector. The sign has been chosen with hindsight, once the interesting conse-

quences of this choice have been worked out. The rest is the traditional Einstein-

Hilbert action. The vector γ will be non-trivial, i.e., a function of the coordinates,

whenever defects are present in the manifold.

The Accelerated Expansion

We may study the implications of (16) in the case of a RW symmetry, which is

induced by a point defect1. The effective Lagrangian density is then

L = e−χ2 (
aä + ȧ2

)
a (17)

where χ is the time component of the four-vector γ (the only non-zero component,

because of the symmetry). If we introduce for γ the typical condition for incom-

pressibility in the elasticity theory, that would now be ∇μγμ = 0, we obtain

χ ∝ 1

a3
(18)

a sort of a four-dimensional Coulomb’s law.

1Actually the same general results hold also in the case that the defect is represented by any
given space-like hypersurface.
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Figure 4. Expansion rate of a RW empty space-time with a defect in the

origin. The behaviour includes an initial inflationary era, followed by an

accelerated expansion era, and finally by a decreasing expansion rate leading

asymptotically to a stop.

From (17) and (18) it is possible to deduce ȧ as a function of a, which is shown

in Figure 4 (see [20]). Remarkably, the expansion rate starts from an infinite

value, giving rise to an initial inflationary era, then an accelerated expansion epoch

follows. Finally the expansion starts again to slow down asymptotically reaching

zero.

This result is interesting in view of the observed accelerated expansion of the

universe, furthermore displaying a much reassuring asymptotic behaviour, and

giving, as a free gift, also inflation. However it must be reminded that we are

dealing with the empty space time only, so what we are deducing is the pure

effect of the defect at the origin. Matter can be introduced in the Lagrangian in

the usual way, i.e., adding appropriate terms minimally coupled to the geometry.

This theory, which we have called Cosmic Defect (CD) theory, has indeed been

applied to the fit of the SnIa luminosity data, giving good and encouraging re-

sults [21].
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5. The “Elastic” Approach

Pursuing literally the elastic analogy we may try another approach to the defini-

tion of the Lagrangian. We may treat the strain induced by the presence of a defect

as a field in the space-time rather then a property of the space-time. A weakness

of this approach is in the fact that we already know, for instance, that attempts to

treat gravity as a field in the space-time usually fail. Despite this, let us see how

cosmology would look like. We must consider the elastic energy density asso-

ciated with a strained state, which would be w = 1
2σαβεαβ . The corresponding

action integral for the (empty) space-time is then

S =

∫ (
R − κ

2
σμνε

μν
)√−gd4x. (19)

A series of comments regarding the action (19) are in order. When introducing a

field in a Lagrangian we expect to have both potential and dynamical terms; the

latter are here apparently missing. However we should remember that the strain

tensor, according to (3), does indeed contain (as well as σμν does) the displace-

ment vector u and its first derivatives. The curvature scalar, in turn, contains up to

third order derivatives of u, because of (4). This is why, in a sense, we can interpret

R as being the “dynamical” term in (19) so that the structure of the Lagrangian is

formally the equivalent of the difference between dynamical and potential terms.

Another remark is that what in (19) appears to be the usual minimal coupling

between the field (the elastic field) and the geometry is actually more complicated

because the field is also included in the metric tensor, so that the coupling goes

up to higher order terms than with other fields. Besides this we will also see in a

moment that the coupling constant κ is absorbed into other parameters typical of

space-time as a continuum.

Limiting our considerations to the linear elasticity case2, adding the hypothesis

of a pointlike defect in an homogeneous isotropic space-time, which means RW

symmetry, Hooke’s law takes the form (9) and finally (19) becomes

S =

∫ (
R − λ

2
ε2 − μεαβεαβ

)√−gd4x (20)

with

ε =
ψ̇

2

(
2 + ψ̇
)
− 3

2

ψ2

1 − ψ2
, εμνε

μν =
ψ̇2

2

(
2 + ψ̇
)2

+
3

4

ψ4

(1 − ψ2)2
·

2An interesting discussion of the non-linear case may be found in [23].
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As already said, the coupling constant κ has been merged with the Lamé coeffi-

cients λ and μ. Use has been made also of (13).

From (20) the following fourth order equation for ψ̇ can be obtained.

6ψ̇2 ψ2√
1 − ψ2

− λψ̇

(
ψ̇

2

(
2 + ψ̇
)
− 3

2

ψ2

1 − ψ2

)(
1 + ψ̇
) (

1 − ψ2
)3/2

− μψ̇2
(
2 + ψ̇
)(

1 +
3

2
ψ̇

)(
1 − ψ2
)3/2

+
λ

2

(
ψ̇

2

(
2 + ψ̇
)
− 3

2

ψ2

1 − ψ2

)2 (
1 − ψ2
)3/2

+
3

4
μ

ψ4

(1 − ψ2)2
(
1 − ψ2
)3/2

= W

(21)

where W is a constant.

One More Analogy

Considering how cumbersome equation (21) is, a different approach, still remain-

ing within the elastic framework, may be envisaged [10]. It is a simple suggestive

analogy. Let us start from equation (9) in intrinsic coordinates; among the admis-

sible values of the parameters there is also λ = −μ. Suppose this is the case for

space-time. Then the relation between stress and strain then becomes

εμν − 1

2
gμνε =

1

2μ
σμν . (22)

Equation (22) is formally identical to the Einstein equations for the gravitational

field, so Madsen’s [10] suggestion is to directly identify εμν with Rμν . Going

on along this play of correspondences, we then use Hooke’s law and consider the

elastic potential energy density

w =
1

2
Cμναβεμνεαβ =

λ

2
ε2 + μεαβεαβ . (23)

On the model of (23) we build the space-time potential

Φ =
1

2
R2 − κRμνR

μν

and use it to write the action integral∫ (
1

2
R2 − κRμνR

μν

)√−gd4x.



52 Angelo Tartaglia

Forgetting for a moment the slippery way followed to obtain it, the final result is

a second order theory that could be classified as a special case of an f(R) theory.

6. Generalizing the Cosmic Defect Theory

The version of the CD theory I have outlined in Section 4 is characterized by the

presence in the action integral of the exponential factor exp (−gμνγ
μγν) which

gives rise to an extremely steep expansion in the very early era of the universe. On

one side that behaviour is even too fast, on the other in the Lagrangian no explicit

evidence of the dynamics of γ appears and, in order to find the functional form of

the four-vector, the incompressibility condition ∇αγα = 0 has been introduced.

A possible generalization of (16), which allows to partially release the initial

rather strict conditions, is the following action

S =

∫
e−γμγν

Rμ
ν

√−gd4x. (24)

The exponential term has now to be interpreted in the operatorial sense, and indeed

it is the starting point for a series development

e−γμγν

Rμ
ν = R − γαγβRαβ + · · · . (25)

When no defect is present we have γ ≡ 0 and the usual Hilbert-Einstein action. A

defect implies other terms to come into the arena. We should also remember that,

due to the properties of the Riemann tensor and to the fact that γ is a four-vector,

γβRαβ = (∇α∇ν −∇ν∇α) γν . (26)

Stopping the development in (25) to the first non trivial term and taking into ac-

count (26) we have the effective Lagrangian

L =

[
R + ∇νγ

α∇αγν −
(
∇βγβ
)2]√−g.

Introducing the RW symmetry and again using integration by parts in the action

integral, we have the corresponding so called point Lagrangian

L = 6aȧ2
(
1 + χ2
)

+ 6χχ̇a2ȧ. (27)

From (27) we get the equations

ȧ2 =
W

a (1 + χ2)
, χa2ä = 0. (28)
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The solution of (28) is ȧ = V = constant (W is also a constant) with χ =√
W/ (V 2a) − 1. So this model describes a uniformly expanding space-time.

The structure contained in the CD theory (see Figure 4) has disappeared, after

adopting (24) and the limited development (25).

As a matter of fact (24) does not contain (16) as a special case. If we wish a real

generalization of CD we can use a Lagrangian density like

e
− δν

α
δ

β

μ+δ
β

αδν

μ
γαγ

βRμ
ν

√−g (29)

which includes the one in (16).

Instead of (25) we now have

e
− δν

α
δ

β

μ+δ
β

αδν

μ
γαγ

βRμ
ν = R (1 − γμγμ) − γαγβRαβ + · · · .

The consequent effective point Lagrangian density (RW symmetry) is

L = 6aȧ2 − 6χχ̇a2ȧ

however the situation does not really change in the sense that one obtains an ex-

pansion ∝ τ 2/3, typical of a Friedman-Robertson-Walker matter dominated uni-

verse, independent from χ.

Evidently the properties of the CD model are contained in the higher order terms

of (29).

Of course there are many ways in which one can further generalize the ansatz (29).

One can for instance introduce a “potential” term γ2 = γαγα in the Lagrangian,

considering that, notwithstanding its geometric interpretation, γ is anyway a vec-

tor field and its energy content must directly influence curvature. One could also

parametrize the Lagrangian

S =

∫ [
R
(
1 + σγ2

)
+ λ∇αγβ∇βγα + μ (∇μγμ)2 + ν∇αγβ∇αγβ

]√−g d4x.

However, following the thread of conjectures one looses more and more the con-

tact with the, though fragile, initial physical motivation.

7. Conclusion

We have reviewed here an approach to the description of space-time based on the

elastic continuum analogy, integrated with the possible presence of defects, in the
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sense of Volterra’s description [24]. Once this scheme is adopted we have seen

that the approach is not unique. Among other possibility I have privileged the so

named Cosmic Defect theory, which proved, simultaneously, to be manageable

and to give good results when trying to describe the accelerated expansion of the

universe [21].

Actually regarding space-time at the cosmological level a real “forest” of theo-

ries exists, mostly based either on the concept of dark energy (from cosmological

constant [13] to phantom energy [5]), or on modifications or extensions of Gen-

eral Relativity (from MOND [11] to f(R) theories [18]) and neglecting quantum

theories (strings [9] or loop quantum gravity [17]). Most often these numerous ap-

proaches belong to what I would call “Lagrangian engineering”, i.e., let us some-

how change the Lagrangian and see what happens. These attempts can be more

or less fortunate and more or less ad hoc, but generally rely on rather staggering

physical bases, looking for ex post justification. It is also often possible to see that

apparently different theories and approaches are indeed related to each other and

lead, totally or partly, to convergent or coincident results. For example the whole

elastic analogy approach is formally a (group of) vector-tensor theory, being based

on the displacement vector field and related strain tensor field. We verified that

the CD theory also is reducible to a special case of general vector theories [22]

and Madsen’s conjecture described in Section 5 leads to a sort of second degree

f(R) Lagrangian. Furthermore conformal transformations can convert modified

or extended gravity theories into GR plus some more or less exotic dark energy

fluid (CD is again an example).

In this very jungle I think it is better to have a compass pointing in some direction,

rather than moving around blindly in pursuit of a local and ephemeral success. In

other words it is better to start from some physical paradigm that suggests where

to go and what to look for. This is why, thanks also to the initial positive results,

I think the elastic continuum model and the CD theory are a good conceptual

framework that deserves further exploration and deepening.
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