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Abstract. The aim of the present study is to characterize and compute closed

geodesics on toroïdal surfaces. We show that a closed geodesic must make a num-

ber of rotations about the equatorial part (k rotations) and the axis of revolution

(k′ rotations) of the surface. We give the relation that exists between the numbers

k and k′, and the Clairaut’s constant C corresponding to the geodesic. Moreover,

we prove that the numbers k and k′ are relatively prime. We validate our find-

ings by constructing closed geodesics on some examples of toroïdal surfaces using

MAPLE. Finally, using experimental data on cardiac fiber direction, we show that

fibers run as geodesics in the left ventricle whose geometrical shape looks like a

toroïdal surface.

1. Introduction

Geodesics are of high importance due to their wide applications in many fields

such as topography, biology, etc. For instance, according to Streeter [14], in the

equatorial part of the left ventricle free wall, fibers are organized into toroïdal

surfaces on which they run as geodesics.

From a mathematical point of view, a geodesic on a parameterized surface is a so-

lution to a nonlinear system of two second order ordinary differential equations.

Consequently, this representation leads to the local existence of a geodesic starting

from a given point and tangent to a given vector belonging to the tangent plane at

the point, see Berger and Gostiaux [3]. On the other hand, global existence results

are available in the case of closed surfaces. Indeed, there is a global result that

guaranties that every local geodesic can be extended to a geodesic defined over

R, see Schwartz [13]. Moreover, another result states that every two points of a

closed surface can always be connected by at least a geodesic with minimal length

(particular case of the Hopf-Rinow theorem, [6]). Closed geodesics in particular,

have been studied intensively, however, their existence is not straightforward. We
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mention the following result in a particular case of complete surfaces homeomor-

phic to a plane, a cylinder, or a Mobius band. If such a surface has a finite area,

then there exist infinitely many closed geodesics lying on it, see Bangert, [2].

In the present research, we study the characteristics of closed geodesics lying on

a particular case of surfaces: the toroïdal surfaces. The origin of our study was

initiated in 2000 by looking at geometrical organization of cardiac fibers in order

to check Streeter’s conjecture about geodesics, for more details see Mourad et
al [9] and Mourad [10]. Actually, the left ventricle has approximately the shape

of a body of revolution [14] (about a half of an ellipsoid) with the possibility that

a fiber running on the external surface can pass through the bottom of the left

ventricle (the apex) in order to run on the internal surface (that of the cavity) and

it ends by closing on itself. This led us to focus on toroïdal surfaces and closed

geodesics.

This paper is organized as follows. In Section 2, we present the theoretical results

about closed geodesics on toroïdal surfaces. We prove that such a geodesic makes

a number of rotations k′ about the axis of revolution and k about the equator of

the surface that are related to the Clairaut’s constant C of the geodesic. The num-

bers k and k′ could be zeros but not both at the same time. The obtained relation

between k, k′ and C allows us to determine the Clairaut’s constant from the num-

bers of rotations already mentioned, which in turn, for a given initial point, leads

to the computation of the initial tangent to the geodesic. Consequently, we get all

the ingredients in order to solve numerically the system of differential equations

corresponding to the geodesic. Moreover, we show that these numbers of rota-

tions, if they are both different from zero, are relatively prime. Recently, related

studies have been published by Mladenov and Oprea [7], [8] and Alexander [1].

In [1], Alexander has studied closed geodesics on certain surfaces of revolution

and has got the same relation between the Clairaut’s constant and the numbers of

rotation. The third section concerns itself with the validation of the results ob-

tained in section 2. We compute closed geodesics on some examples of toroïdal

surfaces using MAPLE. In the last section, we present some results obtained on

experimental data about cardiac fiber directions and we show the validation of

Streeter’s conjecture in the case of the left ventricle.

2. Theoretical Results

Let Σ be a smooth toroïdal surface parameterized as follows:

S(u, v) = (f(v) cos u, f(v) sin u, g(v)) (1)
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where f and g are two smooth real functions. Geometrically, Σ can be obtained

by rotating a planar merdian curve C0 about the Z-axis, where C0 is defined in

the XOZ-plane by v �→ (f(v), g(v)) and it does not cross the z-axis. We suppose

that the curve C0 is regular, i.e., for all v, f ′2(v)+ g′2(v) �= 0, periodic of period

p, and that every pair (v1, v2) such that (f(v1), g(v1)) = (f(v2), g(v2)) satisfies

v2 − v1 ∈ pZ. This means that the curve C0 is simple. Moreover, we assume that

the function f is strictly positive.

Let Γ be a geodesic curve lying on Σ. The geodesic Γ can be parameterized by

s �→ φ(s) =
(
f(v(s)) cos u(s), f(v(s)) sin u(s), g(v(s))

)
where s is the arclength. Consequently, we have

(f
′2 + g

′2)v̇2 + f2u̇2 = 1. (2)

It can be shown that any geodesic Γ satisfies the following system

(f
′2 + g

′2)v̇2 + f2u̇2 = 1, f2(v)u̇ = C (3)

where C is a constant called the Clairaut’s constant. For further information re-

garding geodesics lying on a surface of revolution, we refer to do Carmo [4].

Now with system (3) we can compute at any given point and for a given Clairaut’s

constant, the initial tangent to the geodesic.

It is obvious that the meridians defined by φ(s) = S(u0, v(s)) are the geodesics

of Σ corresponding to C = 0. On the other hand, a parallel φ(s) = S(u(s), v0)
is a geodesic if and only if f ′(v0) = 0, see do Carmo [4].

In this paper, we are in particular interested in the closed geodesics lying on toroï-

dal surfaces.

Definition 1. A geodesic is said to be closed (or periodic ) if it is a periodic curve.

Remark 2. A closed geodesic is not only a closed curve, but it is a periodic closed
curve.
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In the case of a closed geodesic, there exist a real T and two integers k and k ′

such that for every s:

u(s + T ) = u(s) + 2k′π, v(s + T ) = v(s) + kp. (4)

For more details about this point, we refer to Mourad [10].

Remark 3. We can interpret k′ as the number (positive or zero) of rotations about
the axis of revolution made by the geodesic, see Alexander [1].

In fact, from System (3), we have either

• for every s, u̇(s) = 0, i.e., the function s �→ u(s) is constant. The geo-

desic is a meridian: it cannot have any rotation about the axis of revolution.

Hence, k′ defined by (4) is obviously zero.

• or, for every s, u̇(s) is strictly positive. The polar angle u is a strictly

increasing function of s, we deduce that k′ > 0. Since u is continuous, then

it takes all values between u(0) and u(T ) = u(0)+2k′π, and it is bijective:

the geodesic completes exactly k′ rotations about the axis of revolution.

Let us give an interpretation to the number k. In the sequel we denote by m the

minimum of the function f over [0, p]. It is also the minimum over R. Suppose

that m is attained for some v0. Since f is of class C1, then f ′(v0) = 0. We

denote by mφ the minimum of s �→ f(v(s)) along the closed geodesic (Γ, φ). In

other words, this minimum is taken over [0, T ] or equivalently over R. If mφ is

attained at s0, then f ′(v(s0))v̇(s0) = 0. For the geometric understanding of the

results to follow, it is useful to recall that f(v) denotes the distance from the axis

of revolution to the point whose parameters are (u, v) on the surface.

Lemma 4. If there exists s0 such that v̇(s0) = 0, then mφ is attained at s0, and
the Clairaut’s constant C satisfies C = f(v(s0)) = mφ.

Proof: By equations (3), at s0 such that v̇(s0) = 0, we have f(v(s0)) = C
where C is the Clairaut’s constant associated with the geodesic. We have already

seen that, from the geometric interpretation, C ≤ minsf(v(s)). Therefore, C =
f(v(s0)) = minsf(v(s)) = mφ. �

Proposition 5. If k = 0, then either the geodesic is a parallel, or there exists
a parallel that it cannot cross it. We say that the geodesic does not make any
rotation about the merdian of the surface.
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Proof: Since k = 0, then v(T ) = v(0) and there exists s0 ∈]0, T [ such that

v̇(s0) = 0. The geodesic is tangent at φ(s0) to the parallel through φ(s0). There-

fore, we have either f ′(v(s0)) = 0 and the geodesic coïncides with this parallel,

or f ′(v(s0)) �= 0 and m cannot be attained at v(s0). However, by Lemma 4, mφ

is attained at s0. Therefore, mφ > m. In other words, the distance to the axis

from the geodesic stays strictly greater than its minimal value over a meridian or

over the surface. Then there exists at least one parallel that the geodesic cannot

cross. �

Now let us consider the case k �= 0.

Proposition 6. The number k is nonzero if and only if, for every s, v̇(s) �= 0.

Proof: First, suppose k �= 0. Since the function s �→ v(s) is continuous on R,

then it is surjective over [v(0), v(T )] = [v(0), v(0) + kp]. But k �= 0, then we

deduce that the function s �→ f(v(s)) is surjective from R onto im f . Hence

m = mφ.

Suppose that there exists s0 such that v̇(s0) = 0. By Lemma 4, mφ is attained at

s0. Since mφ = m, then v �→ f(v) attains its minimum at v(s0) and necessarily

we have f ′(v(s0)) = 0. The geodesic coincides with the parallel passing through

φ(s0). Therefore we get k = 0, which is in contradiction with the hypothesis.

Thus, for every s, v̇(s) �= 0.

Conversely, if v is strictly monotonic, for instance strictly increasing, we get

v(T ) > v(0), then v(0) + kp > v(0), hence k �= 0. �

Remark 7. If k �= 0, the function s �→ v(s) being strictly monotonic and continu-
ous, is bijective from [0, T ] onto [v(0), v(T )] = [v(0), v(0) + kp]. On the interval
[0, T ], the geodesic crosses k times each parallel. We say that the geodesic makes
k windings about the surface, see Alexander [1].

We suppose that k is nonzero. We define ϕ : c ∈ [0, m[�→ ϕ(c) ∈ R by

ϕ(c) =

∫ p

0
h(c, v) dv where h(c, v) =

c

2π

√
f ′2(v) + g′2(v)

f2(v)(f2(v) − c2)
· (5)

The expression (5) of the function ϕ is similar to that given by Alexander [1].

Theorem 8. If the geodesic (Γ, φ) is periodic and makes at least one winding,
then the Clairaut’s constant C is strictly less than m and it is related to the number
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of rotations k′ and the number of windings k by the relation

ϕ(C) =
k′

|k| · (6)

Proof: Since the geodesic Γ makes at least one winding, then it crosses k times

each parallel, so k �= 0 and we have m = mφ. However C ≤ mφ then C ≤ m. If

C = m, then C = mφ, so there exists s0 such that C = f(v(s0)). By system (3),

we get v̇(s0) = 0, thus by Proposition 6 we obtain k = 0 which is impossible.

Consequenlty, C < m.

On the other hand, by system (3), and since v̇ keeps a constant sign which is that

of k, we get, for every s

u̇(s) =
C

f2(v(s))
and v̇(s) = sign(k)

√
f2(v(s)) − C2

f2(v(s))
(
f ′2(v(s)) + g′2(v(s))

) ·
Integrating the first equation from 0 to T , making the change of variables v = v(s)
which is possible since v is strictly monotonic, and using the periodicity of f and

g, we obtain

2k′π = C

∫ T

0

ds

f2(v(s))
= sign(k)C

∫ v(T )

v(0)

√
f ′2(v) + g′2(v)

f2(v)
(
f2(v) − C2

) dv

(7)

= sign(k)kC

∫ p

0

√
f ′2(v) + g′2(v)

f2(v)
(
f2(v) − C2

) dv.

In other words,

ϕ(C) =
k′

sign(k)k
=

k′

|k| · (8)

�

Let us now give the converse of the previous result.

Theorem 9. If C ∈ [0, m[ is such that ϕ(C) ∈ Q, then the geodesics that have C
as their Clairaut’s constant are periodic.

Proof: Let ϕ(C) =
q′

q
where q and q′ ∈ N are relatively prime.

First we notice that v(s) is strictly monotonic, because otherwise, there exists s0

such that v̇(s0) = 0. However, by Lemma 4 easily extended to any geodesic, we
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obtain C = f(v(s0)) = minsf(v(s)) ≥ m, which leads to a contradiction. To fix

the ideas, we suppose that v(s) is strictly increasing.

Let us prove that v(s) is not bounded. We distinguish two cases:

• u(s) is not bounded: then u(s) → +∞ whenever s → +∞. Let n ∈ N∗

and s1 be a positive value, then there exists a period Tn,1 > 0 such that

u(s1 + Tn,1) = u(s1) + 2nq′π so

∫ s1+Tn,1

s1

u̇(s) ds = 2nq′π. Taking into

account the system (3) and making the change of variables v = v(s), we

obtain ∫ v(s1+Tn,1)

v(s1)
h(C, v) dv = nq′.

On the other hand, from ϕ(C) =
q′

q
we get also

∫ p

0
h(C, v) dv =

nq′

nq
· But

h(C, .) is of period p, then∫ v(s1)+nqp

v(s1)
h(C, v) dv = nq

∫ p

0
h(C, v) dv = nq′.

Consequently,

∫ v(s1)+nqp

v(s1)
h(C, v) dv =

∫ v(s1+Tn,1)

v(s1)
h(C, v) dv, therefore

we get

∫ v(s1)+nqp

v(s1+Tn,1)
h(C, v) dv = 0. Hence v(s1 + Tn,1) = v(s1) + nqp

since h(c, v) > 0.

Then, for s1 fixed, and for every integer n, there exists Tn,1 > 0 such that

v(s1 + Tn,1) = v(s1) + nqp. Hence v(s) is not bounded.

• u(s) is bounded: then there exists u∞ ∈ R such that lim
s→+∞

u(s) = u∞.

Let us proceed by contradiction. Suppose there exists v∞ ∈ R such that

lim
s→+∞

v(s) = v∞. Then when s → +∞, S(u(s), v(s)) converges to

the point S(u∞, v∞). On the other hand, by system (3) we obtain that

lim
s→+∞

u̇(s) = C/f2(v∞) and that v̇(s) converges to some value that we

denote by v̇∞ whenever s → +∞. Consequently, the point S(u∞, v∞) is

a limit point of the geodesic Γ whose tangent at this point is given by the

vector

τ∞ =

⎛
⎝ v̇∞f ′(v∞) cos(u∞) − u̇∞f(v∞) sin(u∞)

v̇∞f ′(v∞) sin(u∞) + u̇∞f(v∞) cos(u∞)
v̇∞g′(v∞)

⎞
⎠ .



30 Ayman Mourad and Imad Moukadem

However, there exists a geodesic, which is the continuity of Γ, starting

from the point S(u∞, v∞) with tangent vector τ∞. Therefore the point

S(u∞, v∞) is not a limit point of the geodesic Γ which leads to a contra-

diction. Consequently, v(s) is not bounded.

Now let s0 be any value, then there exists T0 > 0 such that v(s0 + T0) = v(s0) +

qp. We have: ϕ(C) =
q′

q
, i.e.,

∫ p

0
h(C, v) dv =

q′

q
. But f and g are periodic of

period p, then

∫ v(s0)+qp

v(s0)
h(C, v) dv = q′. Making the change of variables v =

v(s), and taking into account the system (3) we obtain:

∫ s0+T0

s0

u̇(s) ds = 2q′π,

then u(s0 + T0) = u(s0) + 2q′π.

Moreover, using the fact that v(s0 + T0) = v(s0) + qp, the system (3) gives

u̇(s0 + T0) = u̇(s0) and v̇(s0 + T0) = v̇(s0). With these results we easily verify

that the tangent vectors to the geodesic at s = s0 and at s = s0 + T0 coincide.

Hence the geodesic in question is periodic. �

Proposition 10. The function ϕ : c ∈ [0, m[�→ ϕ(c) ∈ R is strictly increasing.

Proof: It is obvious that ϕ is a continuous function on [0, m[ and differentiable

on ]0, m[ and we have:

ϕ′(c) =

∫ p

0

∂h(c, v)

∂c
dv

(9)

∂h(c, v)

∂c
=

1

2π

f2(v)

f2(v) − c2

√
f ′2(v) + g′2(v)

f2(v)(f2(v) − c2)
·

Since
∂h(c, v)

∂c
is positive for every c ∈]0, m[ so as ϕ′(c). Hence the function ϕ

is strictly increasing. �

Proposition 11. If the function f is of class C1 and twice differentiable, then

lim
c→m

ϕ(c) = +∞. (10)

Proof: Let I(c) =

∫ p

0

√
f ′2(v) + g′2(v)

f2(v)(f2(v) − c2)
dv.

Since f ′ and g′ are continuous over R, p-periodic and f
′2 + g

′2 �= 0, then there



Characterization and Computation of Closed Geodesics on Toroïdal Surfaces 31

exists γ > 0 such that f
′2 + g

′2 ≥ γ2. On the other hand f is continuous over

R and p-periodic, then there exists M such that 0 < m ≤ f(v) ≤ M for every

v ∈ R. We deduce:

I(c) ≥ γ

M

∫ p

0

1√
f2(v) − c2

dv, for all c ∈ [0, m[. (11)

Let us now study J(c) =

∫ p

0

1√
f2(v) − c2

dv. It is sufficient to study it for

c2
n = m2 − 1

n
. We have

J(cn) =

∫ p

0

1√
f2(v) − m2 + 1

n

dv.

It is clear that the sequence n �→ 1√
f2(v) − m2 + 1

n

is increasing for n (for v

fixed). Then J(cn) is an increasing positive sequence. We distinguish two cases:

• either J(cn) is bounded above. Then ψ(v) =
1√

f2(v) − m2
is integrable

and lim
n→+∞

J(cn) =

∫ p

0

1√
f2(v) − m2

dv.

• or lim
n→+∞

J(cn) = +∞.

Let us show that the first case cannot happen. Let v0 ∈ [0, p] such that f attains

its minimum at v0, we know that f ′(v0) = 0. Since f is of class C1 and twice

differentiable, then:

f(v) = f(v0) + f ′(v0)(v − v0) + η(v) with η ∈ C1 and |η(v)| ≤ kη|v − v0|2.
So f2(v) = m2 + 2mη(v) + η2(v) = m2 + η̃(v), with 0 ≤ η̃(v) ≤ kη̃|v − v0|2.

Therefore we have:
1√

f2(v) − m2
=

1

η̃(v)1/2
≥ 1

k
1/2
η̃ |v − v0|

which is not

integrable in the neighborhood of v0. Consequently, we have lim
c→m

I(c) = +∞
and lim

c→m
ϕ(c) = +∞. �

Corollary 12. im ϕ = ϕ([0, m[) = [0, +∞[.



32 Ayman Mourad and Imad Moukadem

Proof: It is sufficient to see that ϕ is continuous, increasing, ϕ(0) = 0 and

lim
c→m

ϕ(c) = +∞. �

Figure 1. Examples of closed geodesics on a torus: left (k = 6, k′ = 1),
middle (k = 13, k′ = 1), and right (k = 13, k′ = 5).

Remark 13. The geodesic corresponding to a Clairaut’s constant C = m does
not make any complete rotation about a meridian curve. Indeed it corresponds to
the case k = 0. Therefore, if the geodesic is not a parallel, then it oscillates back
and forth across a parallel.

Proposition 14. The integers k and k′ of equation (4) are relatively prime.

Proof: We notice that in equation (4), T is the period of the geodesic (Γ, φ), and

k has the same signe as v̇ that we assume to be positive.

Let q and q′ ∈ N two integers relatively prime such that
k′

k
=

q′

q
. Then we have:

ϕ(C) =
q′

q
. This implies by Theorem 9 that there exists T1 > 0 such that:

u(s + T1) = u(s) + 2q′π, v(s + T1) = v(s) + qp. (12)

We can easily verify that φ(s+T1) = φ(s), therefore we deduce that there exists

an integer n such that T1 = nT . Using equations (4) and (12), we obtain q = nk
et q′ = nk′. However q and q′ are relatively prime, this implies that n = 1, and

consequently, k and k′ are relatively prime. �
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3. Validation

The problem of existence of a closed geodesic making at least one winding over a

toroidal surface consists of finding a value of the Clairaut’s constant C such that

ϕ(C) ∈ Q. Since im ϕ = [0, +∞[, there exist infinitely many values of C that

have their images by ϕ in Q. Consequently, on a toroidal surface, there exist infi-

nitely many closed geodesics making at least one winding. Moreover, the number

of rotations about the axis of revolution of the surface and the number of windings

around the equator of the surface of a closed geodesic are relatively prime.

Algorithm: In order to compute a closed geodesic, we choose the initial values

u(0) and v(0), and the number k′ of rotations about the axis of revolution and

the number k of windings about the equator that the geodesic will make. The

Clairaut’s constant is then obtained by solving equation (6). Using system (3),

we compute the initial values u̇(0) and v̇(0) which in turn determine the tangent

vector. Therefore, the equations of the geodesic can be obtained by solving system

(3) numerically. We have implemented this algorithm in MAPLE, in particular,

we have used the ordinary differential equation toolbox in order to solve the non-

linear system whose unknowns are (u(s), v(s)) which lead to the equation of the

geodesic.

Figure 2. Closed geodesics on the model surface of the left ventricle: left

(k = 1, k′ = 1), middle (k = 1, k′ = 2), and right (k = 2, k′ = 1).
The bullets shown on the geodesics represent the starting point where the

geodesics must close on themselves.
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We have validated this result on two different examples. The first example corre-

sponds to a torus. Fig. 1 shows three closed geodesics making different numbers

of rotations k and k′.

The second example corresponds to a geometrical model of the left ventricle

which can be considered as a toroïdal surface. The meridian curve correspond-

ing to this model is a crescent-shaped curve (or like a bean seed) and it has been

obtained using B-slpines. We illustrate in Fig. 2 three closed geodesics, with dif-

ferent rotation numbers, on the left ventricle model. In order to see the pattern of

the geodesics on the surface of the internal cavity of the left ventricle model, we

have made the surface transparent but we have left some vertical and horizontal

contours in order to delimit the surface boundary. These closed geodesics are con-

ceived as cardiac fibers running from the base (the top of the left ventricle) to the

apex (the bottom of the left ventricle), so that they pass from the epicardium (ex-

ternal surface of the heart) into the endocardium (the surface of the cavity of the

ventricles) through the apex, and they close on themselves after making a number

of rotations. It has been mentionned in several papers that some of the fibers have

the form of a figure eight, see for instance [12]. This description was given by

researchers who tried to peel the fibers in order to discover their organization. We

can see in Fig. 2 (middle) that the geodesic has the shape of a figure eight which

is consistent with what was described in cardiac histology.

4. Geodesics and Cardiac Fibers

Since Streeter conjectured in 1979 that cardiac fibers of the left ventricle free wall

run as geodesics on a nested set of toroïdal surfaces, it has not been possible to

check this conjecture because of the lack of data about fiber directions until new

sophiticated techniques of imaging became available. For instance, Jouk et al [5]

have developed a new technique based on polarized light microscopy in order

to measure the elevation and the azimuth angles of cardiac fibers in human fetal

hearts. Since then, data about the orientation of fibers became available and we

were able to start checking Streeter’s conjecture using Jouk et al data. In [9],

based on the Clairaut’s constant in the case of surfaces of revolution, Mourad et
al have checked the validity of the conjecture only for the left ventricle because

the right ventricle has a complicated geometrical shape and the Clairaut’s constant

cannot be used anymore.

On the left of Fig. 3, some sections of the ventricular part of the heart from top
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Figure 3. Left: Horizontal sections of the heart and some cardiac fibers in

the left ventricle. Right: Cardiac fibers crossing the isolines of the Clairaut’s

constant in horizontal sections of the left ventricle (from [9] with permission).

(base) to bottom (apex) are shown along with some cardiac fibers in the left ven-

tricle. We notice that these fibers do not close on themselves in order to get closed

curves. This can be explained by the two sources of errors: first, we are using

experimental data that may contain some noise, second we are using numerical

methods to track fiber trajectories where the accumulation of the errors may lead

to this problem. Moreover, with the measurements we have, at the top of the ven-

tricular part (the base), the data are not complete because of technical limitations

of the measurement process.

On the right of Fig. 3, we show two horizontal sections of the heart and three

fibers in the left ventricle. In each section, we show the isolines of a given value

of the Clairaut’s constant and we see how the fibers cross these isolines from sec-

tion to section. This means that along these fibers the Clairaut’s constant is the

same which backs up the idea of geodesics and is consistent with Streeter’s con-

jecture. However, this is not sufficient to validate the conjecture and further study

is necessary.

On the other hand, a mechanical explanation of the structure of geodesics in the

heart is still to be done. Mathematical models of left ventricular wall mechanics

have shown that the distribution of fiber strain during ejection is sensitive to the

orientation of muscle fibers in the wall, see for instance [5]. In [11], it has been

shown that the left ventricle structure is designed for maximum homogeneity of

fiber strain during ejection. So this might be a physiological reason why geodesic
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fibers would be best. However, this requires more investigation of the mathemati-

cal properties of geodesics and their role in the uniform distribution of fiber strain

during ejection.
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