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Abstract. We discuss the exact nonlinear equations for the dynamics of fluid

films, modeled as a two dimensional manifold. Our main goal is to illustrate the

differences and similarities between the fluid film equations and Euler’s equations,

their classical three dimensional counterpart. Since the geometry of fluid films is

fundamentally different – three dimensional velocity field on a two dimensional

support with a time varying Riemannian metric – all classical theorems must be

properly modified. We offer adaptations of the following theorems: conservation

of mass and energy, pointwise conservation of vorticity and Kelvin’s circulation

theorem. We present proofs of these theorems by employing the calculus of mov-

ing surfaces. It is of great interest to develop a simplified model that captures

normal deformations of fluid films by assuming that tangential velocities vanish

while preserving the exact nonlinear nature of the full system. This cannot be ac-

complished simply by neglecting the tangential components, for such an attempt

leads to internal contradictions. Instead, we modify the initial formulation and

present a modified variational approach that leads to a simplified system of equa-

tions capable of capturing a broad range of deeply nonlinear effects.

1. Introduction

Fluid dynamics is one of the most developed subjects in classical physics [1], [2]

and still one of the most active today. Fluid films have always occupied an impor-

tant place in hydrodynamics [3], [4] and have recently been receiving a great deal

of renewed attention [5–11]. In this paper, we discuss the exact nonlinear equa-

tions for fluid films under the influence of generalized surface tension. Laplace’s

classical model of surface tension figures is a special case.

Historically, the governing equations of fluid dynamics were formulated by anal-

ogy with Newton’s laws of motion. The force F is postulated as a function of

geometry or kinetics. An attempt to do the same for fluid films would be certainly
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met with nontrivial difficulties, for the concept of force, especially as a primary

notion, is elusive [12]. This is often the case when concepts from one branch

of physics need to be carried over to another. We therefore pursue an approach

based on the Least Action Principle. Significant steps have been taken towards

formulating Euler’s classical three dimensional equations from a variational point

of view. A derivation is given in [13], from where we borrow certain aspects of

our analytical methods and combine them with the calculus of moving surfaces,

so indispensable when working with deforming interfaces.

The dynamics of fluid films exhibits an intriguing interplay between geometry and

physics. Certain elements in the exact equations of motion are purely geometric.

For example, mass conservation and the expression for acceleration can be derived

strictly from kinematics. Other elements, such as surface tension and van der

Waals forces, are less universal and require physical modeling.

We treat the fluid film as a two dimensional manifold. Variation in thickness

(which, even in simple experiments, ranges from nanometers to millimeters) is

captured by the concept of two dimensional density. The contour boundary of the

fluid film is stationary, and the interaction with the ambient air is ignored. The

system is derived from the Least Action Principle with the Lagrangian

L =
1
2

∫
S

ρ
(
C2 + |V|2

)
dS −

∫
S

ρe (ρ) dS (1)

where ρ is the two dimensional density of the fluid film, C is the normal velocity,

V is the tangential velocity and e (ρ) is the internal energy density per unit mass.

The choice

e (ρ) =
σ

ρ
(2)

results in the classical Laplace model for surface tension.

Many essential features of the newly proposed system are analogous to classical

hydrodynamics. Others are fundamentally different. Our main motivation is to

identify those features that survive for two dimensional films and those that are

completely new. We aim to accomplish two specific goals. First is to prove four

essential properties of the proposed exact nonlinear dynamic equations: point-

wise conservation of mass, conservation of energy, pointwise conservation of two-

dimensional vorticity, and a proper generalization of Kelvin’s circulation theorem

that states that circulation around a closed material loop is conserved. Our other

goal is to derive simplified dynamic equations that incorporate the natural assump-

tion that material particles move in the orthogonal direction to the surface of the

film. This mode of motion does not have an analogue in classical fluid dynamics.
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The assumption that material particles move normally to the surface of the film

appears frequently in literature. The existing infinitesimal linear models [5], [6]

are based, in part, on this assumption. Importantly, the proposed full system of

equations (50) is free of this assumption. As a matter of fact, the full system is

inconsistent with it. As we discuss below, the proposed exact equations (50) show

that finite C will give rise to finite V. It is therefore clear that in order to formulate

equations that incorporate the assumption of vanishing V, one must modify the

original variational formulation.

We begin by introducing the essential elements from differential geometry and

tensor calculus required for the interpretation of the proposed system. We then

present the governing equations and discuss their structure. Subsequently, we

demonstrate mass conservation, energy conservation, vorticity conservation, and

Kelvin’s circulation theorem. Finally, we incorporate the nonholonomic V = 0
constraint by means of functional Lagrange multipliers and present the resulting

dynamic equations.

2. Differential Geometry Preliminaries

The relationships summarized in this section can be found in standard texts on

tensor calculus [14–16].

Suppose that Sα (α = 1, 2) are the surface coordinates on the moving mani-

fold S. Sα can be chosen rather arbitrarily as long as sufficient differentiability

is achieved in both space and time. Various choices of coordinates offer certain

advantages depending on the problem. For example, Lagrangian coordinates al-

low tracking material particles, while normal coordinates allow the formulation of

equations without the use of the δ/δt-derivative, provided the ambient Euclidean

space is referred to affine coordinates.

Suppose that the ambient Euclidean space is referred to coordinates Zi. Let Z be

the position vector expressed in these coordinates

Z = Z (Z) . (3)

(Note our convention to drop the indices of function arguments. This leads to

a slight overloading of the letters Z and S, since those same letters are used to

denote volume and surface element in equations (8) and (17). Fortunately, it is

always clear from the context in what sense the letter Z is being used.)
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Introduce the covariant basis Zi

Zi =
∂Z (Z)

∂Zi
(4)

and the covariant metric tensor Zij

Zij = Zi · Zj . (5)

The contravariant metric tensor Zij is defined as the matrix inverse of Zij

ZijZjk = δi
k. (6)

The metric tensors Zij and Zij are used to change the flavors of tensors. It is an

operation also referred to as juggling indices. In particular, the contravariant basis

Zi is obtained from the covariant basis Zj by raising the subscript

Zi = ZijZj . (7)

Let Z be the volume element defined as the determinant of the covariant metric

tensor Zij . In order to avoid a false appearance of free indices, we denote this

relationship informally by

Z = |Z··| . (8)

The Levi-Civita tensors εijkand εijk are defined as

εijk =
eijk

√
Z

, εijk =
√

Zeijk (9)

where eijk and eijk equal 1 when ijk is an even permutation, −1 when it is odd,

and zero otherwise.

The Christoffel symbols Γi
jk, given by

Γi
jk = Zi · ∂Zj

∂Zk
(10)

are used in the definition of the covariant derivative ∇k of a tensor T i
j with a

representative collection of indices

∇kT
i
j =

∂T i
j

∂Zk
+ Γi

knTn
j − Γn

kjT
i
n. (11)

We now turn to tensors on the embedded manifold S. Suppose that S is the posi-

tion vector for the points on the manifold. Suppose S is expressed as a function

of time t and surface coordinates Sα

S = S (t, S) . (12)



Exact Nonlinear Equations for Fluid Films and Proper Adaptations . . . 5

We continue to follow the convention of suppressing tensor indices of function

arguments.

Introduce the covariant basis Sα

Sα =
∂S (t, S)

∂Sα
(13)

and the covariant metric tensor Sαβ

Sαβ = Sα · Sβ. (14)

The contravariant metric tensor Sαβ is defined as the matrix inverse of Sαβ

SαβSβγ = δα
γ . (15)

The metric tensors Sαβ and Sαβ are used to change the flavors of surface indices.

In particular, the contravariant basis Sα is obtained from the covariant basis by

raising the subscript

Sα = SαβSβ. (16)

Let S be the area element defined as the determinant of the covariant metric tensor

Sαβ

S = |S··| . (17)

The Levi-Civita tensors εαβ and εαβ on the surface are defined as

εαβ =
eαβ

√
S

, εαβ =
√

Seαβ (18)

where eαβ and eαβ equal 1 if αβ is an even permutation, −1 if it is odd, and zero

otherwise.

The surface Christoffel symbols Γα
βγ , given by

Γα
βγ = Sα · ∂Sβ

∂Sγ
(19)

along with the space Christoffels Γi
jk, are used in the definition of the covariant

derivative ∇γ of a tensor T iα
jβ with a representative collection of indices

∇γT iα
jβ =

∂T iα
jβ

∂Sγ
+ Zk

γΓi
knTnα

jβ − Zk
γΓn

kjT
iα
nβ + Γα

γηT
iη
jβ − Γη

γβT iα
jη . (20)

Suppose that the evolution of the embedded surface is given by the parametric

equations

Zi = Zi (t, S) . (21)
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Then the shift tensor Zi
α is defined as

Zi
α =

∂Zi (t, S)
∂Sα

(22)

and it easy to show that the space basis and the surface basis are related by

Sα = ZiZ
i
α. (23)

Consequently the metric tensors are related as well by

Sαβ = ZijZ
i
αZj

β (24)

which can also be written as

Sαβ = Zi
αZiβ (25)

and even more concisely as

δβ
α = Zi

αZβ
i . (26)

The components Nk of the surface normal N are given by

N i =
1
2
εijkεαβZα

i Zβ
j (27)

and satisfy the following relationships

NiN
i = 1, N iZα

i = 0, δi
j − N iNj = Zi

αZα
j . (28)

The curvature tensor Bαβ arises most naturally in the following way. It follows

directly from the definition of the Christoffel symbols that

Sγ · ∇αSβ = 0. (29)

Therefore, ∇αSβ must point along the normal direction N. Then let Bαβ be the

coefficients in the relationship

∇βSα = NBαβ. (30)

Since ∇βSα can be expressed as the double derivative ∇β∇αS , the curvature

tensor Bαβ is symmetric

Bαβ = Bβα. (31)

The trace Bα
α of the curvature tensor with one covariant and one contravariant

index is called mean curvature. Its determinant |B·· | is Gaussian, intrinsic or total
curvature denoted by K. It can be computed on a surface by measuring distances

and angles within the surface. It is a fact famously captured by Gauss’s Theorema

Egregium

BανBβμ − BβνBαμ = 4Kεαβενμ. (32)
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3. Moving Surfaces and the δ/δt-derivative

The original definition of the δ/δt-derivative was given by Hadamard [17]. Many

of the details pertaining to applications of the δ/δt-derivative can be found in [18]

and [19].

A moving surface is a one parameter family of submanifolds indexed by time

t. We assume that each submanifold is sufficiently differentiable. Furthermore,

given a family of parameterizations,

Zi = Zi (t, S) (33)

we assume that Zi (t, S) is sufficiently differentiable with respect to t.

Define a quantity vi according to

vi =
∂Zi (t, S)

∂t
(34)

and its projection vα onto the surface

vα = viZα
i . (35)

Then the δ/δt-derivative for a tensor T iα
jβ with a typical collection of indices is

defined by

δT iα
jβ

δt
=

∂T iα
jβ

∂t
− vη∇ηT

iα
jβ + vmΓi

mkT
kα
jβ − vmΓk

mjT
iα
kβ +∇ηv

αT iη
jβ −∇βvηT iα

jη .

(36)

The δ/δt-derivative commutes with contraction, satisfies the product rule for any

collection of indices

δ

δt
(S··

··T
··
·· ) =

δS····
δt

T ··
·· + S··

··
δT ····
δt

(37)

and obeys a chain rule for surface restrictions of spatial tensors

δF (t, S)
δt

=
∂F (t, Z)

∂t
+ CN i∇iF (t, Z) . (38)

In (38), F (t, S) indicates the restriction of F onto the manifold S expressed with

respect to surface coordinates Sα, and F (t, Z) is the full tensor field F expressed

with respect to space coordinates Zi. Chain rule shows that the δ/δt-derivative of

spatial “metrics” vanishes

δZij

δt
=

δZij

δt
=

δZijk

δt
=

δZijk

δt
= 0 (39)
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and it is also true that
δδα

β

δt
= 0. (40)

The δ/δt-derivative of the key surface objects leads to highly concise and attrac-

tive formulas. When applied to the metric tensors, the curvature tensor appears

δSαβ

δt
= −2CBαβ (41)

δSαβ

δt
= 2CBαβ.

Importantly, when applied to the curvature tensor Bα
β , it reappears in the result

along with the metric tensors embedded in the co- and contravariant surface deriv-

atives
δBα

β

δt
= ∇β∇αC + CBα

γ Bγ
β . (42)

The shift tensor and the normal produce one another

δZi
α

δt
= ∇α

(
CN i

)
(43)

δN i

δt
= −Zi

α∇αC (44)

Finally, for the Levi-Civita tensors, we have

δεαβ

δt
= −εαβCBγ

γ (45)

δεαβ

δt
= εαβCBγ

γ .

4. Time Differentiation of Surface Integrals

Central to the analysis of conserved quantities is the formula that governs time

differentiation of surface integrals. Suppose that a scalar field F is defined on the

evolving manifold

F ≡ F (t, S) . (46)

Then the evolution of the integral of F over a closed manifold satisfies

d
dt

∫
S

FdS =
∫

S

δF

δt
dS −

∫
S

CBα
αFdS. (47)
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The intuitive interpretation of this formula is this: the first term captures the rate

of change in the tensor field F while the second captures the rate of change in the

area.

If the manifold S is not closed and has a moving contour γ, then an additional

term is needed to capture the change in the area due to γ. Suppose that c is the

velocity of the contour γ with respect to S. Then the proper generalization of (47)

is
d
dt

∫
S

FdS =
∫

S

δF

δt
dS −

∫
S

CBα
αFdS +

∫
γ
cFdγ. (48)

5. Dynamic Equations of Motion

5.1. Full Equations of Motion

We model the fluid film as a two dimensional manifold with two dimensional

density ρ. Let C be the normal component of the velocity field and V α (α = 1, 2)

be the tangential components. Suppose that the potential energy density per unit

mass e is given as a function of ρ and that the total potential energy is given by

the integral

V =
∫

S
ρe (ρ) dS. (49)

The dynamic equations of motion, derived from the Least Action Principle, read

(eρ = e′ (ρ))

δρ

δt
+ ∇α (ρV α) = ρCBα

α

ρ

(
δC

δt
+ 2V α∇αC + BαβV αV β

)
= −ρ2eρB

α
α (50)

ρ

(
δV α

δt
+ V β∇βV α − C∇αC − 2CV βBα

β

)
= −∇α

(
ρ2eρ

)
.

The structure of these equations is similar to that of the classical hydrodynamic

equations. The first equation in (50) is mass conservation. The remaining equa-

tions – the scalar one and the vector one – represent evolution of momentum.

However, there are fundamental differences as well. The fluid film equations have

a two dimensional deforming support, while the classical equations of fluid dy-

namics are typically solved in a Euclidean space with a stationary metric.
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5.2. Conservation of Mass

Suppose that P (t) is a material patch on the manifold S. In other words, P (t)
is comprised of the same set of material particles at different times t. The total

mass M (t) contained within P (t) is given by the surface integral with a moving

contour

M (t) =
∫

P (t)
ρdS. (51)

Its rate of change dM (t) /dt is analyzed by equation (48)

d
dt

M (t) =
∫

P (t)

δρ

δt
dS −

∫
P (t)

CρBα
αdS +

∫
γ(t)

cρdγ (52)

where γ (t) is the contour boundary of P (t). Then, according to the first equation

in (50) the first integral can be rewritten as

∫
P (t)

δρ

δt
dS =

∫
P (t)

ρCBα
αdS −

∫
P (t)

∇α (ρV α) dS. (53)

Note that the integrals containing ρCBα
α cancel, leaving

d
dt

M (t) = −
∫

P (t)
∇α (ρV α) dS +

∫
γ(t)

cρdγ. (54)

By Gauss’s theorem, the surface integral is converted into the contour integral

−
∫

P (t)
∇α (ρV α) dS = −

∫
γ(t)

nαρV αdγ (55)

where nα is the unit normal to contour γ (t) that lies within the ambient manifold

S. Finally, observe that the velocity c of the contour γ (t) with respect to the

ambient manifold S equals the normal component of the velocity field V α

c = nαV α. (56)

As a result, the two remaining integrals cancel and we have

dM (t)
dt

= 0 (57)

for any material patch P (t), Q.E.D.
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5.3. Conservation of Energy

Let q be the absolute value of the total velocity field

q2 = C2 + VαV α. (58)

The total energy E is given by the expression

E =
∫

S
ρ

(
1
2
q2 + e

)
dS. (59)

Its evolution dE/dt is obtained by differentiating the integral according to equa-

tion (47)

dE

dt
=

d
dt

∫
S

ρ

(
1
2
q2 + e

)
dS

(60)

=
∫

S

(
δρ

δt
− ρCBα

α

)(
1
2
q2 + e

)
+ ρ

(
q
δq

δt
+ eρ

δρ

δt

)
dS.

The quantity δρ/δt is available from the first dynamic equation (50). We therefore

focus on q δq
δt which can be obtained from the rest of the dynamic equations. Apply

δ/δt to equation (58). By the product rule, we have

q
δq

δt
= C

δC

δt
+

1
2

(
δV α

δt
Vα + V α δVα

δt

)
. (61)

Therefore, we must calculate δC
δt , δV α

δt and δVα
δt . The second equation in (50) gives

δC
δt

δC

δt
= −ρeρB

α
α − 2V α∇αC − BαβV αV β (62)

while the third equation in (50) gives us δV α

δt

δV α

δt
= −1

ρ
∇α

(
ρ2eρ

) − V β∇βV α + C∇αC + 2CV βBα
β (63)

from where it follows (by lowering α) that

δVα

δt
= −1

ρ
∇α

(
ρ2eρ

) − V β∇βVα + C∇αC. (64)

Combining equations (62)-(63) gives ρδq/δt

q
δq

δt
= −1

ρ
Vα∇α

(
ρ2eρ

) − ρeρCBα
α − 1

2
V β∇βq2. (65)
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Substituting this expression in equation (60) we end with

dE

dt
=−

∫
S

(
∇α

(
1
2
q2ρV α

)
+∇α (ρV α) e+Vα∇α

(
ρ2eρ

)
+ρeρ∇α (ρV α)

)
dS

(66)

The rest of the analysis proceeds by a repeated application of Gauss’s theorem.

The first term in the integrand yields

∫
S
∇α

(
1
2
q2ρV α

)
dS =

∫
γ

1
2
q2ρV αnαdγ (67)

where γ is the stationary contour of the fluid film and nα is the normal to the

contour that lies in the tangent plane to S. Since V α is orthogonal to the normal

at the boundary (V αnα = 0), this term integrates to zero.

Also by Gauss’s theorem, the second term can be converted to∫
S
∇α (ρV α) e (ρ) dS = −

∫
S

ρV α∇αe (ρ) dS
(68)

= −
∫

S
ρV αeρ∇αρdS.

Elementary calculus shows that the remaining terms also sum up to a single diver-

gence expression

−ρV αeρ∇αρ + Vα∇α
(
ρ2eρ

)
+ ρeρ∇α (ρV α) = ∇α

(
ρ2eρV

α
)

(69)

whose integral vanishes due to Gauss’s theorem. We have therefore shown that

dE

dt
= 0 (70)

Q.E.D.

5.4. Conservation of Vorticity

Define two dimensional vorticity ω as

ω = εαβ∇αVβ. (71)

We next show that the quantity ω/ρ is pointwise conserved. To track a specific

material point, we evaluate the material derivative D/Dt

D

Dt
=

δ

δt
+ V γ∇γ . (72)
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Our goal is to prove that
D (ω/ρ)

Dt
= 0. (73)

We have the following chain of identities

ρ
D (ω/ρ)

Dt
= ρ

δ (ω/ρ)
δt

+ ρV γ∇γ
ω

ρ

=
δω

δt
− ω

ρ

δρ

δt
+ ρV γ∇γ

ω

ρ (74)

=
δω

δt
− ωCBα

α +
ω

ρ
∇α (ρV α) + ρV γ∇γ

ω

ρ

=
δω

δt
− ωCBα

α + ∇α (ωV α) .

Continue with δω/δt

δω

δt
=

δ
(
εαβ∇αVβ

)
δt

=
δεαβ

δt
∇αVβ + εαβ δ∇αVβ

δt (75)

= εαβCBγ
γ∇αVβ + εαβ∇α

δVβ

δt

= ωCBγ
γ + εαβ∇α

δVβ

δt
·

Importantly, in the above chain, we commuted the operators δ/δt and ∇α as ap-

plied to Vβ . This operation is not valid in general. However, since

δ

δt
∇αVβ −∇α

δVβ

δt
=

(
∇βCBη

α + ∇αCBη
β + C∇αBη

β − Bαβ∇ηC
)

Vη (76)

we observe that the commutator on the left is symmetric with respect to α and β
due to Codazzi equations [14].

Substitute equation (75) in the original chain of identities (74)

ρ
D (ω/ρ)

Dt
= εαβ∇α

δVβ

δt
+ ∇α (ωV α) . (77)

At this point, the dynamic equations of motion enter the analysis. Rename indices

α → β and β → γ in equation (64)

δVβ

δt
= −1

ρ
∇β

(
ρ2eρ

) − V γ∇γVβ + C∇βC. (78)
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Then for εαβ∇α (δVβ/δt) we have

εαβ∇α
δVβ

δt
= εαβ∇α

(
−1

ρ
∇β

(
ρ2eρ

) − V γ∇γVβ + C∇βC

)
(79)

= εαβ

⎛
⎜⎝

∇α

(
−1

ρ∇β

(
ρ2eρ

))
−∇αV γ∇γVβ − V γ∇γ∇αVβ

+∇αC∇βC + C∇α∇βC

⎞
⎟⎠ .

Upon expanding the expression ∇α

(−ρ−1∇β

(
ρ2eρ

))
, one notices that it is sym-

metric with respect to α and β. The same is easily seen for the last two terms, as

well. We are, therefore, left with

εαβ∇α
δVβ

δt
= −εαβ∇αV γ∇γVβ − εαβV γ∇γ∇αVβ . (80)

Combine all intermediate relationships

ρ
D (ω/ρ)

Dt
= −εαβ∇αV γ∇γVβ − εαβV γ∇γ∇αVβ + ∇γ (ωV γ)

= −εαβ∇αV γ∇γVβ − εαβV γ∇γ∇αVβ

+∇γ

(
εαβ∇αVβV γ

)
(81)

= −εαβ∇αV γ∇γVβ − εαβV γ∇γ∇αVβ

+εαβ∇α∇γVβV γ + εαβ∇αVβ∇γV γ

= −εαβ∇αV γ∇γVβ + εαβ∇αVβ∇γV γ .

There are several ways to show that the resulting expression vanishes. The most

straightforward way is to introduce a geodesic coordinate system [14] (which al-

lows arbitrary juggling of indices), expand each term in the summations and notice

that all terms cancel, Q.E.D.

6. Kelvin’s Circulation Theorem

Finally, we turn to Kelvin’s circulation theorem. Suppose that γ (t) is a closed

contour comprised of the same material particles over time. Suppose that γ is

given parametrically by

Sα ≡ Sα (θ) (82)

where θ ∈ [Θ1, Θ2] is a material coordinate, thus no t dependence in equation

(82), and

Sα (Θ1) = Sα (Θ2) . (83)
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Define circulation Γ around the closed loop γ as

Γ =
∫

γ
V · dγ (84)

where dγ is an element of length pointing in the tangential direction.

Suppose that R (t, θ) is the position vector that traces the material points on the

contour γ. Then the velocity V is given by

V =
∂R (t, θ)

∂t
(85)

and the element of length dγ by

dγ =
∂R (t, θ)

∂θ
dθ. (86)

The evolution dΓ/dt is analyzed by the following chain of identities

dΓ
dt

=
d
dt

∫ Θ2

Θ1

∂R (t, θ)
∂t

· ∂R(t, θ)
∂θ

dθ

=
∫ Θ2

Θ1

(
∂2R (t, θ)

∂t2
· ∂R (t, θ)

∂θ
+

∂R (t, θ)
∂t

· ∂2R (t, θ)
∂θ∂t

)
dθ

(87)

=
∫ Θ2

Θ1

(
∂2R (t, θ)

∂t2
· ∂R (t, θ)

∂θ
+

1
2

∂

∂θ

(
∂R (t, θ)

∂t
· ∂R (t, θ)

∂t

))
dθ

=
∫ Θ2

Θ1

∂2R (t, θ)
∂t2

· ∂R (t, θ)
∂θ

dθ.

The element of length dγ = (∂R/∂θ) dθ points in the tangential direction. There-

fore only the tangential component of acceleration ∂2R/∂t2 is relevant. That

component is given by (ρ−1 times) the right hand side of the third equation in

(50). Continuing with our calculation, we have

dΓ
dt

= −
∫ Θ2

Θ1

1
ρ
∇α

(
ρ2eρ

)
Sα · ∂R (t, θ)

∂θ
dθ

(88)

= −
∫ Θ2

Θ1

1
ρ
∇α

(
ρ2eρ

)
γαdθ

where γαdθ are the coordinates of the length element dγ with respect to the sur-

face basis

γα = Sα · ∂R (t, θ)
∂θ

· (89)
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The tensor γα is also given by

γα = εαβnβ (90)

where εαβ is the Levi-Civita tensor defined in equation (18) and nβ is the covariant

component of the unit normal n to the contour γ that lies in the tangential plane

to manifold S. Therefore, dΓ/dt is expressed by the integral

dΓ
dt

= −
∫ Θ2

Θ1

1
ρ
∇α

(
ρ2eρ

)
εαβnβdθ.

Once again, apply Gauss’s theorem

dΓ
dt

= −
∫ Θ2

Θ1

1
ρ
∇α

(
ρ2eρ

)
εαβnβdθ

(91)

= −
∫

P (t)
εαβ∇β

(
1
ρ
∇α

(
ρ2eρ

))
dS

where P (t) is the material patch enclosed by γ (t) and the Levi-Civita tensor is

outside of the covariant derivative operator since its covariant derivative vanishes

[14]. Also, note that ∇β

(
1
ρ∇α

(
ρ2eρ

))
is symmetric in α and β

∇β

(
1
ρ
∇α

(
ρ2eρ

))
= ∇β

(
1
ρ

(
ρ2eρ

)
ρ
∇αρ

)
(92)

=
(

1
ρ

(
ρ2eρ

)
ρ

)
ρ

∇βρ∇αρ +
1
ρ

(
ρ2eρ

)
ρ
∇β∇αρ.

Therefore, the integrand of (92) vanishes and we have shown that

dΓ
dt

= 0 (93)

Q.E.D.

7. Equations for Normal Deformations

Fluid films can undergo enormous deformations and display variations in thick-

ness from nanometers to millimeters. To adequately capture these effects, analy-

sis must be fully nonlinear and assume small neither deformations nor constant

thickness. However, other types of simplifications do not detract from the non-

linear nature of fluid films. One of the most appealing simplifying assumptions
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commonly employed in contemporary literature is to neglect the tangential com-

ponents of the velocity field. This simplified model is still capable of displaying

a wide range of deeply nonlinear effects. In this paper, we derive exact equations

for the dynamics of fluid films under this assumption.

This assumption cannot be implemented in a consistent manner simply by ne-

glecting the terms containing V α is in the full dynamic system (50). If one were

to simply eliminate these terms, the first two equations would become

δρ

δt
= ρCBα

α
(94)

ρ
δC

δt
= −ρ2eρB

α
α .

This is a system that certainly deserves attention. It is nonlinear and conserves

mass and energy. However, it most likely cannot be obtained from a proper Least

Action Principle. Further, this approach based on neglecting terms containing V α

leaves the third equation in a nonsensical form

ρC∇αC = −∇α
(
ρ2eρ

)
.

An alternative way to see the problem is to notice that the third equation in (50)

shows that finite C will necessarily cause finite V α.

We must therefore incorporate the constraint

V α = 0 (95)

at an earlier stage in our modeling. We propose to modify the action by incorpo-

rating the constraint (95) in the following way

A =
∫ t2

t1

(∫
S

ρ

(
1
2
C2 − e − ΛαVα

)
dS

)
dt (96)

where Λα is a pointwise time-dependent field of Lagrange multipliers. This action

leads to the following simplified system

δρ

δt
= ρCBα

α

ρ
δC

δt
− 2ρΛα∇αC − C∇α (ρΛα) = −ρ2eρB

α
α (97)

ρ

(
δΛα

δt
− 2CBα

β Λβ + C∇αC

)
= −∇α

(
ρ2eρ

)
.
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This system is certainly more complicated than the simplified system (95) ob-

tained by intuitive reasoning, but offers a number of advantages over the full

system (50). In particular, contrary to the equations (50), the new system (98)

has properties similar to those of the Lagrange equations of the second kind in

classical dynamics [20]. It can therefore be analyzed by the universal methods of

classical dynamics and control theory [21].

We show that the simplified system conserves mass and total energy. Mass conser-

vation is particularly straightforward. Its proof follows that of Section 5.2, except

it is simpler for lack of tangential components. Once again, consider a material

patch P (t) and its mass M . Its evolution dM/dt is given by the integral

dM

dt
=

d
dt

∫
P (t)

ρdS. (98)

The surface integral is differentiated according to rule (47)

dM

dt
=

∫
P (t)

δρ

δt
dS −

∫
P (t)

CBα
αρdS (99)

and this time there is no contour term because the velocity c of the contour (c =
V αnα) vanishes. Combining the two terms and applying the second equation in

(98), yields
dM

dt
=

∫
P (t)

(
δρ

δt
− ρCBα

α

)
dS = 0 (100)

Q.E.D.

We now turn to energy conservation. The total energy E is given by

E =
∫

S
ρ

(
1
2
C2 + e

)
dS. (101)

The analysis of its evolution starts with an application of equation (47)

dE

dt
=

∫
S

δ
(
ρ

(
1
2C2 + e

))
δt

dS −
∫

S
ρCBα

α

(
1
2
C2 + e

)
dS. (102)

The first integral on the right hand side is expanded by the product rule

dE

dt
=

∫
S

(
δρ

δt

(
1
2
C2 + e

)
+ ρ

(
C

δC

δt
+ eρ

δρ

δt

))
dS

(103)

−
∫

S
ρCBα

α

(
1
2
C2 + e

)
dS.
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According to the first equation in (98), substitute ρCBα
α for δρ/δt and cancel the

two equal and opposite terms

dE

dt
=

∫
S

ρ

(
C

δC

δt
+ eρρCBα

α

)
dS. (104)

Next, solve the first equation in (98) for δC/δt, substitute in equation (104), and

once again cancel two equal and opposite terms

dE

dt
=

∫
S

ρC
(
2Λα∇αC + Cρ−1∇α (ρΛα)

)
dS. (105)

The product combines the two terms into a single divergence term

dE

dt
=

∫
S
∇α

(
ρΛαC2

)
dS. (106)

Finally, use Gauss’s theorem to convert this surface integral to a contour integral

dE

dt
=

∫
γ
ρnαΛαC2dγ (107)

which vanishes because C = 0 at the boundary γ, Q.E.D.

8. Conclusion

In this paper, we offered proofs for four fundamental properties of the full govern-

ing equations for the dynamics of fluid films: conservation of mass, conservation

of energy, pointwise conservation of momentum, and conservation of circulation

around a closed material loop. These properties are retained from Euler’s classical

equations of hydrodynamics.

We have also analyzed a feature unique to fluid films. It is commonly assumed

in existing literature, albeit in an infinitesimal linear framework, that the mate-

rial particles move in the instantaneously normal direction to the fluid film. In

this paper, we put this assumption on a rigorous variation framework. We have

formulated a least action principle in which the constraint is enforced by a field

of Lagrange multipliers. The resulting equations are simpler than the full uncon-

strained system (50) but still maintain their full nonlinear nature. Furthermore,

these simplified equations also satisfy mass conservation and total energy conser-

vation.
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