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Abstract. For a Euclidean domain with a moving boundary, Hadamard’s for-

mula relates the rate of change of the Laplace eigenvalues to the normal velocity

of the boundary. We generalize Hadamard’s formula to deforming Riemannian

maniforlds with contour boundary moving in a compatible manner. Our analysis

finds direct applications in the dynamics of fluid films. The spectrum of the surface

Laplacian describes the frequencies of normal oscillations of the film’s surface as

well as tangential oscillations in thickness.

1. Introduction

How do the eigenvalues of the Laplace operator depend on the shape of the do-

main? This question was originally posed by Hadamard.

In 1908, having planted the seeds of what we now call the calculus of moving

surfaces, Hadamard established an expression for the rate of change in Laplace

eigenvalues for a deforming domain Ω – thereby collecting the first fruits of the

new calculus [3]. This subject has been an area of active research. The reader will

find excellent reviews in [4] and [12] along with many useful references therein.

Hadamard’s formula applies to the Laplace operator on Euclidean domains with

deforming boundaries. This goal of this paper is to establish analogous results for

the surface Laplacian on deforming Riemannian manifolds with moving contour

boundaries.

The surface Laplacian ∇α∇
α finds a great number of applications. In [1], we

present exact Hamiltonian equation for the dynamics of fluid films. We show that

the equation that governs small normal oscillations about an equilibrium config-

uration is utt = c2 (∇α∇
α − 2K) u, where K is Gaussian curvature. Further-

more, small oscillations in thickness ρ are governed by the surface wave equation

ρtt = c2∇α∇
αρ. These examples demonstrate applications of the surface Lapla-

cian and illustrate the immediate relevance of its spectrum.
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We begin by describing Hadamard’s classical results [3]. Let S be the boundary

of Ω and C be the normal velocity of S. Hadamard’s result for Dirichlet boundary

conditions reads (Hadamard’s Formula)

λ′ (τ) = −

∫
S

C |∇ψ|2 dS (1)

where λ is the eigenvalue, ψ is the corresponding eigenfunction and τ is a parame-

trization of the evolution. The normal velocity C, introduced by Hadamard, is the

central object in the formalism of moving surfaces. It is constructed geometrically

as the limit

C = lim
Δτ→0

Δd

Δτ
(2)

where Δd is the normal distance between the surface at times τ and τ + Δτ . The

quantity C is signed and depends on the choice of the normal.

To construct C algebraically, we must specify the evolution of the boundary

Z = Z (τ, S) (3)

where Z is a position vector in the ambient Euclidean space and Sα are the surface

coordinates. We drop the tensor indices of function arguments and write Z (τ, S)
instead of Z (τ, Sα). Because the surface is moving, one must have a rule for

constructing the surface coordinates Sα at every time τ . Given the evolution (3),

C can be expressed as

C =
∂Z (τ, S)

∂τ
· N (4)

where N is the unit normal vector. By drawing a simple picture, one can be easily

convinced that the algebraic and the geometric definitions of C in equations (2)

and (4) are equivalent. A crucial implication is that ∂Z (τ, S) /∂τ ·N is indepen-

dent of the choice of the surface coordinates (whereas ∂Z (τ, S) /∂τ alone surely

is not). Note that C is a scalar, but the term velocity is appropriate since the nor-

mal direction is implied. When one draws the velocity of the interface as a vector,

one simply means CN, as we do in Fig. 1.

Hadamard’s result applies to three dimensional domains with surface boundaries,

two dimensional domains with contour boundaries, and – with a little care – one

dimensional segments with point boundaries.

Problems arise that require Hadamard’s result to be generalized in a number of

ways. One generalization involves Ω embedded in a stationary Riemannian man-

ifold – for instance, a spherical shell – rather than a Euclidean space. In a very
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Figure 1. Hadamard classic formula applies to eigenvalues of the bulk

Laplace operator in any dimension.

simplistic way, this could be a model for standing waves in oceans. A much more

interesting and difficult problem, from the point of view of moving surfaces, is to

allow the ambient manifold itself to deform while the boundary S evolves within

the manifold as shown in Fig. 2.

In this paper, we focus on the second, more challenging, problem. The challenge

is especially great when one intends to calculate the second derivative λ′′ (τ),
which is beyond the scope of this paper. We first analyze a deforming closed

surface (no boundary). We subsequently add an additional term associated with

the motion of the contour boundary.

A change in notation will be helpful. We let S be the deforming domain and call

its boundary γ. This notation is more convenient because the canonical choice of

letters for a deforming surface in moving surfaces formulas is S rather than Ω.

2. Statement of the Problem

Consider a deforming closed surface S (τ). The Laplace eigenvalue problem on

S consists of the bulk equation

∇α∇
αψ = −λψ (5)

and the normalization condition ∫
S

ψ2dS = 1. (6)

The covariant and contravariant derivatives ∇α and ∇α are defined with respect

to the surface metric Sαβ . Our analysis relies heavily on tensor calculus and on
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Figure 2. A generalization of Hadamard’s problem: a deforming domain

with a moving contour boundary.

the calculus of moving surfaces. We refer the reader to [7] and [8] for excellent

sources on tensor calculus and to [1] and [2] for detailed overviews of the calculus

of moving surfaces.

We consider simple eigenvalues λ. For these, ψ is unique save for the sign. The

corresponding eigenvalue can be expressed in terms of the eigenfunction by the

Rayleigh quotient (with unit denominator)

λ =

∫
S
∇αψ∇αψdS. (7)

This expression provides a convenient starting point for our analysis.

We imagine that the manifold S deforms with velocity C. As S evolves, so do

ψ, λ and all characteristics of the manifold S. They can therefore be treated as

functions of τ .

To keep our notation as uncluttered as possible, we list function arguments only

to highlight a particular dependence. We write

λ (τ) =

∫
S
∇αψ∇αψdS (8)

and it is to be remembered that S, ψ, and the metrics implicitly contained in ∇α,

∇α, and dS are functions of τ . Our goal is to evaluate λ′ (τ).

A number of approaches have been applied to eigenvalue variations. One method

in particular deserves a mention due to its attractive simplicity. It applies to

smooth variations of domains whose eigenvalues are known. The method, used
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successfully by Migdal [9], (see also [6]) to estimate the spectrum of an elec-

tron trapped in a slightly ellipsoidal cavity, involves a change of variables that

transfers the perturbation from the boundary to the differential operator. This

approach, however, typically requires that perturbations are smooth and regular,

whereas Hadamard’s approach is less restrictive [5].

From a computational point of view, the level set method [10] has been used with

success to eigenvalue optimization problems [11].

3. Analysis

We differentiate both sides of (8) with respect to τ . The closed-surface integral is

differentiated according to the formula

d

dτ

∫
S

F dS =

∫
S

δF

δτ
dS −

∫
S

CBα
αF dS (9)

where Bα
α is the trace of the curvature tensor Bα

β and δ/δτ is the invariant surface

derivative introduced by Hadamard. Hadamard’s original definition applied to

scalar fields. We use a generalized definition that is applicable to tensors, such as

∇αψ.

It is easy to show that the δ/δτ -derivative commutes with the covariant deriva-

tive ∇α. For this reason, we rewrite equation (8) strictly in terms of covariant

derivatives

λ (τ) =

∫
S

Sαβ∇αψ∇βψdS (10)

where Sαβ is the contravariant metric tensor [8], [7], [1].

An application of (9) to equation (10) yields

λ′ (τ)=

∫
S

(
δSαβ

δτ
∇αψ∇βψ + 2Sαβ∇α

δψ

δτ
∇βψ − CBα

α∇βψ∇βψ

)
dS. (11a)

In deriving equation (11a) we used the product rule and subsequently took advan-

tage of the symmetry of Sαβ to combine two terms. For the next step, recall that

δSαβ/δτ = 2CBαβ , [1] and use Gauss’s theorem to transfer ∇α from δψ/δτ to

∇βψ. There is no boundary term, since our integration domain has no boundary.

We have

λ′ (τ)=

∫
S

(
2CBαβ∇αψ∇βψ − 2Sαβ δψ

δτ
∇α∇βψ − CBα

α∇βψ∇βψ

)
dS. (11b)
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Now recognize that Sαβ∇α∇βψ = ∇α∇
αψ = −λψ. Our expression therefore

reads

λ′ (τ) =

∫
S

(
2CBαβ∇αψ∇βψ + 2λψ

δψ

δτ
− CBα

α∇βψ∇βψ

)
dS. (11c)

We continue our analysis on the term containing δψ/δτ . Consider the time deriv-

ative of the normalization condition (6)

2

∫
S

ψ
δψ

δτ
dS −

∫
S

CBα
αψ2dS = 0. (12)

Substitute this identity in equation (11c) to obtain the final expression (main result

without boundary)

λ′ (τ) =

∫
S

C
(
λBα

αψ2 + 2Bαβ∇αψ∇βψ − Bα
α∇βψ∇βψ

)
dS. (13)

This expression shares a number of important features with Hadamard’s classic

formula (1). First, λ′ (τ) can be computed without reference to the eigenfunc-

tion perturbation δψ/δτ . In this, Hadamard’s formula (1) and equation (13) are

consistent with the standard eigenvalue perturbation scheme of linear algebra.

The correctness of the formula can be checked in one trivial case. On any closed

surface, there is a simple eigenvalue λ = 0 with ψ = 1/
√

Area as the correspond-

ing eigenfunction. For this eigenvalue, the first term in the integrand vanishes

because λ = 0, the other two vanish due to the gradients, and we have λ′ (τ) = 0.

For another insightful example, consider a surface that has a section that is in-

stantaneously flat and assume that only that part of the surface is instantaneously

deforming. Then equation (13) implies that λ′ (τ) = 0 since all curvature ele-

ments vanish. It is easy to see why this is correct. When a flat surface deforms, C
and −C result in mirror changes of shape and therefore lead to identical changes

in eigenvalues. This is because mirror images have identical metrics – and eigen-

values depend on the metrics alone.

In the following section we use a nontrivial torus example to illustrate the correct-

ness of formula (13).

Suppose now that the surface S has a moving contour γ. Let the velocity of the

contour γ within S be c. The main formula can be adapted to this case by adding

an Hadamard term for the contour

λ′ (τ) =

∫
S

C
(
λBα

αψ2 + 2Bαβ∇αψ∇βψ − Bα
α∇βψ∇βψ

)
dS (14)
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the main result with boundary

−

∫
γ
c∇αψ∇αψdγ.

This expression represents a very broad generalization of Hadamard’s formula (1).

For a manifold whose interior is at rest, it reduces to a formula nearly identical

to Hadamard’s, except the Euclidian gradient is replaced by the surface gradient.

For flat stationary manifolds, Hadamard’s very formula is recovered.

We make one final point regarding the motion of the contour. Its evolution is often

described by vector velocity field CS in the ambient Euclidean space. Then the

motions of the contour and surface S are compatible when

C = CS ·N. (15)

The velocity of the contour c within the surface S is obtained from CS as the

tangential projection

c = CS− (CS ·N)N. (16)

4. Torus Demonstration

Consider a torus with radii R and r referred to coordinates θ and φ

x = (R + r cos φ) cos θ

y = (R + r cos φ) sin θ (17)

z = r sinφ.

The metric tensors are given by

Sαβ =

[
(R + r cos φ)2

r2

]
and Sαβ =

[
(R + r cos φ)−2

r−2

]
(18)

and therefore the area element dS is proportional to the square root of the deter-

minant of Sαβ

dS = r (R + r cos φ) dθdφ. (19)

The curvature tensors with respect to the outward normal are given by
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Bαβ =

[
− (R + r cos φ) cos φ

−r

]

Bα
β =

[
− (R + r cos φ)−1 cos φ

−r−1

]
(20)

Bαβ =

[
− (R + r cos φ)−3 cos φ

−r−3

]
.

The trace of Bα
β is the mean curvature Bα

α

Bα
α = −

cos φ

R + r cos φ
−

1

r
· (21)

We consider an evolution that comes from a uniformly expanding radius r

x = (R + (r + V τ) cos φ) cos θ

y = (R + (r + V τ) cos φ) sin θ (22)

z = (r + V τ) sinφ.

Then the velocity field C is uniform and C = V . This allows a slight simplifi-

cation of equation (13), since an application of Gauss’s theorem to the last term

eliminates λBα
αψ2

λ′ (τ) = C

∫
S

(
2Bαβ∇αψ∇βψ + ψ∇βBα

α∇βψ
)

dS. (23)

Simple eigenvalues on the torus are functions only of the coordinate φ. Therefore,

(23) reduces to

λ′ (τ) = C

∫
S

(
2BΦΦψ2

φ + ψr−2 (Bα
α)φ ψφ

)
dS (24)

which, in arithmetic form, reads (ρ = R/r)

λ′ (τ) = −
2πC

r

∫ 2π

0

(
2ψ2

φ −
ρ sinφ

(ρ + cos φ)2
ψψφ

)
(ρ + cos φ) dφ. (25)

This expression evaluates numerically to −2.00572986192 C. We also have the

following numerical estimates for eigenvalues
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λR=1,r=1 = 0.9767313134...
(26)

λR=1, r=1+10−6 = 0.9767293077...

These estimates imply a rate of change of

λR=1,r=1+10−6 − λR=1,r=1

10−6
= −2.00572686687... (27)

which is convincingly close (≈ 3 × 10−6) to the value of integral (25).

5. Conclusion

We have derived a formula for the derivative of simple eigenvalues of the surface

Laplacian. When the surface in question has a contour boundary, the formula

is valid for Dirichlet boundary conditions. Equation (14) applies to deforming

manifolds with moving boundaries. For flat manifolds, the formula reduces to

Hadamard’s formula. For closed manifolds, it simplifies to equation (13). The

formulas were obtained in the framework of the formalism of moving surfaces.

References

[1] Grinfeld P., Hamiltonian Dynamic Equations for Fluid Films, Submitted to

SIAM Review 2009.

[2] Grinfeld P. and Strang G., Laplace Eigenvalues on Polygons, Computers and

Mathematics with Applications 48 (2004) 1121–1133.

[3] Hadamard J., Memoire sur la probleme d’analyse relative a l’equilibre des
plaques elastiques encastrees, Memoires presentes a l’Academie des Sci-

ences 33 (1908) 23–27.

[4] Henrot A., Extremum Problems for Eigenvalues of Elliptic Operators,

Birkhäuser, Basel, 2006.

[5] Kozlov V., On the Hadamard Formula for Nonsmooth Domains, J. Diff. Eqs.

230 (2006) 532–555.

[6] Landau L. and Lifshitz E., Quantum Mechanics. Butterworth-Heinemann,

Stoneham, MA, 1997.

[7] Levi-Civita T., The Absolute Differential Calculus (Calculus of Tensors).

Dover, New York, 1977.



52 Pavel Grinfeld

[8] McConnell A., Applications of Tensor Analysis, Dover, New York, 1957.

[9] Migdal A., Qualitative Methods in Quantum Theory. W. A. Benjamin, New

York, 1977.

[10] Osher S. and Fedkiw R., Level Set Methods and Dynamic Implicit Surfaces,

Springer, Berlin, 2002.

[11] Osher S. and Santosa F., Level Set Methods for Optimization Problems In-
volving Geometry and Constraints, J. Comp. Phys. 171 (2001) 272–288.

[12] Simon J., Differentiation with Respect to the Domain in Boundary Value
Problems., Numer. Funct. Anal. Optim. 2 (1980) 649–687.

Pavel Grinfeld

Department of Mathematics

Drexel University

USA

E-mail address: pg@math.drexel.edu


