
JGSP 14 (2009) 85–96

NONCOMMUTATIVE DEFORMATION OF INSTANTONS
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Abstract. We study noncommutative (NC) instantons and vortexes. At first,

we construct instanton solutions which are deformations of instanton solutions on

commutative Euclidean four-space. We show that the instanton numbers of these

NC instanton solutions coincide with the commutative solutions. Next, we also

deform vortex solutions similarly and we show that their vortex numbers are un-

changed under the NC deformation.

1. Introduction

Instanton connections in the four dimensional Yang-Mills theory are defined by

F+ =
1
2
(1 + ∗)F = 0 (1)

where F is a curvature two-form and ∗ is the Hodge star operator.

The NC instanton solutions were constructed with the ADHM method in [1, 15].

The ADHM construction which generate the instanton U(N) gauge field require

a pair of the two complex vector spaces V = C
k, W = C

N . Here k is an integer.

Introduce B1, B2 ∈ Hom(V, V ), I ∈ Hom(W, V ) and J ∈ Hom(V, W ) called

ADHM data such that

μR := [B1, B
†
1] + [B2, B

†
2] + II† − J†J = ζIdk (2)

μC := [B1, B2] + IJ = 0 . (3)

Here ζ is a NC parameter and its detail will appear in the following. Using these

ADHM data we can construct NC instanton and call it NC ADHM instanton in the

following. NC ADHM instantons and deformed instantons from the commutative

ADHM construction is unknown.

It was also shown that instanton numbers of NC ADHM instantons do not depend

on the NC parameter [4, 5, 9, 16, 17]. These results may imply that the instanton
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numbers in Euclidean four-space are invariant under NC deformation. Further-

more topological charges might be preserved under the NC deformation for any

other solitons in gauge theories in Euclidean spaces. These problems are main

themes of this article.

In this paper, we construct a NC formal instanton solution which is a deformation

of the commutative instanton. We show that the NC instanton number for this NC

instanton is independent of � (Theorem 4). This result supports our conjecture

on the independence of the NC instanton number for NC R
4. In addition, we

also construct a NC vortex solution which is a deformation of commutative vortex

solution and showed that its vortex number is undeformed [11, 12].

2. Notations

NC Euclidean 2n-space is given by the following commutation relations:

[xμ, xν ]� = xμ � xν − xν � xμ = iθμν , μ, ν = 1, 2, . . . , 2n (4)

where (θμν) is a real, x-independent, skew-symmetric matrix, called the matrix

of NC parameters. The � multiplication is known as the Moyal product [14]. The

Moyal product (or star product) is defined on functions by

f(x) � g(x) = f(x)g(x) +
∞∑

n=1

1
n!

f(x)
(

i
2
←−
∂ μθμν−→∂ ν

)n

g(x) .

Here
←−
∂ μ and

−→
∂ ν are partial derivatives with respect to xμ for f(x) and to xν for

g(x), respectively.

The curvature two form F is defined by

F :=
1
2
Fμνdxμ ∧ �dxν = dA + A ∧ �A (5)

where ∧� is defined by

A ∧ �A :=
1
2
(Aμ � Aν)dxμ ∧ dxν . (6)

To consider smooth NC deformations, we introduce a parameter � and a fixed

constant θμν
0 <∞ with

θμν = �θμν
0 . (7)

We define the commutative limit by letting �→ 0.
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3. NC Deformation of Instantons

In this section, we consider the Yang-Mills theory on the NC R
4. Instanton so-

lutions satisfy the (NC) instanton equation F + =
1
2
(1 + ∗)F = 0. Formally we

expand the connection as

Aμ =
∞∑
l=0

A(l)
μ �

l. (8)

Then

Aμ � Aν =
∞∑

l,m,n=0

�
l+m+n 1

l !
A(m)

μ (
←→
Δ )lA(n)

μ

←→
Δ ≡ i

2
←−
∂ μθμν

0

−→
∂ ν .

(9)

We introduce the selfdual projection operator P by

P :=
1 + ∗

2
, Pμν,ρτ =

1
2
(δμρδντ − δνρδμτ + εμνρτ ). (10)

Then the instanton equation is written as

Pμν,ρτF
ρτ = 0. (11)

In the NC case, the l-th order equation of (11) is given by

Pμν,ρτ (∂ρA
(l)
τ − ∂τA

(l)
ρ + i[A(l)

ρ , A(l)
τ ] + C(l)

ρτ ) = 0

C(l)
ρτ :=

∑
(p; m,n)∈I(l)

�
p+m+n 1

p !
(
A(m)

ρ (
←→
Δ )pA(n)

τ −A(m)
τ (
←→
Δ )pA(n)

ρ

)
(12)

I(l) ≡ {(p; m, n) ∈ Z
3|p + m + n = l, p, m, n ≥ 0, m 
= l, n 
= l}.

Note that C(l) is a given function when we solve these equations recursively. The

0-th order equation is the commutative instanton equation with solution A
(0)
μ a

commutative instanton. The asymptotic behavior of commutative instanton A
(0)
μ

is given by

A(0) = gdg−1 + O(|x|−2), gdg−1 = O(|x|−1) (13)

where g ∈ G and G is a gauge group. We introduce covariant derivatives associ-

ated to the commutative instanton connection by

D(0)
μ f := ∂μf + i[A(0)

μ , f ], DA(0)f := d f + A(0) ∧ f. (14)
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Using this, (12) is given by

Pμν,ρτ
(
D(0)

ρ A(l)
τ −D(0)

τ A(l)
ρ + C(l)

ρτ

)
= 0. (15)

In the following, we fix a commutative anti-selfdual connection A(0). We impose

the following gauge fixing condition for A(l)(l ≥ 1)

A−A(0) = D∗
A(0)B, B ∈ Ω2

+ (16)

where D∗
A(0) is defined by

(D∗
A(0))μν

ρ Bμν = δν
ρD(0)μBμν − δμ

ρ D(0)νBμν . (17)

We expand B in � as we did with A. Then A(l) = D∗
A(0)B

(l). In this gauge, the

equation (15) is given by

PDA(0)D∗
A(0)B

(l) + PC(l) = 0. (18)

Using the fact that the A(0) is an anti-selfdual connection, (18) simplifies to

2D2
(0)B

(l)μν + Pμν,ρτC(l)
ρτ = 0 (19)

where

D2
(0) ≡ Dρ

A(0)DA(0)ρ .

We derive some properties of the Green’s function of D2
(0). (We restrict ourselves

to U(n) gauge theory.)

We consider the Green’s function for D2
(0)

D2
(0)G0(x, y) = δ(x− y)

where δ(x − y) is a four dimensional delta function. Instantons in commutative

R
4 are given by the ADHM construction [1], and arbitrary commutative instan-

tons are in one-to-one correspondence with ADHM data. G0(x, y) has been con-

structed in [2] :

G0(x, y) =
[v1(x)⊗ v2(x)]†(1−M)[v1(y)⊗ v2(y)]

4π2(x− y)2
· (20)

Here M and v1, v2 are determined by the ADHM data and vi is a bounded func-

tion. Using this Green’s function, we solve the equation (19) as

B(l)μν = −1
2

∫
R4

G0(x, y)P μν,ρτC(l)
ρτ (y)d4y (21)
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and the NC instanton A =
∑

A(l) is given by A(l) = D∗
A(0)B

(l). The key fact used

in the following proposition is that the asymptotic behavior of Green’s function of

D2
(0) is given by

G0(x, y) = O(|x− y|−2), |x− y| >> 1 . (22)

To list some features of Green’s functions like G0, see some propositions.

Proposition 1. Let G(x, y) be a Green’s function on R
4 written as

G(x, y) =
b(x, y)
|x− y|2 (23)

where b(x, y) is a bounded function. Let f(x) be a function such that |f(x)| <
C

1 + |x|4 where C is some constant. We define F (x) by

F (x) :=
∫
R4

G(x, y)f(y)d4y. (24)

Then F (x) = O(|x|−2) .

We gave a proof of this proposition in [12].

We introduce the notation O′(|x|−m) as in [3]. If s is a function of R
4 which is

O(|x|−m) as |x| → ∞ and |Dk
(0)s| = O(|x|−m−k), then we denote this natural

growth condition by s ∈ O′(|x|−m).
Examining the proof of Proposition 1, and keeping track of estimates for higher

derivatives, we have the following (see Lemma 3.3.36 in [3]).

Proposition 2. If f(x) ∈ O(|x|−m) and |D2
(0)f(x)| = O′(|x|−m−2), then f(x) ∈

O′(|x|−m).

We apply these propositions to our case, then we get the following theorem.

Theorem 3. If C(l) ∈ O′(|x|−4), then |B(k)| < O′(|x|−2).

The proof is given in [12]. In our case, C
(1)
ρτ = O′(x−4) by (13), and so |B(1)| <

O′(|x|−2) from Theorem 3 and |A(1)| < O′(|x|−3) as A(l) = D∗
A(0)B

(l). Repeat-

ing the argument l times, we get

|A(l)| < O′(|x|−3+ε), for any ε > 0 . (25)
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Now is the time to estimate the instanton number. The instanton number is defined

by

I� :=
1

8π2

∫
tr F ∧ �F. (26)

We rewrite (26) as

1
8π2

∫
tr d(A ∧ �dA +

2
3
A ∧ �A ∧ �A+) +

1
8π2

∫
trP� (27)

where P�

1
3
{F ∧ �A ∧ �A + 2A ∧ �F ∧ �A + A ∧ �A ∧ �F + A ∧ �A ∧ �A ∧ �A} . (28)

The term
∫

trP� is 0 in the commutative limit, but does not vanish in NC space.

The cyclic symmetry of trace is broken by the NC deformation.

The terms in
∫

trP� are typically written as∫
Rd

tr(P ∧ �Q− (−1)n(4−n)Q ∧ �P ) (29)

where P and Q be an n-form and a (4 − n)-form (n = 0, . . . , 4), respectively,

and let P ∧Q be O(�k). The lowest order term in � vanishes because of the cyclic

symmetry of the trace, i.e.,

∫
tr(P ∧ Q − (−1)n(4−n)Q ∧ P ) = 0. The term of

order � is given by

i
2

∫
R4

tr{�θμν
0 (∂μP ∧ ∂νQ)}

=
i
2

∫
R4

(n!(4− n)!)εμ1μ2μ3μ4tr d{(∗θ) ∧ (Pμ1...μndQμn+1...μ4)}
(30)

where ∗θ = εμνρτθ
ρτdxμ∧dxν/4 . These integrals are zero if Pμ1...μndQμn+1...μ4

is O′(|x|−(4−1+ε)) (ε > 0). Similarly, higher order terms in � in (29) can be

written as total divergences and hence vanish under the decay hypothesis. This

fact and (25) imply that
∫

trP� = 0.

From the above discussion and (25), we get following theorems.

Theorem 4. Let A
(0)
μ be a commutative instanton solution in R

4 given by the

ADHM construction. There exists a formal NC instanton solution Aμ =
∞∑
l=0

A(l)
μ �

l



Noncommutative Deformation of Instantons and Vortexes 91

such that the instanton number I� defined by (26) is independent of the NC para-
meter �, i.e.,

1
8π2

∫
trF ∧ �F =

1
8π2

∫
trF (0) ∧ F (0). (31)

4. NC Vortex

In this section we study NC deformation of the vortex solutions. We consider the

Abelian-Higgs model in commutative R
2 and deform vortex solutions into NC

vortexes.

4.1. Commutative Vortex Solutions

At first, we consider vortexes on commutative R
2 with a Higgs field φ, a complex

scalar field. Let G be the group of gauge transformations associated to U(1). For

g ∈ G, the gauge transformation is defined as φ→ gφ. We introduce the covariant

derivative by∇μφ = ∂μφ− iAμφ.

For later convenience, we introduce complex coordinates for R
2 and Aμ. z =

(x1 + ix2)/
√

2 , z̄ = (x1 − ix2)/
√

2 , and define differential operators ∂, ∂̄ by

∂ = (∂1 − i∂2)/
√

2 , ∂̄ = (∂1 + i∂2)/
√

2 , and define complex gauge fields by

A = (A1 − iA2)/
√

2 , Ā = (A1 + iA2)/
√

2 . The gauge transformations are

A → ig∂g−1 + A , Ā → −i∂̄gg−1 + Ā . The curvature is expressed in the

coordinates z, z̄ as

Fzz = Fz̄z̄ = 0, Fzz̄ = iF12 = ∂Ā− ∂̄A.

We define the magnetic field B by B := −iFzz̄.

The vortex equations are given by

D̄φ = (∂̄ − iĀ)φ = 0, B + φφ̄− 1 = 0. (32)

Solutions of these equations (32) minimize the energy functional. We list some

facts concerning vortex solutions.

Theorem 5 (Taubes [10]) Let (A0, φ0) be a smooth solution of (32). The vortex
number,

N0 :=
1
2π

∫
R2

d2xB0 (33)

is an integer equal to the winding number of lim
|z|→∞

φ0, where B0 := B(A0).
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There is a useful formula.

0 <
1
2
(1− |φ0(x)|2) < M(ε)e−r(1−ε) (34)

where r = |x|. From (34), the asymptotic behaviors of the (A0, φ0) for large

radius r are given by

|φ0| ∼ 1− Ce−r(1−ε), |∂φ0| ∼ |∂̄φ0| ∼ C ′

r
, |A0| ∼ C ′′

r
· (35)

Here, C, C ′, C ′′ are some constants.

In the following, we investigate the NC deformations of this theory. In particular,

we will carefully discuss whether the vortex number is constant.

4.2. The NC Abelian Higgs Model

At first, let coordinates of NC Euclidean space R
2
θ be xμ , μ = 1, 2 , with com-

mutation relations

[xμ, xν ] = i�εμν , μ, ν = 1, 2 (36)

where εμν = −ενμ , (ε12 = 1) and � is a NC parameter.

The curvature components of the connection A are given by

Fzz = Fz̄z̄ = 0, Fzz̄ = iF12 = ∂zAz̄ − ∂z̄Az − i[Az, Az̄]�

where [A, B]� := A � B −B � A . The magnetic field is defined by B := −iFzz̄.

The NC vortex equations are defined by

D̄ � φ = (∂̄ − iĀ) � φ = 0, B + φ � φ̄− 1 = 0. (37)

We call solutions of these equations NC vortices or NC vortex solutions.

The formal expansions of the fields are

φ =
∞∑

n=0

�
nφn(z, z̄), A =

∞∑
n=0

�
nAn(z, z̄). (38)

The k-th order equations for (37) are

−i(∂Āk + ∂̄Ak) + φkφ̄0 + φ0φ̄k − δk0 + Ck(z, z̄) = 0 (39)

∂̄φk − iĀkφ0 − iĀ0φk + Dk(z, z̄) = 0. (40)

Here Ck(z, z̄) is the coefficient of �
k in −[A, Ā]� + φ � φ̄ − (φkφ̄0 + φ0φ̄k).

Similarly, Dk(z, z̄) is the coefficient of �
k in −iĀ � φ − (−iĀkφ0 − iĀ0φk).
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Therefore when we solve these equations recursively, then Ck and Dk are given

functions.

In particular in the case of k = 0, (39) and (40) coincide with the commutative

U(1) vortex equations (32), i.e., D̄φ0 = (∂̄− iĀ0)φ0 = 0 and B0 +φ0φ̄0−1 = 0,

where B0 = −i(∂Ā0 − ∂̄A0).
Setting

ϕk :=
φk

φ0
+

φ̄k

φ̄0
= 2Re

(φk

φ0

)
and dk =

Dk

φ0
(41)

(40) and (39) are simplified as

(−Δ + |φ0|2)ϕk = Ek . (42)

Here Δ = ∂∂̄ and

Ek := −Ck + ∂dk − ∂̄d̄k. (43)

From (34), there exists a positive constant C such that

|D1| < C

1 + r3
, |C1| < C

1 + r4
, |E1| < C

1 + r4
· (44)

We use (44) to prove some of our main theorems.

4.3. NC Vortex Number

In this section, we show that the vortex number is constant for vortex solutions

that are given by NC deformations of Taubes’ vortex solutions.

The Schrödinger Equation and Vortex Solutions

To show that there exists a unique NC vortex solution deformed from the Taubes’

vortex solution, we consider the stationary Schrödinger equation

(−Δ + V (x))u(x) = f(x) (45)

in R
2, where V (x) is a real valued C∞ function such that

(a1) V (x) ≥ 0, for any x ⊂ R
2 (46)

(a2) There exist K ⊂ R
2 and there exists c > 0 such that K is a compact

set and for x ∈ R
2\K , V (x) ≥ c (47)

(a3) There exist x1, . . . , xN ∈ R
2 such that V (xi) = 0, V (x) > 0

for x 
 ∈{x1, . . . , xN} (48)

(a4) For any α = (α1, α2) ∈ Z
2
+, There exists a positive constant Cα

such that |∂α
x (V − c)| ≤ Cα for any x ∈ R

2. (49)
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We note that the system (42) satisfies the assumptions (a1)− (a4). We set

Hl(n) := {f ; ||f || := sup
x∈R2

(1 + |x|n)|∂α
x f(x)| <∞ for any |α| ≤ l} (50)

for n ∈ Z+. We let C, Cα, etc. denote unimportant positive constants whose

value may change from line to line unless otherwise stated. The next theorem’s

proof was given by using standard techniques of Green’s function [11].

Theorem 6. There exists a unique solution u ∈ Hl(n) of (45) for any f ∈ Hl(n).

These theorems imply the following main theorem.

Theorem 7. Let A0 and φ0 be a Taubes’ vortex solution stated in section 4.1,
in other words, (A0, φ0) satisfy the equations (32) with the condition (34). Then
there exists a unique solution (A, φ) of the NC vortex equations (37) with A|θ=0 =
A0, φ|θ=0 = φ0, and its vortex number is preserved:

N = N0,
1
2π

∫
R2

d2x B =
1
2π

∫
R2

d2x B0. (51)

Outline of the Proof. Consider (45) with V (x) = |φ0|2 and f(x) = Ek . From

the facts in section 4.1, we find V (x) satisfies (a1) − (a4). Next, we consider

Ek. From (44), E1 ∈ H∞(4). If Ei ∈ H∞(2i + 2)(i = 1, . . . , k − 1), as a

result of Theorem 6, there exist unique solutions ϕ1, . . . , ϕk−1. Then we find

Ek ∈ H∞(2k + 2). Therefore Ek ∈ H∞(2k + 2) is proved for arbitrary k.

Theorem 6 is applicable to (42) for arbitrary k, then it is shown that each ϕk is

determined uniquely. Finally, using the asymptotic behavior of φ0, (44) and so

on, we can get the result N = N0. �

5. Conjectures and Open Problems

We conjecture instanton numbers in Euclidean four-space are invariant under NC

deformations. In this article we introduce a gauge condition (16), so this conjec-

ture is not proved for general instantons. On the other hand, for Taubes’ vortexes,

we proved that vortex number is invariant under NC deformations. Furthermore, it

is natural to expect that topological charges are preserved under NC deformations

for any other solitons in gauge theories in Euclidean spaces.

From these observations, a new question arises: “How to distinguish instantons

(solitons) that preserve their instanton number (topological charges) under NC
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deformation?” From the proofs in [11, 12] we can find that a hint has already

appeared. The hint is the volume of the space is ∞, in the proofs to show the

topological charges are not deformed. Therefore it is natural to expect that instan-

ton number depends on the NC parameter in a finite volume NC space.

Here is an example [6–8, 13]. An instanton solution on T 4 for U(N2) gauge

theory is given by

D1 = ∂1, D2 = ∂2 +
1
2

k

N
(x11N )⊗ 1N

D3 = ∂3, D4 = ∂4 − 1
2

k

N
(x31N )⊗ 1N .

The instanton number is given by k2. After NC deformation, the instanton number

is also deformed to

1
8π2

∫
T 4

tr F ∧ �F =
k2N2

(N − k�)2

and it depends on the NC parameter. Anyway, it is left as an open problem to find

the way to distinguish instantons whose instanton numbers do not depend on NC

parameter.
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