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DYNAMICAL SYSTEMS TECHNIQUES IN COSMOLOGY.
AN EXAMPLE: LQC AND THE EINSTEIN STATIC UNIVERSE
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Abstract. Dynamical Systems theory is a valuable tool in the profound study

of Cosmology, as qualitative methods allow to characterize cosmological solutions

on the basis of their relevant physical features (e.g. stability and asymptotic be-

haviour). Here we briefly review some well established results for cosmological

models in the framework of General Relativity. Then we consider a family of mod-

ified cosmological models which are gaining more and more relevance, namely

Loop Quantum Cosmologies. In particular we analyze the geometrical structure

and dynamical properties of the model presented in earlier.

1. Introduction

We consider the application of dynamical systems theory to mathematical models

from classical and semiclassical Cosmology. In particular, the Einstein Static (ES)

universe in General Relativity (GR) is reviewed along with its stability properties.

Then static solutions of the so called semiclassical Loop Quantum Cosmology

(LQC) modified equations for homogeneous and isotropic closed cosmological

models (K = 1) with a cosmological constant Λ are considered.

The paper is structured as follows. In the first section we review some basic no-

tions about Cosmology which will be helpful for the following discussion. In the

second section we introduce some standard definitions from Dynamical Systems

theory which are employed, together with numerical integrations, in the following

sections. In the third section, we describe the ES model in GR and the dynamical

system approach shows that the ES solution is unstable to homogeneous perturba-

tions. Then we focus on Loop Quantum Gravity [17] techniques that, applied to

Cosmology, give rise to LQC [4]. LQC strongly modifies the high-energy dynam-

ics of Friedman-Robertson-Walker models. One of its more remarkable features

is that it removes the big-bang singularity [15]. We show that LQC modifications

can lead to an ES model which is neutrally stable for a large enough positive value

of Λ.
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2. Basics of Cosmology

Many experimental evidences show that the universe (as far as we can observe

it) is fairly homogeneous and isotropic on large enough scales (i.e., 150h−1 Mpc
where 1Mpc � 3 × 1022 m and h � 0.7 is a parameter related to the expan-

sion rate of the universe). It is quite natural to describe its evolution as a whole

in the framework of GR assuming homogeneity and isotropy as a basic princi-

ple in nature (the Cosmological Principle). In this picture one neglects the small

perturbations in the energy density and concerns only with the evolution of the

background. The Friedmann-Lemaître models are based on the assumption that

the universe is isotropic around every point, which necessarily implies homogene-

ity. The resulting Robertson-Walker metric has the form

ds2 = −dt2 + a(t)[dχ2 + S2
k(χ)(dθ2 + sin2(θ)dϕ2)] (1)

with S2
k(χ) = (sin(χ), χ, sinh(χ)) for the three values of the label K = (1, 0,−1).

K describes the curvature of the spatial sections. K = +1 corresponds to pos-

itively curved spatial sections (locally isometric to three-spheres); K = 0 corre-

sponds to local flatness, and K = −1 corresponds to negatively curved (locally

hyperbolic) spatial sections.

The matter content of the model is described by a stress-energy tensor which is

forced by the symmetry of the model to have the algebraic form of a perfect fluid:

Tμν = (ρ + p)UμUν + pgμν (2)

where Uμ is the fluid four-velocity; ρ and p are energy density and pressure in the

rest frame of the fluid respectively.

Plugging the metric from equation (1) into the Einstein equations one gets two

differential equations governing the evolution of the scale factor a(t). They are

the Raychaudhuri equation

Ḣ = −κ

2
ρ (1 + w) +

K

a2
(3)

and the Friedmann equation

H2 =
κ

3
ρ +

Λ
3
− K

a2
(4)

where H = ȧ/a is the Hubble parameter, κ = 8πG/3 and the dot denotes deriva-

tive with respect to cosmic time t. Moreover, energy conservation is expressed in
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GR by the vanishing of the covariant divergence of the energy-momentum tensor,

∇μTμν = 0 yielding a single energy-conservation equation

ρ̇ + 3H(ρ + p) = 0. (5)

These three equations are not independent, indeed the Friedmann equation is a

first integral of equation (3) and equation (5) whenever ȧ �= 0 so that it is a

constraint which relates the expansion rate of the universe to the energy density

the spatial curvature of the universe.

The model can be easily generalized to the case of several different energy den-

sity and pressure components ρi and pi. Adding a cosmological constant to the

Einstein’s equation is equivalent to including a new component of the energy

density in the universe described by an energy-momentum tensor of the form

Tμν = − Λ
8πGgμν with pressure and density ρΛ = Λ

8πG and pΛ = −ρΛ.

It can be shown that, under very general condition (i.e., dominant energy con-

dition) holding for all the known kinds of ordinary matter, the system of equa-

tion (3), equation (4) and equation (5) lead to a singularity. Roughly speaking,

this means that the system describes a pathological behaviour (e.g. the curvature

blows-up, the energy density diverges) [19]. This is one of the main motivations

to look for a quantum theory of gravitation free such inconsistencies.

3. A Primer on Dynamical Systems

In this section a very short introduction to Dynamical Systems is provided. This

section is aimed to account the reader with some basic definition and theorems

employed in the following sections.

It is customary to recast the evolution equations of Cosmology as an autonomous

dynamical system in order to characterize relevant features (e.g. the late time

behaviour of the universe, the attractor solutions). A more detailed introduction

to dynamical systems is provided in [1] and applications of Dynamical System

theory to classical cosmology are discussed in [18].

Let X be a metric space.

Definition 1. A (continuous) dynamical system is a one-parameter family of in-
vertible maps φt : X → X, t ∈ R, such that

• φ0 = Id

• φt1+t1 = φt1 + φt2 , for all t1, t2 ∈ R
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• φ−t = (φt)−1, t ∈ R.

Definition 2. A Dynamical System which does not depend explicitly on time is
said to be autonomous.

Dynamical System of practical interest are generally in the form of vector field on

a state space X
ẋ = f(x). (6)

The sate space or phace space X can be a differential manifold (e.g. a sphere, a

torus etc.). More simply one can have a vector space X = R
n, x = (x1, ..., xn),

in which case equation (6) represents a system of ordinary differential equations.

Then the one parameter maps considered below are naturally interpreted as the

flow of equation (6).

Definition 3. An equilibrium solution or fixed point or critical point is a point
x ∈ X such that f(x) = 0.

One of the main goal of Dynamical Systems theory is to determine the future

asymptotic behaviour (i.e., t → ∞), because one is interested in the long-term

evolution of the corresponding physical system. In cosmology one is also inter-

ested in the past asymptotic behaviour (near the initial singularity). Two important

definition can be given.

Definition 4. A solution x(t) of a dynamical system is said to be (Liapunov) stable

if, given ε > 0, there exist a δ = δ(ε) such that, for any other solution, y(t),
satisfying |x(t0) − y(t0)| < δ, then |x(t) − y(t)| < ε for t > t0, t0 ∈ R. A
solution which is not stable is said to be unstable.

Definition 5. A solution x(t) of a dynamical system is said to be asymptotically

stable if it is Liapunov stable and if there exist a constant b > 0 such that, if
|x(t0) − y(t0)| < b then limt→∞ |x(t) − y(t)| = 0.

These definitions do not actually provide us with a method for determining whether

or not a given solution is stable. Qualitative information can be gained by studying

the local properties of the flow in the neighborhood of the equilibrium points.

Thus let’s consider a linear differential equation ẋ = Ax on R
n, where A is an

n × n matrix of real numbers, three subspaces of R
n are defined:

the stable subspace Es = span(s1, ..., sns)
the unstable subspace Eu = span(u1, ..., unn)
the centre subspace Ec = span(c1, ..., cnc)
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where s1, ..., sns are the generalized eigenvectors of A whose eigenvalues have

negative real parts, u1, ..., unu are those whose eigenvalues have positive real parts

and c1, ..., cnc are those whose eigenvalues have zero real parts. Clearly Es⊕Eu⊕
Ec = R

n and

x ∈ Es ⇒ lim
t→+∞ exp(At)x = 0

x ∈ Eu ⇒ lim
t→−∞ exp(At)x = 0.

This is a description of the asymptotic behaviour of the linear system: all initial

states in the stable subspace are attracted to the equilibrium point the 0 vector,

while all initial states in the unstable subspace are repelled by 0.

Let us turn to nonlinear systems represented by equation (6). Once that a differ-

ential equation have been linearized around any of its equilibrium points and their

stability have been determined, the behaviour of the resulting linear system is re-

lated to the original non-linear system by the Hartman-Grobman theorem. The

linearization of equation (6) at an equilibrium point x is given by

ẋ = Df(x)(x − x) (7)

where D is the derivative of f . When an equilibrium point x is hyperbolic, that

is, when all the eigenvalues of Df(x) have non-vanishing real part, the Hartman-
Grobman theorem ensures that in a neighborhood of x exists a homomorphism

which maps orbits of the flow generated by the original nonlinear differential

equation onto orbits of the corresponding linearized system preserving their orien-

tation (those orbits are said topologically equivalent). Thus the stability properties

of a nonlinear dynamical system near a hyperbolic fixed point are qualitatively de-

scribed by its linearization at that point.

4. The Einstein Static Universe in GR and Loop Quantum Cosmology

The ES universe in GR is a closed Friedman-Robertson-Walker (FRW) model

with a perfect fluid and a cosmological constant. It is well known that Einstein

himself was not comfortable with the idea of an expanding or collapsing universe,

thus he introduced a parameter, nowadays called cosmological constant, to bal-

ance the effect of gravity obtaining a static solution (for a detailed description of

ES universe see [11]). Later on it was proved that the ES solution is unstable to

homogeneous perturbations [7]. More recently it was shown that the ES universe

is neutrally stable to inhomogeneous scalar perturbations with high enough sound

speed and to vector and tensor perturbations [2].
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The stability of ES models in high-energy modifications of GR is an interest-

ing mathematical question, and is also relevant for scenarios in which the ES is

an initial state for a past-eternal inflationary cosmology, the so-called Emergent

universe scenario [9]. The standard model of cosmology (see e.g. [16]) has a

flat infinite spatial geometry, and experiences a period of primordial inflationary

expansion, which is preceded by a big bang singularity in the classical theory.

Observations however do not prove that the geometry is flat: the universe could

have nonzero spatial curvature, as long as the late-time effect of this curvature

is very small. In particular, a positive curvature allows for an “Emergent uni-

verse” that originates asymptotically in the past as an Einstein static universe,

and then inflates and later reheats to a hot big bang era. This model generalizes

the Eddington-Lemaître model [8], and is a counter-example to the notion that

inflation can never be past-eternal and thus cannot avoid an initial singularity –

because it is closed, it avoids the theorems showing that inflation cannot be past

eternal [5].

Generalizations of the Einstein static solution in high-energy modifications to GR

have been considered in the Randall-Sundrum braneworld scenario [10] and in

f(R) theories [6]. The stability of ES models against homogeneous perturbations

has also been investigated in [3] for the case of R + αR2 gravity. Eventually,

in it was proved that Einstein static universes are always unstable to either ho-

mogeneous or inhomogeneous perturbations in the context of generic f(R) mod-

els [14].

Another theory leading to high-energy modifications of GR is Loop Quantum

Cosmology (LQC) [4], which is a canonical quantization of homogeneous cos-

mological spacetimes based on Loop Quantum Gravity [17]. The gravitational

phase-space variables are an su(2) valued connection and conjugate triad, and the

elementary variables underlying the quantization are the holonomies of the con-

nection and the fluxes of the triad. The quantum theory obtained from LQC turns

out to be inequivalent to Wheeler-de Witt quantization (the LQC polymer repre-

sentation is different from the usual Wheeler-de Witt Schrödinger representation).

Wheeler-de Witt quantization does not resolve the cosmological singularity, but

in LQC a generic resolution of such singularities has been obtained (see [15] and

references therein).

Mulryne et al. [12] used the scalar-field modification approach to investigate the

stability of the Einstein static model to homogeneous perturbations. They found

that the new LQC Einstein static model is a centre fixed point in phase space, i.e.,

a neutrally stable point, for a massless scalar field with w ≡ pφ/ρφ = 1. This

modification of stability behaviour has important consequences for the Emergent
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universe scenario, since it ameliorates the fine-tuning that arises from the fact that

the Einstein static is an unstable saddle in GR.

Here we consider the same question, but using the LQC gravitational modifica-

tions, which typically become important at lower energy scales than the modifica-

tions to the scalar field dynamics, thus neglecting the higher energy modifications

to matter. We consider a perfect fluid with p = wρ and w > −1. We show that,

for all w > −1/3, there is a new centre, i.e., a neutrally stable point representing

an Einstein static model, but only if the cosmological constant Λ is above a critical

scale: Λ > 6.6πM2
P .

4.1. A Characterization of the Einstein Static Universe in GR through
Dynamical System

Let us consider the system of equations (3), (4) and (5). After simple manipula-

tions it can be explicitly written in the form of a planar (that is, two-dimensional)

autonomous dynamical system in the variables H and ρ.

Ḣ = −H2 − κ

6
ρ (1 + 3w) +

Λ
3

(8)

ρ̇ = −3H(ρ + p). (9)

Among the other fixed points the system admits a critical point which is a static

solution ȧ = Ḣ = ρ̇ = 0. It is the Einstein static universe defined by the condi-

tions

ρGR =
2Λ

κ(1 + 3w)
, a2

GR =
2

κρGR(1 + w)
· (10)

Assuming a positive cosmological constant Λ > 0, from the conditions a2 > 0
and ρ > 0 it follows that the solution exists when w > −1/3.

The eigenvalues of the linearized system are

λGR = ±
√

Λ(1 + w). (11)

These are real with opposite signs for Λ > 0 and w > −1/3, so that the fixed point

is unstable (of the saddle type). Thus the classic ES solution in GR is unstable

to homogeneous perturbations. A deeper analysis of the ES solution in GR in

comparison with new static solutions is provided in the following.

4.2. Critical Points of Closed FRW Models in LQC

Let us now turn to the semiclassical LQC models. The loop quantum effects that

we investigate manifest themselves in the form of a modification to the classical
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Friedmann equation (4). For the closed FRW model, the explicit form is given by

H2 =
(

κ

3
ρ +

Λ
3
− 1

a2

)(
1 − ρ

ρc
− Λ

κρc
+

3
κρca2

)
(12)

where κ = 8πG = 8π/M2
P , and the critical LQC energy density is

ρc ≈ 0.82M4
P . (13)

It is evident that the first term in parentheses is the classical right hand side of

the Friedmann equation, with the quantum modifications appearing in the second

term. The classical GR limit is achieved in the limit as ρc goes to infinity whence

the second term approaches unity. The classical energy conservation equation

continues to hold1

ρ̇ = −3Hρ (1 + w) . (14)

Note that H2 ≥ 0 imposes the limits

3
a2

≤ κρ + Λ ≤ κρc +
3
a2

· (15)

The modified Raychaudhuri equation follows from equations (14) and (12):

Ḣ = − κ

2
ρ (1 + w)

(
1 − 2ρ

ρc
− 2Λ

κρc

)

+
[
1 − 2ρ

ρc
− 2Λ

κρc
− 3ρ(1 + w)

ρc

]
1
a2

+
6

κρca4
·

(16)

We will find the critical points to the system of equations (14) and (16) as well as

ȧ = aH (17)

which follows from the definition of H . The solution space is a two-dimensional

surface in the three-dimensional (ρ, a, H) space, defined by the Friedman con-

straint (12). The system admits two critical points, which are static solutions

ȧ = Ḣ = ρ̇ = 0. The first critical point is the standard GR Einstein static uni-

verse, while the second is a new LQC Einstein static universe

ρGR =
2Λ

κ(1 + 3w)
, a2

GR =
2

κρGR(1 + w)
(18)

ρLQ =
2(Λ − κρc)
κ(1 + 3w)

, a2
LQ =

2
κρLQ(1 + w)

· (19)

1We are not considering the inverse volume effects that would modify the scalar field energy den-

sity and hence modify the energy conservation equation. For the closed model there are indications

that the inverse volume effects are negligible if it is required that the universe reach macroscopic

size.
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The conditions under which these static solutions exist are summarized in Table 1,

and follow from a2 > 0 and ρ > 0.

Table 1. Conditions for the existence of Einstein static critical points.

GR Λ > 0 w > −1/3
Λ < 0 −1 < w < −1/3

LQ Λ < κρc −1 < w < −1/3
Λ > κρc w > −1/3

A remarkable feature of the new LQ fixed point is that it is possible to have an
Einstein static universe even for vanishing cosmological constant. Indeed, as one

can see from equation (19) and Table 2, when Λ = 0 the LQ fixed point exists and

is unstable.

For the system of equations (14), (16) and (17), linearized stability analysis fails

to give complete information about the properties of the two critical points, when

they both exist, since in all cases, for one of the two points there is always a pair

of complex eigenvalues with vanishing real part. In this case the linearization

theorem (see e.g. [1]) tells us that a fixed point which is a centre for the linearized

system is not necessarily a centre for the full nonlinear system. In addition, the

linearization of equations (14), (16) and (17) always leads to a third vanishing

eigenvalue, simply because the actual dynamics is two-dimensional because of the

modified Friedman equation (12). Therefore, using this constraint, it is convenient

to rewrite the system reducing the number of equations to two, the dimension of

the configuration space. Solving equation (12) for a2, we find that

a2 = f±(ρ, H) (20)

where

f± =
3
2

[
2(κρ + Λ) + κρc

(
1 ± √

1 − 12H2/κρc

)]
(κρ + Λ)2 + κρc (3H2 − κρ − Λ)

· (21)

Substituting this into equation (16), we find two branches for the time derivative

of the Hubble parameter

LQ : ρ̇ = −3Hρ (1 + w) and Ḣ = F+(ρ,H) (22)

GR : ρ̇ = −3Hρ (1 + w) and Ḣ = F−(ρ,H) (23)
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where

F± = − κ

2
(1 + w)ρ

(
1 − 2ρ

ρc
− 2Λ

κρc

)
+

6
κρcf2±

+
1
f±

[
1 − 2ρ

ρc
− 2Λ

κρc
− 3(1 + w)

ρ

ρc

]
.

(24)

In the classical limit

lim
ρc→∞ f+ = 0 (25)

lim
ρc→∞ f− =

3
κρ − 3H2 + Λ

(26)

where the second equation is the GR Friedman equation. Thus the two branches

in equation (20) recover the GR and the new quantum static solution respectively.

In addition,

lim
ρc→∞F+ = ∞ (27)

lim
ρc→∞F− = −H2 − κρ

6
(1 + w) +

Λ
3

(28)

where the first limit is consistent with equation (25), and the second limit gives

the GR Raychaudhuri equation.

The system (22) admits the static solution with ρLQ as in equation (19). Substi-

tuting this into equation (21) reproduces a2
LQ as in equation (19). We evaluate the

eigenvalues of the Jacobian matrix at this point, to find the two eigenvalues

λLQ = ±
√

(κρc − Λ)(1 + w) . (29)

Thus the LQ fixed point is either unstable (of the saddle kind), when κρc > Λ
and −1 < w < −1/3, or a centre for the linearized system, i.e., a neutrally stable

fixed point, when κρc < Λ and w > −1/3. (The limits take into account the

conditions in Table 1.) Again, for the latter point the linearized analysis is not

sufficient and therefore we turn to a numerical analysis in the next section.

For the system equation (23), we find the GR static solution, and the eigenvalues

of the linearized system are

λGR = ±
√

Λ(1 + w) . (30)

These are real with opposite signs for Λ > 0 and w > −1/3, so that the fixed

point is unstable (of the saddle type). For Λ < 0 and −1 < w < −1/3, the fixed
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point is a centre, as confirmed by numerical analysis. It does not appear to be

widely known that the GR Einstein static universe can be neutrally stable when

Λ < 0 (see also [3]).

The results of the linearized stability analysis are summarized in table below.

Table 2. Eigenvalues for the critical points in Table 1.

λ1 λ2

GR

Λ > 0 and w > −1/3 > 0 < 0
Λ < 0 and − 1 < w < −1/3 Re(λ1) = 0 Re(λ2) = 0

Im(λ1) > 0 Im(λ2) < 0
LQ

Λ < κρc and − 1 < w < −1/3 > 0 < 0
Λ > κρc and w > −1/3 Re(λ1) = 0 Re(λ2) = 0

Im(λ1) > 0 Im(λ2) < 0

4.3. Numerical Integration

In order to extend the linearized stability analysis, we perform numerical inte-

grations of the systems (22) and (23). We also integrate the nonlinear system of

equations (14), (16) and (17), with initial conditions fulfilling the Friedman con-

straint (12), in order to show the full configuration space diagrams and gain a

better understanding of the dynamics. Here we take Λ > 0 and w = 1 and we

focus on the case Λ > κρc (for more details about the case Λ < κρc see [13]).

The (H, ρ) plot in Fig. 1 is obtained by integrating the system (22) and (23) in

some neighborhood of the fixed point. It shows that the LQ fixed point is a centre.

More insight can be obtained by plotting the whole 3D space (H, ρ, a) for a

wide range of initial conditions, shown in Fig. 2. The trajectories lie on the

two-dimensional Friedman constraint surface. The behaviour near the fixed point

agrees with the linearized stability analysis, but new interesting features arise. For

initial conditions far enough from the fixed point, there are trajectories that wrap

around the Friedman tube, so that cyclic models are possible even if they are not

related with the centre fixed point, since they cannot be shrunk to a point.

This behaviour can also be interpreted through a plot of the energy density against
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Figure 1. Dynamical behaviour of the system around the LQ fixed point for

the case Λ > κρc, with Λ/κ = 2, w = 1 (using units MP = 1).

Figure 2. Trajectories on the Friedman constraint surface, for the same pa-

rameters as in Fig. 1. The GR fixed point is at the bottom of the Friedman

surface, while the LQ point is at the top. Note that some trajectories wrap

around the “tube” but cannot be shrunk continuously to the LQ fixed point.

the scale factor a. Defining

ρ− =
3

κa2
, ρ+ = ρc +

3
κa2

, ρm = ρ +
Λ
κ

(31)

equation (12) can be written in the form

H2 =
κ

3ρc
(ρm − ρ−) (ρ+ − ρm) . (32)

When ρm = ρ−(a) or ρ+(a), then H=0, so the system undergoes a bounce or

starts a recollapsing phase, respectively. This is illustrated in Fig. 3.
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2

3

4

5

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

a

Figure 3. The upper and lower curves in grey are ρ+(a) and ρ−(a) respec-

tively. Trajectories for several initial conditions are depicted in black. The

GR fixed point is the box on he curve ρ−, and the LQ point is the circle on

the curve ρ+.

We can integrate equation (14) for ρ as a function of a, and substitute the expres-

sion for a(ρ) into the modified Friedman equation (12). Using the dimensionless

variables,

x2 =
3κρc

Λ2
H2, y =

κρ

Λ
, B =

κρc

Λ

this leads to

x2 =
[
y + 1 − Cy2/3(w+1)

][
B − y − 1 + Cy2/3(w+1)

]
(33)

where C is a constant of integration. This expression allows us to get a better

understanding of the particular case depicted in Fig. 2 and Fig. 3, where both the

fixed points are present, by finding the separatrix. The separatrix is a curve (actu-

ally, a union of orbits) which marks the boundary of regions where the dynamical

behaviour of the system is different. In this case the separatrix is the junction

of the stable and unstable manifold with the GR Einstein static hyperbolic fixed

point. First we solve equation (33) for C, then we substitute numerical values

for the parameters w = 1 and B = .4121769562 (using MP = 1), and we also

substitute x = 0 and y = 1/2 for the GR fixed point. This produces a numerical

value for C. Through this procedure, the equation of the separatrix is implicitly

given by equation (33) with fixed values of the parameters C, w and B.
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More insight can be acquired via the plot of the separatrix projected onto the

(x, y)-plane, as shown in Fig. 4. The curves depicted are the separatrix, which

wraps around the Friedman surface, and some other trajectories which are first

integrals obtained for different values of the integration constants. The closed

loops around the Friedman surface are outside the region marked by the separatrix;

the other curve is not closed around the tube, and it can be shrunk continuously to

the LQ fixed point.

Figure 4. Projection of the phase space onto the (x, y)-plane for the case of

Fig. 2. It represents the trajectories as seen from the bottom of the Friedman

surface. Both the GR fixed point (a box) and the LQ fixed point (a circle)

exist. The two vertical lines are the edges of the Friedman surface. The thick

curve represents the two branches of the separatrix.

5. Conclusions

We have considered the application of dynamical systems theory to mathemati-

cal models from classical and semiclassical Cosmology. The ES universe in GR

have been reviewed along with its stability properties in the case of a positive

cosmological constant.

We have shown that LQC gravitational modifications to the Friedman equation

lead to a new high-energy critical point for the Einstein static universe. This

LQC Einstein static model is an unstable saddle (like the standard GR Einstein
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static solution) for sufficiently negative pressure and a sub-critical cosmological

constant, i.e.

−1 < w < −1
3
, Λ < κρc. (34)

If w is large enough and the cosmological constant is above the critical value, then

the LQC Einstein static model is a centre:

w > −1
3
, Λ > κρc . (35)

This neutrally stable behaviour is in strong contrast to the GR case, where the

Einstein static model is unstable for all (positive) values of Λ.

This illustrates the general point that high-energy modifications to GR, which

typically strongly modify the big bang singularity, also modify the dynamical

nature of the non-singular Einstein static universe.
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