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EXISTENCE, UNIQUENESS, AND ANGLE COMPUTATION FOR
THE LOXODROME ON AN ELLIPSOID OF REVOLUTION

ABED ELHASHASH

Communicated by Gregory L. Naber

Abstract. We summarize a proof for the existence and uniqueness of the lox-

odrome joining two distinct points po and p1 on an open half of an ellipsoid of

revolution. We also compute the unique angle α ∈ [0, 2π) which the loxodrome

makes with the meridians intersecting the loxodrome.

1. Introduction

A loxodrome on an ellipsoid of revolution is a curve that traverses all the merid-

ians along its way at a constant angle. Since the earth is modeled as an ellip-

soid of revolution, understanding loxodromes plays an important role in the sci-

ence of navigation; see, e.g., [4–6, 9]. The existence and uniqueness of a loxo-

drome on an ellipsoid of revolution and a formula for its angle are known results;

see, e.g., [4, 9].

Typically, the existence of a loxodrome on an ellipsoid of revolution is proved

by constructing a one-to-one conformal map (is a continuously differentiable map

that preserves angles between curves) Ψ from the open square
(−π

2 ,
π
2

)×(−π
2 ,

π
2

)

⊂ R
2 onto an open connected subset of the ellipsoid of revolution which contains

the points po and p1 that are meant to be joined by a loxodrome. The map Ψ is such

that every vertical straight line segment in the open square
(−π

2 ,
π
2

)× (−π
2 ,

π
2

)
is

mapped onto a meridian of the ellipsoid of revolution. Thus, if qo = Ψ−1(po) and

q1 = Ψ−1(p1), then qo and q1 can be joined by a straight line segment in the open

square
(−π

2 ,
π
2

)×(−π
2 ,

π
2

)
(which makes a constant angle with all vertical straight

line segments on its way) and the image of that straight line segment joining qo to

q1 under Ψ will be a curve on the ellipsoid of revolution joining po to p1 which

makes a constant angle with all meridians on its way (because Ψ is conformal).

Moreover, the constant angle that the loxodrome makes with all the meridians is

typically computed by using the technique of “infinitesimals”; see, e.g., [5, 6].
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Our main aim in this paper is to present a rigorous mathematical proof that avoids

the use of conformal maps for the existence and uniqueness of a loxodrome join-

ing two distinct points po and p1 that lie on an ellipsoid of revolution and that

differ by less than π radians (modulo 2π) in longitude and to obtain a formula for

the constant angle that the loxodrome makes with the meridians without the use

of “infinitesimals”.

In Section 2, we define the ellipsoid of revolution E ⊂ R
3 to be considered

throughout this paper and we introduce some definitions and notation that we

use in later sections. Then, in Section 3, we parameterize E+ := E ∩ {(x, y, z) ∈
R

3 ; x > 0}, an open half of the ellipsoid E , by latitude and longitude using a

diffeomorphism ψ. After that, we use the diffeomorphism ψ to parameterize unit

tangent vectors pointing towards the north and the east, respectively, at any point

on E+ in terms of the longitude and latitude of that given point. We use the lat-

ter parametrization to formulate the problem of finding a loxodrome joining two

distinct points in E+ and we solve the problem in Section 4.

2. Definitions and Notation

Let a and b be real scalars such that a ≥ b > 0 and consider the set E :=
{(x, y, z) ∈ R

3 ; x2+y2

a2 + z2

b2
= 1}. Then, E is an ellipsoid of revolution. Any

point p = (x, y, z) ∈ E other than (0, 0, b) and (0, 0,−b) can be located by

two real numbers: λ in the interval (−π, π] and φ in the open interval
(−π

2 ,
π
2

)

where λ = λ(p) is the longitude of p ∈ E , i.e., the counter-clockwise angle mea-

sured in the xy-plane from the positive x-axis to the orthogonal projection (onto

the xy-plane) of the straight line segment joining the origin to p, and φ = φ(p)
is the latitude of a point p ∈ E , i.e., the angle (of elevation) that the normal

line to E through p makes with the xy-plane; refer to Fig. 1 for illustrations.

In particular, if the point p = (x, y, z) ∈ E satisfies x > 0 then the longitude

λ = λ(p) can be chosen in the open interval
(−π

2 ,
π
2

)
. Moreover, we note that

for such a point p = (x, y, z) ∈ E having x > 0 the longitude is positive if

and only if y > 0 and that the latitude is positive if and only if z > 0. Define

E+ := {(x, y, z) ∈ E ; x > 0}. By a meridian in E+, we mean a curve in E+

whose points have the same longitude and which is oriented in such a way that

it starts at (0, 0,−b) and ends at (0, 0, b). Any curve in E obtained by rotating a

meridian in E+ around the z-axis shall also be called a meridian. By a semi-circle
of latitude in E+, we mean a curve in E+ whose points have the same latitude and

which is oriented in a way that it starts at the point with the negative y-component

and ends at the point with the positive y-component. If p is a point in E other than
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Figure 1. The longitude and latitude of a point p.

(0, 0, b) and (0, 0,−b) then we say that a non-zero tangent vector to the meridian

at p points towards the north if its z-component is positive. If p is a point in E+

then we say that a non-zero tangent vector to the semi-circle of latitude at p points

towards the east if its y-component is positive. A loxodrome in E is a curve that

intersects all the meridians on its way at a constant angle.

Furthermore, the vectors that we mention in this paper are all real two-dimensional

or three-dimensional column vectors, i.e., 3-by-1 or 2-by-1 matrices with real

entries. Moreover, we will enclose the entries of a vector by a pair of brackets to

distinguish it from a point. The superscript T will denote the transpose of a vector

(treated as a matrix). For example, the vector u = [4 5 6]T is the transpose of

the 1-by-3 matrix [4 5 6] and hence it is the 3-by-1 matrix whose (1,1)-entry is 4,

(2,1)-entry is 5, and (3,1)-entry is 6.

If M, N ⊆ R
3 are real submanifolds of R

3 (see, e.g., [7, 8]), p is a point in M,

and ψ : M → N is a diffeomorphism (see, e.g., [7,8]), then dψ|p will denote the

derivative of ψ at the point p. If it is clear at which point the derivative is being

taken then we just write dψ.

Remark 1. We try to use the standard notation used by other authors in this sub-
ject. For instance, most of our notation is consistent with Pearson’s notation [5].
Moreover, throughout this paper, we use the Greek letter λ (respectively, the Greek
letter φ) sometimes to denote the longitude variable (respectively, the latitude
variable) and some other times to denote a parametrization of that variable. To
avoid confusion, the following convention is adopted: if the Greek letter λ (re-
spectively, the Greek letter φ) is followed by a pair of parentheses enclosing a
variable in R, then it denotes the longitude variable (respectively, latitude vari-



78 Abed Elhashash

able) parameterized by the given real variable and if it is not followed by a pair
of parentheses enclosing a variable then it simply denotes the longitude variable
(respectively, the latitude variable).

For example, if t ∈ R then we have the following.

φ = the latitude variable.

λ = the longitude variable.

φ(t) = the latitude variable parametrized by a real variable t.

λ(t) = the longitude variable parametrized by a real variable t.

λ(φ(t)) = the longitude variable parametrized by φ(t).

λ(φ) = the longitude variable parametrized by the latitude φ.

3. Parameterizing E+ and Stating the Problem

Since E is invariant under rotations around the z-axis and since we are interested

in proving the existence and uniqueness of a loxodrome joining two distinct points

whose difference in longitude is less than π radians (modulo 2π), it is enough to

prove the existence and uniqueness of a loxodrome joining two distinct points in

the subset E+ of the ellipsoid E . To that end, we will do the following:

• we will parameterize E+ in terms of latitude and longitude,

• we will express the unit tangent vectors pointing towards the north and the

east at a point on some curve η in E+ in terms of the latitude, the longitude,

and the parameter of the curve η, and

• we will state the problem of finding the loxodrome in E+.

In the following lemma, we give a parametrization of E+ in terms of latitude and

longitude. We postpone the proof of this lemma to the Appendix and we note

that the parametrization presented in this lemma can be obtained from [5] or [9].

The details that we mention about the construction of this parametrization are

presented for the sake of completeness.

Lemma 2. Let J denote the interval
(−π

2 ,
π
2

)
and let e =

(
(a2 − b2)/a2

)1/2
be

the eccentricity of the ellipsoid E . If the map ψ : J × J → E+ is defined by

ψ(φ, λ) = (R(φ) cosλ,R(φ) sinλ,R(φ)(1 − e2)tanφ) (1)
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where
R(φ) = a cosφ(1 − e2 sin2 φ)−1/2 (2)

then the map ψ is a diffeomorphism and its inverse diffeomorphism
ψ−1 : E+ → J × J is given by:

ψ−1(x, y, z) =

(
arctan

(
z

(1 − e2)
√
x2 + y2

)
, arcsin

(
y√

x2 + y2

))
. (3)

Moreover, the first entry (respectively, the second entry) of ψ−1(x, y, z) is the
latitude (respectively, the longitude) of the point (x, y, z).

The following lemma gives explicitly the entries of the unit tangent vector point-

ing towards the north (respectively, the east) at a point on some curve in E+ in

terms of the latitude, the longitude, and the parameter of the curve. The proof of

this lemma is postponed to the Appendix.

Lemma 3. Let I denote a non-empty open interval and suppose that
η : I → E+ is a curve and that γ is the image of the curve η under the dif-
feomorphism ψ−1 defined in equation (3). If Nt (respectively, Et) denotes the
three-dimensional unit vector at η(t) that depends smoothly on t and that points
towards the north (respectively, the east), and γ(t) is given by γ(t) = (φ(t), λ(t))
for all t ∈ I , then the following statements are true

• Nt = [− sinφ(t) cosλ(t) − sinφ(t) sinλ(t) cosφ(t)]T and

• Et = [− sinλ(t) cosλ(t) 0]T .

Moreover, if
r(φ) := a(1 − e2)(1 − e2 sin2 φ)−3/2 (4)

R(φ) is given by equation (2), and nt (respectively, et) denotes the two-dimensional
vector which is the image of Nt (respectively, Et) under dψ−1|η(t), then we have

• nt =
[

1
r(φ(t)) 0

]T
and

• et =
[
0 1

R(φ(t))

]T
.

Remark 4. It is useful to keep in one’s mind as one reads this article that the
eccentricity e of the ellipsoid E is a real number in the interval [0, 1) and that
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R(φ) (respectively, r(φ)) as defined in equation (2) (respectively, equation (4)) is
positive for all φ in the open interval

(−π
2 ,

π
2

)
. Moreover, we mention in passing

that R(φ) is the radius of the semi-circle of latitude at a latitude equal to φ and
that r(φ) is the radius of curvature of the meridian at any point whose latitude
is φ; see, e.g., [5].

In what follows, if a function of one variable is followed by the superscript ′ (prime)

then this denotes the derivative with respect to the real variable t.

The problem of finding a loxodrome can be stated using the notation of Lemma 3

as follows:

Problem 1. Given two distinct points po and p1 in E+, we want to find a curve η
in E+ defined on an open interval I that contains 0 and a real number α in the
interval [0, 2π) such that:

• η(0) = po, η(ε) = p1 for some positive scalar ε ∈ I , and

• η′(t) = cosαNt + sinαEt for all t in the closed interval [0, ε].

4. Joining the Points

In this section, we will solve Problem 1. Moreover, we mention here that from this

point onward we shall use the notation of Lemma 2, Lemma 3, and Problem 1.

So, J will denote the open interval
(−π

2 ,
π
2

)
; e will denote the eccentricity of the

ellipsoid E as given in Lemma 2; ψ is given by equation (1); r(φ) is given by

equation (4); R(φ) is given by equation (2); and the tangent vectors Nt, Et, nt,

and et are as given in Lemma 3. We begin by considering the following problem:

Problem 2. Let I be an open interval that contains 0 and let (φo, λo) and (φ1, λ1)
be two distinct points in J × J ⊂ R

2. We want to find a curve γ in J × J having
the form γ(t) = (φ(t), λ(t)) for all t in I and a real number α in the interval
[0, 2π) such that:

• γ(0) = (φo, λo), γ(ε) = (φ1, λ1) for some positive scalar ε ∈ I , and

• γ′(t) =
[

cos α
r(φ(t))

sin α
R(φ(t))

]T
for all t in the closed interval [0, ε].

Proposition 5. Problem 1 has a solution if and only if Problem 2 has a solution.
Moreover, the solution of Problem 1 is unique if and only if the solution of Prob-
lem 2 is unique.
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Proof: Suppose that Problem 1 is solvable and consider Problem 2. If η is the

solution curve for Problem 1 in the case when po = ψ(φo, λo) and p1 = ψ(φ1, λ1)
then we claim that γ := ψ−1 ◦ η is a solution for Problem 2. To see that, note that

γ(0) = ψ−1(po) = (φo, λo) and that γ(ε) = ψ−1(p1) = (φ1, λ1). Moreover,

γ′(t) = dψ−1|η(t)η
′(t) = dψ−1|η(t) [(cosα)Nt + (sinα)Et]

= (cosα)dψ−1|η(t)Nt + (sinα)dψ−1|η(t)Et

= (cosα)nt + (sinα)et =

[
cosα

r(φ(t))

sinα

R(φ(t))

]T

for all t in the closed interval [0, ε]. Hence, Problem 2 is solvable.

Conversely, if Problem 2 is solvable then we consider Problem 1. If γ is the

solution curve for Problem 2 in the case when (φo, λo) = ψ−1(po) and (φ1, λ1) =
ψ−1(p1) then by a similar argument we can show that η := ψ ◦ γ is a solution for

Problem 1.

Moreover, since a solution of one problem is the image under a diffeomorphism

of a solution of the other problem, it follows that a solution of one problem is

unique if and only if a solution of the other problem is unique. �

In the light of Proposition 5, in order to prove the existence of a unique solution for

Problem 1, it is enough to prove the existence of a unique solution for Problem 2.

Our strategy (which we follow in the proof of Theorem 8) is the following: show

that there is a unique real number α in the interval [0, 2π) for which there is a

curve γ that solves Problem 2 and that this curve is unique. We mention some

preliminary results before we prove our main theorem, Theorem 8.

The following lemma is a known result. Its proof and the relevant definitions can

be found, e.g., in [1–3].

Lemma 6. Let I be an open interval that contains to and let Ω be an open
bounded and connected subset of R

n that contains the point uo. If f : I×Ω → R
n

is a locally Lipschitz continuous vector-valued function (which holds, in particu-
lar, when f is a smooth function), then the initial value problem:

• u(to) = uo

• u
′(t) = f(t,u(t)) for all t in an open subinterval of I that contains to

has a unique solution that can be extended to the boundary of Ω.
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Lemma 7. Let φo be a fixed real number in J and let α be a real number in the
interval [0, 2π). There is a parametrization of the latitude variable φ(t) defined
for t in some open interval I that contains 0 such that φ(0) = φo, φ′(t) = cos α

r(φ(t))

for all t in I , and φ(t) assumes all values in J .

Proof: Let λo be any real number in J and consider the following initial value

problem:

• γ(0) = (φ(0), λ(0)) = (φo, λo)

• γ′(t) = [φ′(t) λ′(t)]T = [ cos α
r(φ(t)) 0]T for all t in I .

Since the function f(t, φ, λ) =
[

cos α
r(φ) 0

]T
is a smooth function for all choices of

α in the interval [0, 2π), it follows by Lemma 6 that there is a unique curve γ that

extends to the boundary of J × J and that has the form γ(t) = (φ(t), λo) for all

t in I . The first entry of γ(t), namely φ(t), is the desired parametrization of the

latitude variable. �

In the following theorem, the symbol [g(φ)]φ=φ1

φ=φo
denotes g(φ1) − g(φo) if g is a

real-valued function of the latitude variable φ.

Theorem 8. There is a unique α in the interval [0, 2π) for which there is a curve γ
that solves Problem 2. Moreover, this curve γ is unique. Furthermore, if φo 	= φ1

then

tanα =
λ1 − λo[

ln

((
tan
(

π
4 + φ

2

))(
1−e sin φ
1+e sin φ

) e
2

)]φ=φ1

φ=φo

(5)

otherwise α = π
2 (in the case when λ1 > λo) or 3π

2 (in the case when λ1 < λo).

Proof: Let us begin by considering the case when φ1 = φo. Since (φo, λo) and

(φ1, λ1) are two distinct points in J × J , we must have one of two subcases:

i) λ1 > λo or ii) λ1 < λo. Consider subcase i). By choosing α = π
2 and

ε = R(φo)(λ1 − λo), it is straightforward to show that the curve γ defined by

γ(t) = (φ(t), λ(t)) :=
(
φo, λo + 1

R(φo) t
)

for all t in the interval [0, ε] is a solu-

tion for Problem 2 in subcase i). Moreover, we claim that π
2 is the unique value of

α in the interval [0, 2π) for which there is a solution for Problem 2 in subcase i).

Suppose with the hope of getting a contradiction that this is not true. Then, there is

a real number βo 	= π
2 in the interval [0, 2π) such that Problem 2 has a solution in

subcase i) if we substitute βo for α. Note that βo can not be equal to 3π
2 otherwise
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φ(t) = φo for all t in I (because φ′(t) = cos βo

r(φ(t)) = 0 for all t in I) and λ(t) would

be a decreasing function of t (owing to the fact that λ′(t) = sin βo

R(φ(t)) = −1
R(φo) < 0).

Thus, the function t→ λ(t) can not satisfy λ(ε) = λ1 > λo = λ(0) for a positive

scalar ε. Hence, βo is neither π
2 nor 3π

2 , and as a result, cosβo is either positive or

negative. If cosβo is positive, then, the function φ′(t) = cos βo

r(φ(t)) > 0 for all t in I

in spite that 0 = φ1 −φo = φ(ε)−φ(0) =
∫ ε
0 φ

′(t)dt where ε is a positive scalar,

a contradiction. Similarly, if cosβo is negative we get a contradiction. Therefore,
π
2 is the unique value of α in the interval [0, 2π) for which Problem 2 in subcase i)

has a solution. Moreover, this solution is unique and its uniqueness follows from

Lemma 6. Similarly, one can show that 3π
2 is the unique value of α in the interval

[0, 2π) for which Problem 2 in subcase ii) has a solution and that this solution is

unique.

Consider now the case when φ1 	= φo. Then, we have one of two subcases:

1) φ1 > φo or 2) φ1 < φo. Suppose that subcase 1) is true. Then, choose α in the

interval [0, 2π) so that:

tanα = (λ1 − λo)

(∫ φ1

φo

r(φ)

R(φ)
dφ

)−1

and cosα > 0. (6)

By Lemma 6, there is a unique curve φ → λ(φ) defined for all φ in J and which

solves the following initial value problem:

• λ(φo) = λo

• dλ

dφ
=

r(φ)

R(φ)
tanα for all φ in J .

This curve is in effect a parametrization of the longitude variable by the lati-

tude variable. Moreover, let φ(t) be the parametrization of the latitude variable

guaranteed by Lemma 7. We claim that the curve γ defined by

γ(t) := (φ(t), λ(φ(t))) is the unique curve that solves Problem 2 in subcase 1).

To see that, observe that γ(0) = (φ(0), λ(φ(0))) = (φo, λ(φo)) = (φo, λo).
Moreover, since φ′(t) = cos α

r(φ(t)) > 0, it follows that φ(t) is an increasing function

of t and by Lemma 7 this function assumes all values in J . Thus, for a sufficiently

large positive scalar ε we have φ(ε) = φ1. And therefore,

λ(φ(ε)) = λ(φ1) =

∫ φ1

φo

dλ

dφ
dφ+ λ(φo) =

∫ φ1

φo

r(φ)

R(φ)
tanα dφ+ λo

= tanα

∫ φ1

φo

r(φ)

R(φ)
dφ+ λo = (λ1 − λo) + λo = λ1.
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Hence, γ(ε) = (φ1, λ1). Furthermore,

γ′(t) =

[
φ′(t)

dλ

dφ

dφ

dt

]T

=

[
cosα

r(φ(t))

(
r(φ(t))

R(φ(t))
tanα

)(
cosα

r(φ(t))

)]T

=

[
cosα

r(φ(t))

sinα

R(φ(t))

]T

.

Thus, for the particular choice of α specified in (6) we showed that the curve γ is

the unique solution for Problem 2 in subcase 1). Moreover, there is no other value

of α for which Problem 2 in subcase 1) has a solution. To see that, suppose to

the contrary that there is an α̃ in the interval [0, 2π) and a curve γ defined on an

interval I that contains 0 such that:

• α̃ is not equal to the value of α given in (6),

• γ(0) = (φo, λo), γ(ε) = (φ1, λ1) for some positive scalar ε in I , and

• γ′(t) = [φ′(t) λ′(t)]T =
[

cos α̃
r(φ(t))

sin α̃
R(φ(t))

]T
for all t in the closed

interval [0, ε].

Since φ1 > φo and since φ′(t) = cos α̃
r(φ(t)) , we must have cos α̃ > 0 otherwise φ(t)

would be a decreasing function of t. Moreover, note that
λ′(t)
φ′(t) = r(φ(t))

R(φ(t))tanα̃, and

thus, λ′(t) = r(φ(t))
R(φ(t))φ

′(t)tanα̃. Hence,

λ1 − λo = λ(ε) − λ(0) =

∫ ε

0
λ′(t)dt =

∫ ε

0

r(φ(t))

R(φ(t))
φ′(t)tanα̃ dt

= tanα̃

∫ ε

0

r(φ(t))

R(φ(t))
φ′(t) dt = tanα̃

∫ φ1

φo

r(φ)

R(φ)
dφ.

And therefore,

tanα̃ = (λ1 − λo)

(∫ φ1

φo

r(φ)

R(φ)
dφ

)−1

.

But this implies that α̃ is equal to the value of α given in (6), a contradiction. Thus,

there is a unique value of α in the interval [0, 2π) given by (6) for which Problem 2

in subcase 1) has a solution. Moreover, this solution is unique by Lemma 6.

If subcase 2) holds then by a similar argument one can show that if we choose α
in the interval [0, 2π) so that:

tanα = (λ1 − λo)

(∫ φ1

φo

r(φ)

R(φ)
dφ

)−1

and cosα < 0 (7)
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then Problem 2 in subcase 2) has a solution and the value of α given in (7) is

the only value of α in the interval [0, 2π) such that Problem 2 in subcase 2) has a

solution. Moreover, this solution is unique by Lemma 6.

We finally note that the form of tanα given in (6) and (7) is the same as that given

in (5). To see that, observe that

∫ φ1

φo

r(φ)

R(φ)
dφ =

∫ φ1

φo

(1 − e2)

(1 − e2 sin2 φ) cosφ
dφ

=

∫ φ1

φo

1

cosφ
dφ+

∫ φ1

φo

− e2

2 cosφ

1 − e sinφ
dφ+

∫ φ1

φo

− e2

2 cosφ

1 + e sinφ
dφ

=

[
ln

(
tan

(
π

4
+
φ

2

))]φ=φ1

φ=φo

+
[e
2

ln (1 − e sinφ)
]φ=φ1

φ=φo

+
[
−e

2
ln (1 + e sinφ)

]φ=φ1

φ=φo

=

[
ln

((
tan

(
π

4
+
φ

2

))(
1 − e sinφ

1 + e sinφ

) e
2

)]φ=φ1

φ=φo

.

Hence, the form of tanα given in (6) and (7) reduces to the form given in (5). �

Corollary 9. There is a unique α in the interval [0, 2π) for which there is a
curve η that solves Problem 1. Moreover, this curve η is unique. Furthermore,
if ψ−1(po) = (φo, λo) and ψ−1(p1) = (φ1, λ1), then α is as described in Theo-

rem 8, i.e., if φo 	= φ1 then tanα is given by (5) otherwise α = π
2 (when λ1 > λo)

or α = 3π
2 (when λ1 < λo).

Appendix

We present here the postponed proofs of some of the results

Proof of Lemma 2: Let us first prove that the first entry (respectively, the sec-

ond entry) of ψ−1(x, y, z) is the latitude (respectively, the longitude) of the point

(x, y, z). Let p = (x, y, z) be any point in E+ and let φ and λ be its correspond-

ing latitude and longitude, respectively. Since sinλ =
y√

x2 + y2
(see Fig. 2), it

follows that λ = arcsin

(
y√

x2 + y2

)
, i.e., the longitude of p = (x, y, z) is the

second entry of ψ−1(x, y, z).
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Figure 2. The diffeomorphism ψ and its inverse.

Moreover, the angle between the normal line to E+ at p and the z-axis is
π

2
−

φ; see Fig. 2. If v denotes the outward unit normal vector at p and k denotes

the unit vector pointing in the direction of increasing values on the z-axis, then

by taking the inner product of v with k one can find cos(
π

2
− φ). Indeed, if

we let || · || denote the Euclidean vector norm, let 〈 , 〉 denote the Euclidean

inner product, and let w =

[
2x

a2

2y

a2

2z

b2

]T

, then we have the following. The

vector v =
1

||w||w, the vector k = [0 0 1]T , and sinφ = cos
(π

2
− φ
)

=

〈k,v〉 =
z/b2√

(x2 + y2)/a4 + z2/b4
· Since

x2 + y2

a2
+
z2

b2
= 1 and since |φ| < π

2

(φ being the latitude of a point p = (x, y, z) in E+), it follows that cosφ =

(x2 + y2)1/2/a2

√
(x2 + y2)/a4 + z2/b4

, and hence,

tanφ =
a2z

b2(x2 + y2)1/2
=

z

(1 − e2)(x2 + y2)1/2
· (8)

Therefore,

φ = arctan

(
z

(1 − e2)
√
x2 + y2

)

i.e., the longitude of p = (x, y, z) is the first entry of ψ−1(x, y, z). Furthermore,
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we note that since tanφ is given by (8) and since x2+y2

a2 + z2

b2
= 1, it follows that

R(φ) = a cosφ(1 − e2 sin2 φ)−1/2 = a(1 + (1 − e2)tan2φ)−1/2

= a

(
1 +

a2z2

b2(x2 + y2)

)−1/2

=
√
x2 + y2.

And thus, it becomes straightforward (with the aid of Fig. 2) to verify that

ψ ◦ ψ−1 = Id and ψ−1 ◦ ψ = Id for the expressions for ψ and ψ−1 given in

equations (1) and (3). Moreover, the smoothness of ψ and ψ−1 follow from the

following facts about smooth functions of one variable: i) linear combinations,

products, and compositions of smooth functions are smooth functions, ii) if f is a

smooth function then so is 1
f on the set {x ∈ Domain of f ; f(x) 	= 0}, and iii) if

f is a smooth function then so is
√
f on the set {x ∈ Domain of f ; f(x) > 0}. �

Proof of Lemma 3: It is clear that the Euclidean norm of the vector Nt

(respectively, Et) is 1. Moreover, since ψ is a diffeomorphism and since

(φ(t), λ(t)) = γ(t) = ψ ◦ η(t), it follows that φ(t) and λ(t) depend smoothly

on the parameter t, and thus, the vector Nt (respectively, Et) depends smoothly

on the parameter t. Note that the vector Nt (respectively, Et) points towards the

north (respectively, the east) since its z-component (respectively, y-component) is

positive.

Furthermore, differentiating R(φ) with respect to φ, one gets:

dR

dφ
= (−a sinφ)(1 − e2 sinφ)−1/2 + ae2 cosφ sinφ(1 − e2 sinφ)−3/2

= a sinφ(1 − e2 sinφ)−3/2
[−(1 − e2 sin2 φ) + e2 cosφ

]

= a sinφ(1 − e2 sinφ)−3/2
[−1 + e2

]
= −r(φ).

And thus,

dψ =

⎡

⎣
−r(φ) sinφ cosλ −R(φ) sinλ
−r(φ) sinφ sinλ −R(φ) cosλ

r(φ) cosφ 0

⎤

⎦

dψ

[
0

1

R(φ)

]T

= [− sinλ cosλ 0]T

and dψ
[

1
r(φ) 0

]T
= [− sinφ cosλ − sinφ sinλ cosφ]T . In particular, when φ

and λ are parameterized by a real variable t, the abovementioned matrix equalities

hold. Hence, dψ|γ(t)et = Et and dψ|γ(t)nt = Nt. Since dψ−1|η(t) ◦ dψ|γ(t)

= Id R2 , it follows that the claim of this lemma about the form of nt and et is

true. �
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