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LOCALLY NONCOMMUTATIVE SPACETIMES
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Communicated by Martin Schlichenmaier

Abstract. A rather new physically well-motivated notion of locally noncom-
mutative spacetimes – a refinement of the notion noncommutative spacetimes – is
reviewed and discussed. It is shown that the latter model can be realized in the
framework of formal deformation quantization using star products as well as in the
framework of Rieffel’s strict deformation quantization. For the convergent setting
Rieffel’s former results for C∗-algebras are generalized to pro-C∗-algebras and
applied to actions well-suited to the idea of locally noncommutative spacetimes.

1. Introduction and Motivation

Since the simultaneous validity of quantum theory and general relativity has to
break down at the Planck scale, various models for spacetime geometry at such
scales have been discussed over the years. One promising approach is to deform
the classical commutative geometry of spacetime into a noncommutative geom-
etry and study dynamics like (quantum) field theories on this noncommutative
spacetime, see e.g., the pioneering work [3]. Here many versions have been dis-
cussed, though all of them have one feature in common: the noncommutativity is
global and hence has global consequences. This is reflected in the famous UV/IR
mixing in the Euclidian versions of field theory and in rather absurd dispersion
relations in the truly Minkowski versions, see e.g., [1, 8] and references therein.

One particular example which has been studied in detail is the noncommutative
Minkowski spacetime with the usual Weyl-Moyal star product quantizing a con-
stant Poisson structure. Mathematically speaking, this is equivalent to the quanti-
zation of a non-relativistic particle with two-dimensional configuration space R

2

and hence phase space R
4. Though quantum mechanics only appears at small

distances in configuration space, in phase space quantum mechanical effects are
visible globally. This simple heuristic consideration already gives a hint why the
much more subtle effects of UV/IR mixing etc. have to be expected. The reason
is that the geometry of spacetime is globally noncommutative.

9



10 Jakob G. Heller, Nikolai Neumaier and Stefan Waldmann

However, the classical geometry is not wrong by itself, at least at scales we are
confronted with in our daily life. Only at very small distances the notions of clas-
sical geometry lose their meanings. Thus we advocate for a refined approach to
noncommutative spacetimes where the noncommutativity only appears for small
distances. The idea is very simple: it is not the spacetime manifold M which
should be endowed with a noncommtutative structure but M ×M as distance is
a concept referring to two points.

The general framework will be to use a Poisson structure on M×M whose support
is close to the diagonal ∆M and study quantizations of this Poisson structure.
One crucial requirement will be that the Poisson structure and the corresponding
star product will be only nontrivial for functions which are sensitive to relative
coordinates on M ×M . The model we will discuss comes in two flavours, formal
and strict. While for the formal star products there is no restriction on the Poisson
structure, the strict deformation will require Poisson structures which arise from
an action of R

d. In this case we can rely on Rieffel’s deformation [11].

The present paper is based on a joint work with Bahns [2] as well as on [5]. Here
we shall review and discuss both approaches and their relations and point out some
of their features.

The paper is organized as follows: In Section 2 we make our idea of locally non-
commutative spacetimes more precise. Section 3 gives the positive answer to
the question of existence and classification of the latter in the framework of for-
mal deformation quantization. In order to present the convergent counterpart of
the existence result, we recall the basics of Rieffel’s strict deformation quanti-
zation for C∗-algebras in Section 4 which we generalize to pro-C ∗-algebras in
Section 5. In the subsequent section we apply Rieffel’s construction using ac-
tions with compact support. With the aid of these results we finally manage to
give non-perturbative counterparts in the framework of (pro-)C ∗-algebras of the
noncommutative spacetimes, in Section 7.

2. Locally Noncommutative Spacetimes

Let us now recall the basic construction of locally noncommutative spacetimes
from [2, 5]. Our aim is to provide a framework for noncommutative spacetimes
such that

• it works on generic spacetimes (M,g)

• it has a truly geometric formulation
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• it uses either formal or strict deformation quantization

• it modifies geometry only at small distances

in order to overcome the problems arising from models with global noncommu-
tativities as discussed in the introduction. In this section, we focus on the formal
deformation quantization case, though parts of the construction will still be valid
for the strict case as well.

The last requirement immediately gives the correct hint how to proceed. Since
distance is a concept involving two points one has to impose noncommutativity of
M ×M and not of M alone: we want M ×M to become noncommutative close
to the diagonal ∆M ⊆M ×M but keep ordinary geometry far away from ∆M .

To formulate things properly, we use some geometric pre-requisites present on any
(pseudo-)Riemannian manifold. In fact, we only need a torsion-free connection
∇ on M which typically (but not necessarily) will be the Levi-Civita connection
of the metric g. We denote by π : TM −→M the tangent bundle of M with zero
section ι : M −→ TM . One chooses an open neighbourhood U ⊆ TM of the
zero section such that the map

Φ : U � vp �→ Φ(vp) = (expp(−vp), expp(vp)) ∈ V ⊆M ×M (1)

is a diffeomorphism onto its image V ⊆ M × M , where V is an open neigh-
bourhood of the diagonal ∆M . Here and in the following, expp is the exponen-
tial map of ∇. Clearly, such a choice of U can be achieved. The idea is then
that the functions C∞(M ×M) play the role of observables when it comes to
questions involving two points. In particular, for points q, q ′ sufficiently close
such that (q, q′) ∈ V , their geodesic midpoint p ∈ M is uniquely defined by
p = π(Φ−1(q, q′)).

Next, one chooses a Poisson structure θ̃ ∈ Γ∞(Λ2T (M × M)) whose sup-
port is contained in V . The idea is that V is still large compared to the re-
gion of noncommutativity supp θ̃. In particular, the precise choice of V should
not play a major role, as we are interested in much smaller neighbourhoods of
the diagonal ∆M . By Φ we can pull-back θ̃ and obtain a Poisson structure
θ = Φ∗θ̃ ∈ Γ∞(Λ2T (TM)) on TM with support in U .

Next, we require that for each p ∈ M the set supp θ ∩ TpM is a compact subset
of TpM : this way, the range of noncommutativity is encoded to be small by using
a topological characterization.

Having such a Poisson structure θ on TM or, equivalently, θ̃ on M × M , we
endow TM with a star product � quantizing θ. Equivalently, we obtain via Φ∗ a
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star product �̃ on M×M . Since � and �̃ encode the noncommutativity beyond the
semiclassical level (which is θ and θ̃, respectively), we require the same support
conditions: outside supp θ, the star product � has to be the pointwise product and
similarly for �̃.

Up to now the model is not yet very specific as θ and hence � are still quite arbi-
trary and the support condition is not really a strong requirement. One suggestion
to make the whole approach more interesting is now the following verticality re-
quirement: we do not only want noncommutativity to show up at small distances
but we even require that small distances are the only reason for noncommutativity.
Thus we want an observable f ∈ C∞(M ×M) to behave entirely classically if it
is not sensitive to relative distances. Note that in general on M ×M there is no
intrinsic notion of relative coordinates. However, since we have a connection we
can use the map Φ to induce relative coordinates as those directions transversal
to ∆M at p which come under Φ from those directions of TM along the tangent
space TpM . Thus we require: if f |V is constant along these relative coordinates,
then for all other functions g ∈ C∞(M ×M)

{f, g}θ̃ = 0 and also f �̃ g = fg = g �̃ f. (2)

The second requirement is just the quantized version of the semi-classical first
statement. Translating these requirements back to TM via Φ∗ gives the equivalent
conditions

{π∗u, g}θ = 0 and also π∗u � g = π∗ug = g � π∗u (3)

for all functions u ∈ C∞(M) and g ∈ C∞(TM), since a function f which is
constant along the fibers is of the form π∗u. The condition (3) explains the name
‘vertical’ since a Poisson tensor θ satisfies (3) iff θ ∈ Γ∞(Λ2 Ver(TM)) where
Ver(TM) = kerTπ ⊆ T (TM) is the vertical subbundle. Moreover, � satisfies
(3) iff the cochains of � differentiate only in vertical directions.

To illustrate this condition we shall also give the local description in coordinates.
Choose a local coordinate system (U, x) on M . Then we denote the induced
bundle coordinates of TM by (TU, (q, v)) where TU = π−1(U) ⊆ TM is open
and qi = π∗xi while vi(vp) = dxi(vp) for i = 1, . . . , n = dim(M). Then � is
written as

f � g =
∞∑

r=0

λrCr(f, g) (4)
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with bidifferential operators Cr : C∞(TM) × C∞(TM) −→ C∞(TM). The
verticality implies that locally with multi-index notation

Cr(f, g)
∣∣
TU

=
∑
I,J

CIJ
r

∂|I|f

∂vI

∂|J |g

∂vJ
(5)

and locally defined functions C IJ
r ∈ C∞(TU). The support condition on � is

equivalent to the condition that C IJ
r has compact support in fiber direction and

suppCIJ
r ⊆ TU ∩ U .

Before we come to the existence and classification results we point out several
consequences and properties of the model.

First we note that thanks to the verticality we can restrict θ as well as � to each
tangent space. Denoting by ιp : TpM −→ TM the inclusion map we thereby
obtain for each p ∈ M a well-defined bivector field θp ∈ Γ∞(Λ2T (TpM)) on
TpM such that θp and θ are ιp-related. In particular, θp is a Poisson structure
itself and ιp is a Poisson map

ι∗p({f, g}θ) = {ι∗pf, ι∗pg}θp
. (6)

Analogously, � restricts to an associative star product �p on TpM which quantizes
θp such that ι∗p becomes an algebra homomorphism

ι∗p(f � g) = (ι∗pf) �p (ι∗pg). (7)

The physical interpretation of this product �p comes from the original picture of
M ×M . If we are interested in observables related to events taking place at q and
q′ then only the functions sensitive to their relative coordinates play a role. They
can be obtained from C∞(TpM) where p is the geodesic midpoint of q and q ′.
So for this situation only the algebra (C∞(TpM)[[λ]], �p) is relevant. Note that
if q and q′ are not within V such that p is well-defined, they are far apart, so no
noncommutativity is to be expected anyway.

We can even interpret the situation as follows. Since θp and also �p are only non-
trivial inside Up = U ∩ TpM which is an open neighbourhood of 0p ∈ TpM
we can push forward everything with expp. Indeed, on Up the exponential map
expp is still a diffeomorphism onto its image Vp = expp(Up) ⊆ M which is an
open neighbourhood of p ∈ M . Thus we obtain a Poisson structure θ̃p together
with a star product �̃p on M which are non-trivial only inside the neighbour-
hood Vp of p. Again, the interpretation comes from the original M ×M picture:
whenever p is the geodesic midpoint of q, q ′ and we are interested in physical
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processes involving the two points q and q ′ then we have to use the observable
algebra (C∞(M)[[λ]], �̃p). In this way, every point in M obtains its own small
noncommutative neighbourhood since �̃p is commutative outside of Vp. This last
observation is the motivation to call the spacetime locally noncommutative.

3. Existence and Classification in the Formal Case

Let us now discuss whether we actually can find vertical Poisson structures and
corresponding star products meeting all our previous requirements. We start with
the following construction:

Lemma 1. There exists a diffeomorphism Ψ : B1(0) −→ R
n with

1. Ψ is the identity on B 1

2

(0)

2. The vector field X with Xi(p) = (Ψ∗ ∂
∂xi )(p) for p ∈ B1(0) and Xi(p) = 0

for p ∈ R
n \B1(0) is smooth on R

n

3. Ψ is O(n)-invariant.

Since this diffeomorphism is O(n)-invariant, it is well-defined on any vector
bundle π : E −→ M with fiber metric h. Thus we have a diffeomorphism
Ψ : Bh

1 (0) ⊆ E −→ E with π ◦Ψ = π. If e ∈ Γ∞(E) is a section, we denote by
ever ∈ Γ∞(Ver(E)) ⊆ Γ∞(TE) its vertical lift. Analogously, we have vertical
lifts for X ∈ Γ∞(

⊗
• E) to Xver ∈ Γ∞(

⊗
• Ver(E)).

Proposition 2. Let π : E −→M be a vector bundle with fiber metric h and Ψ as
above.

1. For any X ∈ Γ∞(
⊗

• Ver(E)) the tensor field Φ∗Xver is a globally de-
fined, smooth tensor field on E with support in Bh

1 (0) which coincides with
Xver on Bh

1

2

(0)

2. For any γ ∈ Γ∞(Λ2E) the vertical lift γver ∈ Γ∞(Λ2TE) is a vertical
Poisson structure which is constant along the fibers

3. θ = Ψ∗γver ∈ Γ∞(Λ2TE) is a vertical Poisson structure with supp θ ⊆
Bh

1 (0)

4. There exists a number d, constants Θij = −Θji ∈ R and commuting verti-
cal vector fields Xi ∈ Γ∞(TE) with suppXi ⊆ Bh

1 (0) for i, j = 1, . . . , d
such that

θ =
1

2

∑
i,j

ΘijXi ∧Xj . (8)
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Proof: The first three parts are clear by Lemma 1 as vertical lifts always commute
with respect to the Schouten-bracket. The last part uses the Serre-Swan theorem,
see [5, Proposition 2.3]. �

Note that each vector field Xi has a complete flow as it is vertical and in vertical
direction the support is compact thanks to suppXi ⊆ Bh

1 (0). In particular, their
flows constitute a smooth action of R

d. This motivates the following definition:
let U be an open neighbourhood of the zero section of E. Then a vertical Poisson
structure θ on E is called U-admissible, if there exists a smooth action of R

d

on E by vertical diffeomorphisms such that the fundamental vector fields Xi of
this action have compact support in fiber directions and θ can be written as in
(8). Then the last part of the proposition states that for any U we have a lot of
U-admissible vertical Poisson structures since we always can find a fiber metric h
such that Bh

1 (0) ⊆ U .

Coming back to the locally noncommutative spacetime, we consider E = TM
and conclude that there always exist many Poisson structures meeting all our re-
quirements discussed in Section 2. We may even choose them to be U-admissible.

Now we turn to the existence of star products � quantizing such a vertical Poisson
structure. Here the situation is governed by Kontsevich’s formality theorem on
R

n. We shall not go into the technical details of this theorem but outline some of
its consequences.

When discussing formal star products, it is also convenient to consider formal
Poisson structures

θ = θ0 + λθ1 + · · · =
∞∑

r=0

λrθr ∈ Γ∞(Λ2T (TM))[[λ]] (9)

where the Jacobi identity �θ, θ� = 0 has to be fulfilled order by order in the formal
parameter λ. In particular, �θ0, θ0� = 0 and �θ0, θ1� = 0, whence θ0 is a Poisson
structure itself and θ1 is a cocycle in the Poisson cohomology with respect to θ0.
The relevant moduli space is then obtained by passing to formal Poisson structures
modulo formal diffeomorphisms: a formal diffeomorphism is a map exp(X) with
a formal vector field X = λX1 + λ2X2 + · · · ∈ λΓ∞(T (TM))[[λ]] starting in
order λ to make the exponential series well-defined. The action of exp(X) on θ
is the usual one.

In our case, we are interested in vertical formal Poisson structures and vertical
formal diffeomorphisms, i.e., the vector field X has to be vertical. On the star
product side one considers equivalence classes of star products modulo equiva-
lence transformations S = Id +

∑
∞

r=1 λrSr where Sr is a differential operator
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and S acts on � by f �′ g = S−1(Sf � Sg). Again, in our case we are inter-
ested in vertical equivalence transformations, i.e., all the operators Sr are vertical
differential operators. Then one has the following statement [2, Appendix A]

Theorem 3. Let U ⊆ TM be an open neighbourhood of the zero section. Then

1. For every formal vertical Poisson structure θ with supp θ ⊆ U there exists
a formal vertical star product � with cochains Cr with suppCr ⊆ U for
r ≥ 1.

2. The vertical equivalence classes of vertical formal Poisson structures are in
bijection to the vertical equivalence classes of vertical formal star products.

3. There exists a vertical formality map.

We do not state precisely what a formality is but refer to [2] where such a ver-
tical formality is build out of Kontsevich’s formality on R

n as in [6]. From this
formality theorem the other two statements follow easily.

For the case of a U-admissible Poisson structure θ with corresponding commuting
vector fields Xi as in (8) the existence of a star product quantizing θ is trivial: the
explicit formula

f � g = µ ◦ exp

(
iλ

2
Θk�LXk

⊗ LX�

)
(f ⊗ g) (10)

does the job, where µ(f⊗g) = fg denotes the pointwise product. This is the well-
known statement of Gerstenhaber on commuting derivations [4, Theorem 8]. The
usual Weyl-Moyal star product on flat space is a particular case of Gerstenhaber’s
formula (10).

4. Rieffel’s Strict Deformation Quantization for C
∗-Algebras

In [11], Rieffel constructs a convergent noncommutative product for a dense sub-
algebra of a given Fréchet algebra A. Further he proves, that the resulting non-
commutative algebra is even a pre-C∗-algebra, if A is already a C∗-algebra. In
this section we give a short survey on Rieffel’s construction.

We consider a Fréchet algebra A with a strongly continuous action α of a vec-
tor space V of dimension d. Moreover, α is required to be isometric, i.e., there
exists a family P of continuous seminorms defining the topology of A such that
p(αv(a)) = p(a) for all p ∈ P, a ∈ A, and v ∈ V . In the case of a Banach
algebra this reduces to the usual definition of isometric actions.
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The space of smooth vectors for the action α will be denoted by A∞. It is well
known thatA∞ carries a Fréchet topology. Moreover, it is dense inAwith respect
to the original Fréchet topology, see e.g., [13, Theorem A.1]. The action of V on
itself by translations induces an action τ of V on C 0

u(V,A).

We require now a scalar product on V and choose a skew-symmetric operator Θ
on V . Then

a • b =

∫∫
αΘu(a)αv(b)e

2πiu·v dudv (11)

is a noncommutative associative product forA∞, called the deformed product (de-
termined by α and Θ), see [11, Definition 2.1, Theorem 2.14]. Here the integrals
are understood in the sense of oscillatory integrals that are well-defined according
to [11, Proposition 1.6]. We need the following [11, Corolary 2.13]

Proposition 4. Let a ∈ A∞ be a fixed point for the action α. Then for any
b ∈ A∞, we have a • b = ab and b • a = ba.

Now, let A be a C∗-algebra. In order to define a C∗-norm for the deformed
algebra (A∞, •), one considers the space of all functions in C 0

u(V,A)∞ such that
the product of their derivatives with any polynomial on V is bounded. This space
will be denoted by SA(V ). On SA(V ) Rieffel defines an A-valued inner product

〈f, g〉 =

∫
f(v)∗g(v) dv (12)

together with a norm
‖f‖ = ‖〈f, f〉‖

1

2 . (13)

Using the action τ of V on the Fréchet algebra C0
u(V,A)∞ one obtain a deformed

product • for C0
u(V,A)∞. Let L denote the left multiplications, i.e., the action of

C0
u(V,A)∞ on SA(V ) using the deformed product

LF g = F • g. (14)

It turns out that the operator Lf : SA(V ) −→ SA(V ) is bounded and adjointable
for f ∈ SA(V ), see [11, Corolary 4.4]. Furthermore, this result also holds for the
more general case F ∈ C0

u(V,A)∞, see [11, Theorem 4.6].

For any a ∈ A, Rieffel defines the function φ(a) on V by

φ(a)(v) = αv(a). (15)

Since α is isometric it turns out that φ(a) ∈ C0
u(V,A). Moreover, the map

a �→ φ(a) constitutes an equivariant ∗-homomorphism from A into C0
u(V,A).
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Thus it maps smooth vectors to smooth vectors, i.e., A∞ into C0
u(V,A)∞. It

follows that it is a homomorphism for the corresponding deformed products [11,
Proposition 2.10]. Therefore, a ∈ A∞ determines a bounded operator on SA(V )
by Lφ(a). Thus one can pull-back the operator norm to A∞ by

‖a‖
Θ

=
∥∥Lφ(a)

∥∥ . (16)

As the adjointable operators on a Hilbert module over a C ∗-algebra form again
a C∗-algebra [7, p. 8], it follows that ‖ . ‖

Θ
fulfills the C∗-condition. After com-

pletion of (A∞, •, ‖ . ‖
Θ
) one finally obtains a C∗-algebra. We refer to this C∗-

topology as the deformed topology.

To conclude this section we recall the statement of [11, Theorem 5.7] that permits
to obtain homomorphisms that are continuous with respect to the deformed C ∗-
topologies from certain continuous homomorphisms of the original undeformed
C∗-algebras. Let α and β be actions of V on C∗-algebras A and B, respectively.
Moreover, let Ψ : A −→ B be a ∗-homomorphism which is equivariant. Then the
induced map Ψ : A∞ −→ B∞ is a homomorphism of the respective deformed
products which is continuous with respect to the deformed C ∗-norms and hence
extends to a continuous homomorphism for the respective completions. This re-
sult will be one of the key ingredients for the proof of an analogous statement in
the case of pro-C∗-algebras, see Proposition 7.

5. The Pro-C∗-Algebra Case

In this section we will show that Rieffel’s construction also works for pro-C ∗-
algebras and we will point out where some additional work was to be done.

Let A = lim←−Aλ be a pro-C∗-algebra, i.e., the inverse (or projective) limit of an
inverse system of C∗-algebras Aλ in the category of topological ∗-algebras, see
e.g. [9,10]. Recall that an inverse system of C∗-algebras consists of a directed set
Λ, a C∗-algebra Aλ for each λ ∈ Λ, and ∗-homomorphisms πλ,ρ : Aλ −→ Aρ

for λ ≥ ρ, satisfying the following conditions

πλ,λ = IdAλ
and πρ,µ ◦ πλ,ρ = πλ,µ for λ ≥ ρ ≥ µ. (17)

Then the inverse limit of (Aλ, πλ,ρ) is a topological ∗-algebra A together with
∗-homomorphisms κλ : A −→ Aλ, such that

πλ,µ ◦ κλ = κµ

and satisfying the usual universal property as in [9]. Sometimes it will be con-
venient to identify an element a ∈ A with a coherent sequence (aλ) ∈ ∏

λ∈Λ

Aλ
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satisfying πλ,µaλ = aµ. The topology of A is determined by the set of all con-
tinuous C∗-seminorms on A denoted by S(A), see [9, Proposition 1.1.1]. S(A)
is obviously a directed set by q′ ≥ q iff q′(a) ≥ q(a) for all a ∈ A. Defining
Aq = A/kerq for q ∈ S(A) one recovers the projective limit by [9, Proposi-
tion 1.1.1]

A ∼= lim←−Aq. (18)

An important example for a pro-C∗-algebra is the algebra of continuous functions
C0(N) over a manifold N . It is the inverse limit of the inverse system of the
C∗-algebras (C0(L), ‖ . ‖L), where

‖f‖L = sup
x∈L

|f(x)|

and L runs through all compact subsets of N . Clearly, the compact sets are di-
rected by L′ ≥ L iff L′ ⊇ L. The mappings πL′,L : C0(L′) −→ C0(L) for
L ⊆ L′ are the restriction maps and also the mappings κL : C0(N) −→ C0(L)
are given by restrictions

κLf = i∗Lf.

Let α of V be a strongly continuous action on a pro-C ∗-algebra A.

Definition 5. The action α is called cofinally isometric if there exists a cofinal
subset Λ ⊆ S(A) such that for all q ∈ Λ, all a ∈ A, and all v ∈ V we have

q(αv(a)) = q(a). (19)

Given such a cofinally isometric and strongly continuous action α on A, we ob-
tain a deformed product • on the smooth vectors A∞ by the general results of
Section 4. Now we want to define corresponding C∗-seminorms for (A∞, •) in
order to obtain also a pro-C∗-algebraic deformation.

We can proceed analogously to the case of C∗-algebras up to the definition of the
deformed norm as in (16). Then we have to use the following construction: a
Hilbert module E over a pro-C∗-algebra A is defined as in the C∗-algebraic case,
see [10], where completeness is now understood with respect to the seminorms
‖ξ‖q = q(〈ξ, ξ〉) 1

2 where ξ ∈ E and q ∈ S(A). Then Eq is defined to be the
quotient E

/
ker ‖ . ‖q. It turns out to be a Hilbert module over the C∗-algebra

Aq in the usual sense. Hence the continuous adjointable operators B(Eq) on Eq

are a C∗-algebra with respect to the usual operator norm. Given q ∈ S(A) and
T ∈ B(E), one obtains Tq ∈ B(Eq) defined by Tq[ξ]q = [Tξ]q , where [ξ]q ∈ Eq
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denotes the class of ξ. Then B(E) � T �→ Tq ∈ B(Eq) is clearly an (algebraic)
∗-homomorphism whence

‖T‖q = ‖Tq‖ (20)

defines a C∗-seminorm for B(E) for each q ∈ S(A). We shall use this pro-C ∗-
topology which coincides with the one in [10]. It allows to define the pro-C ∗-
seminorms

‖a‖
Θ,q =

∥∥Lφ(a)

∥∥
q

(21)

for a ∈ (A∞, •) as in the C∗-algebraic case before. After completion we obtain a
pro-C∗-algebra as wanted [5, Proposition A.4]

Proposition 6. For a pro-C∗-algebra A endowed with a strongly continuous and
cofinally isometric action α of V the deformed algebra (A∞, •) of smooth vectors
carries a system of C∗-seminorms defined by (21). The completion with respect
to these seminorms yields a pro-C∗-algebra deforming A.

As in the C∗-algebraic case the construction behaves well with respect to equivari-
ant morphisms: let A and B be pro-C∗-algebras equipped with strongly continu-
ous and cofinally isometric actions of V and let Ψ : A −→ B be an equivariant
continuous ∗-homomorphism. Then we have [5, Proposition A.5]

Proposition 7. With these assumptions Ψ : (A∞, •) −→ (B∞, •) is a continuous
∗-homomorphism with respect to the deformed pro-C ∗-topologies.

6. Strict Deformation Quantization for Actions with Compact Support

In this section, we apply Rieffel’s strict deformation quantization presented so far
to construct a noncommutative product for the C∗-algebra of all bounded con-
tinuous functions C0

b (N) on a manifold N and the pro-C∗-algebra of continuous
functions C0(N) on N , respectively, provided we have a sufficiently nice action
of R

d. This will be used later for the locally noncommutative spacetime but may
also be interesting for its own.

Let K ⊆ N be a compact subset. We choose d vector fields X1, . . . ,Xd ∈
Γ∞(TN) with the following properties

1. suppXi ⊆ K ⊆ N for i = 1, . . . , d

2. [Xi,Xj ] = 0 for i, j = 1, . . . , d.
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Clearly, there exist non-trivial choices of such vector fields. Since their supports
are compact, their flows are complete. Moreover, their flows φX1 , . . . , φXd deter-
mine an action of R

d on C0
b (N) by

α(v, f) = αv(f) = f ◦ φX1

v1
◦ · · · ◦ φXd

vd
. (22)

Since the Xi commute this indeed defines an action which turns out to be strongly
continuous and obviously isometric with respect to the supremum norm on C 0

b (N).
Therefore it is possible to apply Rieffel’s construction in this situation.

Definition 8. Let Θ be a linear and skew-symmetric operator on R
d with respect

to the standard inner product. The noncommutative product • : C 0
b (N)∞ ×

C0
b (N)∞ −→ C0

b (N)∞ is defined by

f • g =

∫∫
αΘu(f)αv(g)e2πiu·v dudv. (23)

As C0
b (N) is a C∗-Algebra, the preceding results allow to define a C ∗-norm

‖ . ‖
Θ

on C0
b (N)∞ such that the completion of (C0

b (N)∞, •, ‖ . ‖
Θ
) becomes

a C∗-algebra. Note that since the flows of X1, . . . ,Xd are smooth, we have
C∞

0 (N) ⊆ C0
b (N)∞.

Since the action has compact support, the subalgebra of those functions in C 0
b (N)∞

with compact support C0
b (N)∞∩C0

0(N) remains a subalgebra with respect to the
deformed product.

Proposition 9. The functions in C0
b (N)∞ with compact support form a subalge-

bra with respect to the deformed product •, i.e., for f, g ∈ C 0
b (N)∞ ∩C0

0 (N) we
have f • g ∈ C0

b (N)∞ ∩C0
0 (N). More explicitly

supp(f • g) ⊂ (supp f ∩ supp g) ∪K. (24)

It is not difficult to see that the functions f ∈ C0
b (N)∞ whose supports have an

empty intersection with K form a central ∗-ideal of (C0
b (N)∞, •, ‖ . ‖

Θ
).

Proposition 10. For f ∈ C0
b (N)∞ with suppf ∩K = ∅ we have

f • g = fg = g • f for all g ∈ C0
b (N)∞. (25)

In particular, supp(f • g) ∩K = ∅ = supp(g • f) ∩K.

The above construction for the C∗-algebra C0
b (N) is of course just an application

of Rieffel’s original construction. However, thanks to the support condition we
can extend his result also to the following two situations:
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Remark 11. First, and this is still covered by Rieffel’s general theory, we can use
the C∗-algebra C0

∞(N) of continuous functions vanishing at infinity instead of
C0

b (N), i.e., the C∗-completion of C0
0(N). Then all results remain true for the

corresponding deformation (C0
∞(N)∞, •, ‖ . ‖Θ) of C0

∞(N).

Remark 12. Second, we can replace the bounded continuous functions by the
pro-C∗-algebra C0(N) of all continuous functions. Here the property that the
supports of the vector fields X1, . . . ,Xd are compact comes in crucially: indeed,
first note that the action α on C0(N) is strongly continuous since on a compact
subset a continuous function is uniformly continuous. Moreover, α is cofinally
isometric as for each sufficiently large compactum L ⊇ K we clearly have

‖f‖L = ‖αv(f)‖L for all v ∈ R
d (26)

for the sup-norm ‖ . ‖L over L. Thus the more general construction of a deformed
pro-C∗-algebra can be carried through yielding a deformation • for C 0(N)∞.
A straightforward verification shows that the assertions of the Proposition 9 and
Proposition 10 literally hold true for C0(N) in the place of C0

b (N) as well.

7. (Pro-) C
∗-Algebraic Version of Locally Noncommutative Spacetimes

This section will be devoted to the concrete construction of deformed products
that incorporate the idea of a locally noncommutative spacetime in the framework
of (pro-) C∗-algebras. As in the formal case, we will proceed in several steps: first
we construct a suitable action of R

d on TM for an arbitrary smooth manifold M
that induces a deformed product on C0(TM)∞. This will require a more particu-
lar class of vertical Poisson structures. Then we use the exponential map to obtain
induced products on C0(M ×M)∞ and C0(M)∞. The guiding principle of the
respective construction clearly are the relations that are already known from the
formal deformation quantization framework in Section 2. Furthermore, we will
clarify the relations between the different products which algebraically are com-
pletely analogous to the formal case but include additional continuity properties.
Clearly, all constructions will have their formulations for the C ∗-algebraic cases
of C0

∞ and C0
b .

Let U denote an open neighbourhood of the zero section in TM as in Section 2.
Let θ be a U-admissible vertical Poisson structure on TM with its correspond-
ing vertical action of R

d and (vertical) fundamental vector fields X1, . . . ,Xd as
in Proposition 2. We denote the action of R

d on functions again by α. Then
the properties of the fundamental vector fields imply the following lemma, even
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though the action itself will not have compact support: the compactness in vertical
directions is sufficient.

Lemma 13. The action α on C0(TM) is cofinally isometric.

Let • : C0(TM)∞ ×C0(TM)∞ −→ C0(TM)∞ be the corresponding noncom-
mutative product defined by the oscillatory integral

f • g =

∫∫
αΘu(f)αv(g)e2πiu·v dudv. (27)

Moreover, we denote the respective noncommutative products of C 0
b (TM)∞ and

C0
∞(TM)∞ again by •. Finally, we get noncommutative products for C 0(U)∞,

C0
b (U)∞, and C0

∞(U)∞ thanks to the support properties of the action α. All these
products are continuous for the deformed (pro-) C ∗-topologies according to the
results of the Section 4 and Section 5.

Next we reconsider the map Φ according to (1) that allows to push forward the
vector fields Xi to vector fields X̃i ∈ Γ∞(T (M ×M)) by extending them to be
0 outside of V . This way we obtain an action α̃ of R

d on C0(M ×M) making
Φ equivariant. Again, α̃ is cofinally isometric. Thus the action gives rise to a
deformed product •̃ : C0(M × M)∞ × C0(M × M)∞ −→ C0(M × M)∞.
Analogously to the case of TM we also obtain deformed products for the spaces
C0

b (M × M)∞, C0
∞(M × M)∞, C0(V)∞, C0

b (V)∞, and C0
∞(V)∞ which are

continuous for the corresponding deformed (pro-) C ∗-topologies. The various
products are related as follows, see [5, Proposition 4.2]

Proposition 14. The restriction map induces a ∗-homomorphism (C0(TM)∞, •)
−→ (C0(U)∞, •) which is continuous with respect to the deformed pro-C ∗-topo-
logies. The same statement holds for the case C0

b with respect to the deformed
C∗-topologies. Moreover, the inclusion (C0

∞(U)∞, •) −→ (C0
∞(TM)∞, •) is a

continuous ∗-homomorphism with respect to the deformed C∗-topologies. Finally,
the analogous results hold for M ×M and V instead of TM and U .

Note that there is neither a direct relation between the classical algebras C 0(TM)
and C0(M×M) nor the deformed algebras (C0(TM)∞, •) and (C0(M×M)∞, •̃).
Only when passing to the functions on U and V , respectively, we obtain (see [5,
Proposition 4.3])

Proposition 15. The pull-back map Φ∗ : C0(V) −→ C0(U) restricts to a ∗-
isomorphism

Φ∗ : (C0(V)∞, •̃) −→ (C0(U)∞, •) (28)
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which is continuous with respect to the deformed pro-C ∗-topologies. It restricts to
∗-isomorphisms Φ∗ : (C0

b (V)∞, •̃) −→ (C0
b (U)∞, •) and Φ∗ : (C0

∞(V)∞, •̃) −→
(C0

∞(U)∞, •), both continuous with respect to the C∗-topologies. In all cases, the
inverse is given by Φ∗.

In order to obtain the analogue •̃p of �̃p on the functions C0(M)∞ on M we have
to proceed as follows:

First, we want to show that ι∗p gives rise to a continuous homomorphism of the
algebras (C0(TM)∞, •) and (C0(TpM)∞, •p), where the latter product is ob-
tained as follows: due to the verticality of the Xi these vector fields restrict to
ιp-related vector fields Xp

i ∈ Γ∞(T (TpM)). Consequently, also their flows are
ιp-related, i.e., ιp and hence also ι∗p is equivariant. Using these flows we again
get a strongly continuous and cofinally isometric action αp of R

d on C0(TpM),
which can be used to define a deformed product •p on C0(TpM)∞ by the usual
integral formula. Again, •p is defined as well for C0

b (TpM)∞ and C0
∞(TpM)∞.

We have [5, Proposition 4.4]

Proposition 16. The restriction i∗p : C0(TM) −→ C0(TpM) induces a ∗-homo-
morphism

i∗p : (C0(TM)∞, •) −→ (C0(TpM)∞, •p) (29)

that is continuous with respect to the deformed pro-C ∗-topologies. Moreover, the
analogous statement holds for the C∗-algebraic cases C0

b and C0
∞.

Now we are prepared to turn to the second step of the construction of a product
for functions on M that is only noncommutative in a small neighbourhood of p.
On Vp = expp(Up) we can push forward Xp

i to X̃p
i which extends to a smooth

vector field on M thanks to the support condition. In fact, supp X̃p
i ⊆ Vp is

compact again. This way we obtain an action of R
d on M making expp equivari-

ant and hence have an action α̃p on the continuous functions on M . Again we
can apply Rieffel’s construction to obtain a deformed product for the (pro-) C ∗-
algebras C0(M), C0

b (M), and C0
∞(M), which will be denoted by •̃p. One has

the following properties [5, Proposition 4.5]

Proposition 17. Let p ∈ M .

1. •p restricts from TpM to Up and •̃p restricts from M to Vp, analogously to
Proposition 14
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2. The pull-back exp∗
p : C0(Vp) −→ C0(Up) induces a ∗-isomorphism

exp∗

p : (C0(Vp)
∞, •̃p) −→ (C0(U∞

p ), •p) (30)

which is continuous with respect to the deformed pro-C ∗-topologies
3. The analogous statements hold for the C∗-algebraic cases C0

b and C0
∞.

Note that all the above ∗-homomorphisms are also continuous with respect to the
Fréchet topologies of the spaces of smooth vectors. This already follows from
Rieffel’s original construction.

With the hitherto results of this section we have found the (pro-) C ∗-algebraic
and hence non-perturbative counterparts to the constructions from [2] presented
in Section 2, where formal star products are used instead. To make this relation
more precise we consider a real non-negative parameter h ∈ R

+
0 and replace the

constants Θk� by hΘk� in all the prevailing formulas. All the stated results remain
literally the same except that all the noncommutative associative products now
depend on the additional parameter h which will be indicated by a subscript h.
Then we find:

Proposition 18. For all f, g ∈ C0(TM)∞ the asymptotic expansion with respect
to the topology of C0(TM)∞ for h → 0 of the product f •h g is given by the
Gerstenhaber formula (10), i.e.,

f •h g ∼h→0 µ ◦ exp

(
i�

2
Θk�LXk

⊗ LX�

)
(f ⊗ g) (31)

where � = h
2π . This formula clearly has his equivalents for the other function

spaces C0
∞(TM)∞ and C0

b (TM)∞. The completely analogous statement holds
for the products •̃h, •ph and •̃ph, respectively, where the vector fields Xk have to
be replaced by X̃k, Xp

k and X̃p
k , respectively.

Let us conclude with a small outlook and perspective:

In order to understand better the locally noncommutative spacetimes one should
investigate the state spaces for the deformed algebras as explicitly as possible.
This will be of major importance for the physical interpretation, in particular for
the measurement of the (pseudo-)Riemannian structure on the deformed space-
time.

Moreover, again for physical applications it is necessary to treat θ not as a para-
meter but as a dynamical quantity itself. Thus it is interesting to investigate the



26 Jakob G. Heller, Nikolai Neumaier and Stefan Waldmann

dependence of the deformed products on θ. Note that this goes (far!) beyond Rief-
fel’s results on continuous fields [11, Chapter 9] as varying θ particularly implies
to vary the action itself.

Finally, the results in [1, 3] suggest that one can now start to construct quantum
field theories on locally noncommutative spacetimes. Here, one obvious concep-
tual difficulty is how to interpret quantum fields on TM instead of quantum fields
on M .
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