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Abstract. We give a survey of infinite dimensional Lie groups and show some
applications and examples in mathematical physics. This includes diffeomorphism
groups and their natural subgroups like volume preserving, symplectic and con-
tact transformations, as well as gauge groups, quantomorphisms and loop groups.
Various applications include fluid dynamics, Maxwell's equations, plasma physics
and BRST symmetries in quantum field theory. We discuss the Lie group struc-
tures of pseudodifferential and Fourier integral operators, both on compact and non-
compact manifolds and give applications to the KdV equation and quantization.

1. Introduction

Lie Groups play an important role in physical systems both as phase spaces and as
symmetry groups. Infinite dimensional Lie groups occur in the study of dynam-
ical systems with an infinite number of degrees of freedom such as PDEs and in
field theories. For such infinite dimensional dynamical systems diffeomorphism
groups and various extensions and variations thereof, such as gauge groups, loop
groups and groups of Fourier integral operators occur as symmetry groups and
phase spaces. Symmetries are fundamental for Hamiltonian systems. They pro-
vide conservation laws (Noether currents) and reduce the number of degrees of
freedom, i.e. the dimension of the phase space. Cohomological aspects of Lie
groups come into the picture when studying anomalies and BRST symmetries in
guantum field theory.

This paper is based on a series of lectures given at the 4th International Conference
on Geometry, Integrability and Quantization in Sts Constantine and Elena (Varna)
Bulgaria, June 5-16, 2002. We thank the organizers for their good work and their
hospitality.

The topics selected for these lectures aim to illustrate some of the ways infinite
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dimensional geometry and global analysis can be used in mathematical problems
of physical interest.

. Infinite dimensional Lie groups

. Diffeomorphism groups

. Subgroups of diffeomorphism groups and applications

. BRST symmetries

. Lie groups of pseudodifferential- and Fourier integral operators
. Diffeomorphism groups and FIO for non compact manifolds

. Applications to fluid dynamics and quantization.

N O o~ WODN B

2. Infinite Dimensional Lie Groups

In physics Lie groups appear as symmetry groups or configuration spaces of dy-
namical systems. Some classical, finite dimensional examples are: The linear
and angular momentum are related to the groups of translations and rotations; a
rigid body’s positionf(z,t) at timet is determined byf (z,t) = A(t) - «, where

A(t) € SO(3) is a proper rotation. The groupO(3) is configuration space and
symmetry group. The heavy top has as configuration space&sél$®) and in ad-

dition the circle groups® as a symmetry group, which represents rotations about
the direction of gravity. “Eliminating” thisS' symmetry leaves the Euclidean
group E(3) of rigid motions.

Some infinite dimensional examples are: For an incompressible fluid the configu-
ration space i®iff,,;(£2), the volume preserving diffeomorphisms of a region

This is an infinite dimensional “Lie group”. For compressible fluids the configura-
tion space iDiff (2) and as symmetry group adisft,(£2) the densityp preserv-

ing diffeomorphisms. For plasma physics, which is governed my the Maxwell-
Vlasov equations the configuration spac8ysn(R®) the infinite dimensional Lie
group of canonical transformations. For the Maxwell's and Yang—Mills equations
the group of gauge transformations is an infinite dimensional Lie group which
acts a symmetry group. Soliton equations (KdV) can be described as Hamiltonian
systems on coadjoint orbits of the Lie group of pseudodifferential operator and
the Lie group of Fourier integral operators.
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2.1. Basic Definitionsand Properties
21.1. LieGroup G

An infinite dimensionalLie group G is a group and an infinite dimensional man-
ifold such that the two structures are compatible, in the sense that the group oper-
ations multiplication and inversion are smooth maps

w:GxG—G:u(g,h) =gh multiplication is C*°

v:G—G:v(g) =g " inversion is C™.

In finite dimensions, the second condition follows from the implicit function theo-
rem! The group operations satisfy associativity of the progutt) = (gh)k and
ge=eg=-¢e, gg ' =g g = e. As a manifold,G is locally diffeomorphic to

an infinite dimensional vector spa&g which can be a Banach space (with norm
I-1), a Hilbert space (with inner produet .,. > and norm|z|f =< z,z >),

or a Frechet space (with metri.,.) but no norm). Correspondingly we call
these Banach Lie groups, Hilbert Lie groups or Frechet Lie grougsidfocally
diffeomorphic toR", n < oo, theng is a finite dimensional Lie group.

2.1.2. TheDifferentiable Structureof G

Forg € G consider left and right translationg, : G — G; Ly(h) = gh and

R, : G — G; Ry(h) = hg. These are diffeomorphisms with inverses given
by (Ly)~' = L, and(R,)™! = R,-1. Let (U, ¢) be a chart at the identity
e € G and define a chafi/,, ¢,) atg € Gby U, = L,(U) = {Lyh; h € U}
andg, = ¢o L,~1 : Uy — V,h — ¢(g~'h). So a single chart at the identity
defines the differentiable structure @fwith smooth transition maps (change of
coordinates) given by, o ¢, ' = ¢ o L1, 0 ¢ L.

2.1.3. ThelLieAlgebragofalLieGroup G

The Lie algebrgy of a Lie groupg is defined as the space of left invariant vector
fields ongG, which is isomorphic tdl.G the tangent space at the identity Let
X(G) denote the space of all vector fields @nwhich is an infinite dimensional
Lie algebra with Lie bracket given by the commutator bradkéty’] = XY —
YX for X,Y € X(G). A vector field X € X(G) is called left invariant iff
LyX = X. If X, Y are left invariant, ther,« [ X, Y] = [Ly« X, L+Y] = [X,Y],

i.e. [X, Y] is left invariant. Hence the space of left invariant vector fitdéG)

is a Lie subalgebra ¢£(G).
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TheLie algebra g of G is defined ag = X.(G). Let{ € T.G, thenX¢(g) :=
T.Ly(&) € T,G defines a left invariant vector field and (e) = £. This defines
a isomorphism betwe€fiG andX,(G). We define the Lie bracket for ayn €
1.G by

(€, 0] = [Xe, Xy(e)- ey
This bracket satisfies the conditions for a Lie algebrd, ji.gis

e bilinear: [t&; + s&a2,n] = t[é1,n] + s[2,m] t,s €R
e skew symmetrici{¢, n] = —[n, ]

« Jacobi identity{[¢, 7], ¢] + [[n, ], €] + [[C. €], ] = O is satisfied.
With this we can identifyy ~ 7.G as Lie algebras.

2.1.4. TheExponential Map

The exponential mapxp : 1T.G ~ g — G is defined as follows: Fof € T.G
let X, be the associated left invariant vector field. kegtt) be the flow of X,
throughe € Gi.e. p:(0) = e, ¢¢(t) = Xe(p(t)). Then we define

exp(§) := pe(1). 2

If G is finite dimensional thenxp defines a local diffeomorphism from a neigh-
borhood of0 € g onto a neighborhood of € G. So infinite dimensions, the
exponential map defines a local chart abeat G (called canonical chart), hence
the differential structure df. In infinite dimensions this isot the case in general.

2.2. Classical Lie Groups

We examine these structures and constructions on some examples.

2.2.1. Vector Groups

LetG = V be a Banach space wiil(z,y) =z + y, v(z) = —z, e = 0, which
makesJ into an abelian Lie group, i.e.(z,y) = u(y, z). For the Lie algebra we
haveg ~ T,V ~ V. Foru € T,V the corresponding left invariant vector field

is given by X, (v) = u,Vv € V, i.e. X,, = const. Hence the Lie algebga= V'
with the trivial Lie brackefu, v] = 0 is abelian. For the exponential map we get
exp:V — V,exp =idy.
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2.2.2. Matrix Groups
A) Thegeneral linear group GL(n,R) is defined by
G = GL(n,R) := {A € L(R™,R") ; det A # 0}

which is just the group of invertible x n matrices. The determinant maget :
L(R™ R™) — R is continuous, henc€'L(n,R) = det™' (R\{0}) c L(R",R")
is an open submanifold. It is disconnected alich GL(n, R) = »2. The group
multiplication p(A, B) = AB (matrix multiplication) isC> as the restriction
of the continuous bilinear map4, B) € L(R*,R") x L(R",R") — AB €
L(R™,R™). The group inversion/(A) = A~! (matrix inversion) isC* by the
implicit function theorem, indeed(A,v(A)) = e = I the identity.

The Lie algebra: Since GL(n,R) C L(R™,R") is openT;GL(n,R)
L(R™,R™) with the Lie brackefA, B] = AB — BA. ForA € L(R",R") the
corresponding vector fiel&, on on GL(n,R) given by X4 : GL(n,R) —
L(R™,R"™), X4(Y)=Y Ais left invariant (linear), indee& 4 (LzY)=X4(ZY)
= ZYA = (IyLz)Xa(Y). Hence the Lie bracket of;GL(n,R) defined by
[A,B] = [Xa,XB](I) = DXp(I)Xa(I) — DX4(I)Xp(I). SinceXp(Z)is
linear we haveDXp(I)Z = ZB and DXp(I)X4(I) = AB. So [A,B] =
AB — BA is the the usual commutator bracket.

The exponential map: For A € L(R",R") the curveys : R — GL(n,R) :

~

ya(t) = >°72, t,—'AZ' is a one-parameter subgroup with(0) = I and ~(t) =
1.
= : : :
> ,71'14’ = v4(t)A. Hence~, is the (unique) integral curve ok,
1 — .

and the exponential magpcp : L(R",R") — GL(n,R) : exp(A4) = va(1) =
>ico %Al becomesxp(4) = e
1.

2.2.3. LieSubgroupsof GL(n,R)
A) The special linear group SL(n,R) is defined as
SL(n,R) := {A € GL(n,R);det A = 1} = det™*{1}.

SL(n,R) is a closed Lie subgroup @¥L(n,R). Itis non-compact, connected
anddim SL(n,R) = n? — 1.

ThelLiealgebra: sl(n,R) = {4 € L(R",R") ; trace A = 0} with the commu-
tator bracketA, B] = AB — BA.
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B) Theorthogonal group O(n) is defined as
O(n) :={A e LR"R"); < Az, Ay >=< z,y > < AAT =T}.
A € O(n) = det A = £1. O(n) is compact, disconnected (2 components) and
dimO(n) =n(n —1)/2.
Theliealgebra: o(n,R) = {A € L(R",R"); A skew symmetric}.
C) The special orthogonal group SO(n) is defined as

SO(n) = {A € L(R",R") ; AAT =T & det A = +1}
= O(n) N SL(n,R) = Identity component 0 (n).

. 1
SO(n) is compact, connected addn SO(n) = §n(n —1).
ThelLiealgebra: so(n,R) = {A € L(R",R"); A skew symmetri¢ = o(n, R).
D) The symplectic group Sp(2n) is defined as

Sp(2n,R) = {A € L(R*™,R*™); ATJA =J}
O I

—I 0

The Lie algebra: sp(2n,R) = {4 € L(R",R") ; ATJ + JA = 0}. Similar
constructions and results hold for the complex matrix gradpgn, C) and their
corresponding subgroups.

whereJ = ( > Sp(2n,R) is noncompact andim Sp(2n) = 2n? + n.

2.3. Classical Resultsin Finite Dimensions which are NOT True
in Infinite Dimensions;

1) There is NO Implicit Function Theorem or Inverse Function Theorem in infi-
nite dimensions (except Nash—Moser type theorems!).

2) The exponential magxp : g — G defined byexp(§) = ¢ (1), wheregg(t) is

the flow of the left invariant vector field, for £ € g, is a local diffeomorphism in
finite dimensions= canonical coordinates. This is not true in infinite dimensions.
3) If G, H are finite dimensional Lie groups arfd f» : G — H are smooth Lie
group homomorphisms{ connected) i.ef;(gh) = fi(g) - fi(h), i = 1,2, with
T.f1 = T. fo, then locallyf; = f5.

NHIf f: G — His a continuous group homomorphism between finite dimen-
sional Lie groups therf is smooth.

5) If G is a finite dimensional Lie group and C G aclosed subgroup ther is
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a Lie subgroup (Lie group and submanifold).

6) If G is a finite dimensional Lie group with Lie algebgeandf C g is a subal-
gebra, then there exists a unique connected Lie subgkbupG with h as its Lie
algebra, i.eh) ~ T H.

7) If g is any finite dimensional Lie algebra the there exists a connected finite
dimensional Lie groug+ with g as its Lie algebra i.eg ~ 7.G.

2.4. Infinite Dimensional Examples
24.1. TheGeneral Linear Group

Let V be a Banach space arddV, V') the space of bounded linear operators
A:V — V. ThenL(V,V) is a Banach space with the operator ndfd|| =
sup|z<1 [[A(z)| and the grous = GL(V, V) of invertible elements is open in
L(V,V). SOGL(V,V) is a smooth Lie group withu(f,g) = fog, v(f) =
f~le = idy. Its Lie algebra isy = L(V,V) with the commutator bracket
[A, B] = AB — BA and exponential magxp A = ¢”.

2.4.2. Abédlian Gauge Groupswith Application

Let M be finite dimensional manifold an@d = C*° (M) with u(f,g9) = f + g
and v(f) = —f, e = 0. This is an infinite dimensional (abelian) vector group.
The Lie algebra iy = T,C>°(M) ~ C°°(M), with trivial bracket[¢,n] = 0
(abelian) and exponential magp = id : C>*°(M) — C*°(M). This is aC>°-
Frechet Lie group (vector group). We can norm-completg M ) with respect to
theC*-norm,k < oo, and obtain the Banach Lie grodpy (M), or with respect to

1 . . .
the H*-Sobolev norms > 5 dim M, and obtain the Hilbert Lie groupl*(M).

For example, if(M, g) is a Riemannian manifold with Levi-Civita connection
V the H*(M) is the completion ofC>°(M) with respect to the nornjf||s =

(fM 25:1 |sz|g2g dUOlz(Q))l/z < 00.

Application: Maxwell’s Equations

Let E, B be the electric and magnetic fields respectively. Then the vacuum
Maxwell equations are

E = curl B, B = —curlE, divB =0, divE = p. (3)

Let V be the space of vector fields (potentials) ®hand the phase spade =
TV =V x V* 5 (A, E), with the L? pairing (A, E) = [ A(z)E(x)dz. The
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canonical Poisson bracket fét H : P — R is given by

0FOH O6HOF
{F’H}(A’E)/<ﬁ5—E_5—A§_E> 4
The canonical Hamilton equations ¢h= T*V are
Y . 0H
=5 Eeosa ©)

With the Hamiltonian (energyH (A, E) = = f lcurl A2 +|E|?)dx and B :

. . H
—curl A we get divB = —div curl A=0 and Hamlltons equationb= g—E =F =
B=—cul Eandf = — 22 — _curl curld = curlB. These are the first three
of Maxwells’ equations, the fourth equation div= p is obtained from gauge
symmetry and reduction.
Gaugeinvariance: The Lie groupG = C*(R?) actsonV by p- A = A+ Vo
(p € G, A € V). We lift this action toP = V x V* as followsy - (A, E) =
(A + Vo, E). The HamiltonianH is G invariant and has a momentum map
J:V xV* — g*given by J(A, E) = div E. We identify the dual of the Lie
algebrag* with charge densities oR?. The reduced phase space forc g
becomesP, = J~1(p)/G = {(F, B) divE = p,divB = 0} and the reduced

Hamiltonian become#,(E, B) = —f |E|?+|B|?)dx . Computing the reduced
Poisson bracket ofy, we get

oF 0H oH oF
) (6)

{F7H}P(EﬂB)_/(5E lﬁ_ﬁ IE

Now Hamilton’s equations on the reduced phadjespace becom&axwell’s
equations

E=curlB, B=—curlE

F={FH,), < 7
{F Hy by {divB:O, divE = p. @

2.4.3. Loop Groups

Let M be a finite dimensional manifold agd= C>°(M,R\{0}) with u(f,g) =
frgandv(f) = f~1, e =1.C*(M,R\{0}) is open inC>=(M,R). If M is com-
pact thenC*(M,R\{0}) is a Banach Lie group fok < oo and H*(M,R\{0})
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(diffeomorphisms ofH* Sobolev class) is closed under multiplicationsif>

% dim M. ThenH?*(M,R\{0}) is a Hilbert Lie group.

As a generalization we replad — {0} by any finite dimensional Lie grou

with Lie algebrag. ThenG = C*(M, G) with pointwise defined multiplication

and inversion, (i.e. fof,g € G,x € M, p(f,g)(x) = f(z)-g(x) andv(f)(x) =
f~1(z)) is a Banach Lie group with Lie algebge= C*(M, g) where the bracket

is again defined pointwisg, n]g(z) = [£(z),n(z)]g for§,n € g,z € M .

The exponential mafixp : g = C*(M,9) — G = C*(M,G) is given by

Exp (§) = exp o&, whereexp : g — G is the finite dimensional exponential map.

In this caseExp is a local diffeomorphism.

Special case: If M = S! the circle therGg = C*(S', G) = L¥(G) is known as

the loop group and = C*(S', g) = [¥(g) its loop algebra, see [31] for details.
Applications. These infinite dimensional Lie groups have wide applications in
gauge theories and quantum field theory. Their Lie algebras and their representa-
tion theory play an important role to affine Lie algebras, Kac—Moody Lie algebras
(central extensions), vertex algebras, completely integrable systems and soliton
equations (Toda, KdV, KP equations).

3. Diffeomorphism groups

3.1. Overview of Diff (M)

Diffeomorphism groups and their subgroups provide an important and wide range
of examples of infinite dimensional Lie groups with very interesting applications
to mathematical physics. Létf be a smooth manifold, and consider

Diff(M) ={f: M — M ; f diffeomorphism}. (8)

3.1.1. TheAlgebraic Structure of Diff (M)

Diff (M) is a group with composition as group operation
p = Diff (M) x Diff (M) — Diff (M), p(f,9) = foyg ©)

and inversion
v : Diff (M) — Diff (M) , v(f) = f~L. (10)

The unit element is the identity mag = id; : M — M. We callDiff (M) the
diffeomorphism group of M. There are very interesting algebraic properties like
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cohomologies, isomorphy types, simplicity ect. studied mainly by A. Banyaga in
the 1970’s, [5]. We concentrate here on the geometric structures and its applica-
tions.

3.1.2. Geometric Structure of Diff (M)

We investigate the topology, the manifold structure and global analysis on
Diff (M). One of the main question is, in what sens®iff (M) aLiegroup?
For different types of diffeomorphisms we will obtain different structures:
e C* k < oo diffeomorphisms= Diff*(M) is a Banach manifold (Palais
[30], Omori [28]).
e (' diffeomorphisms=- Diff>*(M) is a Frechet manifold (Omori [28], Schmid
[35)).
e H* SobolevH* diffeomorphims,f is H* iff in any local chart all derivatives
of f up to orders are square integrable, > %dim M = Diff*(M) is
a Hilbert manifold (Ebin—Marsden[13], Ratiu—Schmid [32] and Eichhorn—
Schmid [15]).
In a nut shell we will prove the following result:

Theorem 1. Diff*(M) isa smooth infinite dimensional manifold and a Lie group
in the following sense: The group multiplication . is C* as a map
p: DIff* TR (M) x Diff*(M) — Dift*(M) , u(f,g9) = fog.
Theinversion v is C* asa map
v : Diff*s** (M) — Diff* (M), v(f) = fL
Note that the group operations amet smooth between the same spaces, i.e. if
k = 0 they are only continuous. In order to obtain smoothness to some degree

one must change the space to that degrees As co we obtainDiff*°* (M) =
lim Diff*(M) as inverse limit a “Frechet Lie group” callétH Lie group (Inverse

S
Limit of Hilbert Lie groups). We give the exact definition and properties below.

3.2. TheManifold Structureon C (M, M)

We'll see that the diffeomorphism grodpiff (A1) is an open set of the manifold
of all mapsC(M, M). So we first need to construct a manifold structure on the
spaces of map§> (M, M), C*(M, M) andC*(M, M).
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Let M be a compact and/ any finite dimensional manifold and consider
C(M,N)={f:M — N; fdifferentiable}. (11)

We first consider two different manifoldd/ and N to make the construction
clearer, later we'll sefv = M. Also we do not specify at the moment the differ-
entiability classC>, C* or H*.

3.2.1. TheParameter Spacesof C(M, N)

In order to construct an infinite dimensional manifold structure on a set like
C(M, N) one first has to find a candidate for the parameter spaces. As for fi-
nite dimensional manifolds, these parameter spaces should be isomorphic to the
tangent spaces at the corresponding points. Heuristically one determines the tan-
gent space as follows:
Letf € C(M,N)andy: I C R — C(M,N) be a curve withy(0) = f. Then
4(0) is a tangent vector t&'(M, N) at the pointf, i.e.
dy(t
0= DO o TyC(M,N). (12)
dt o

We make the following identification to interprét0): For eache € M let~, :
I ¢ R — N be the curve inV defined byy,(t) = v(¢)(z). Thenv,(0) = f(x)
and4,;(0) € Ty, N, i.e. 4,(0) is a tangent vector t&V at the pointf(x). We
identify 4., (0) = 4(0)(z); hence we can regarg0) as a mapy(0) : M — T'N
such thaty(0)(x) € Ty, N. That means/(0) is a vector field along'. With this
motivation we define the tangent space(if)M, N) at the pointf € C (M, N)
by

TyC(M,N) ={& € C(M,TN); TN o & = [} (13)
wherer,, : TN — N is the canonical projection. We can identifyC' (M, N)
with the spacd’(f*ry) of sections of the pull back bundlgry. This is the
parameter space at the pojfitc C(M, N), i.e. T;C(M,N) = T'(f*7n) which
is an infinite dimensional vector space.
Note, forN = M andf =id : M — M we haveT;yC(M,M) = I'(ty) =
X(M) the space of vector fields oW .
For different differentiability types of : M — N we choose the corresponding
topologies on the vector spacEéf*r,,) as follows:
a) C*°(M, N): The space™(f*r) of C> sections with the unifornC>°-
topology is a Frechet space; i.e. a metrizable topological vector space. This
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topology is defined by the sequence of seminofm§),en

_ je
€l 0<i<p.0<)<p E&IJ) | D&l < o0 (14)

whereg; is the local representative gfc I™°(f*r,) in a chartU; of M. Note
there is no single norm defining this topology, but it is metrizable and complete.

b) C¥(M,N),0 < k < oo: The spacd™(f*r);) of C*-differentiable sections
with the uniformC*-topology is a Banach space with norm

11l = Orélggk €], , with |£|, as above. (15)

1 . .
c)C*(M,N), s > 5 dim M: The spacé™(f*r,;) of H*-Sobolev differentiable
sections is a Hilbert space with inner product

<&n>= m?X/U‘ ( Z Dkfi(x)ka(x)) dz. (16)

0<[k|<s

3.2.2. Local Charts (coordinates) of C (M, M)

Now let N = M in the above construction. We choose a Riemannian metric on
M, which allows us to define a (Riemannian) exponential mgp: TM — M

as follows. For eacl, € T, M there is a unique geodesig throughx whose
tangent vector at is v,, i.e a;(0) = x andd,(0) = v,. Then define

exp,(vy) = ax (1), v, € T, M. 17)

In generakxp,, is a local diffeomorphism from a neighborhood®& 7, M onto
a neighborhood of € M. However, sincél/ is compactexp, is defined on all
of T, M and can be extended to a mayp : TM — M such that the map

Exp:= (tar,exp) : TM — M x M, Exp(v,) = (x,exp,(vy))

is a diffeomorphism from a neighborhod@@(0) of the zero section ifl"M onto
neighborhood/(A) of diagonalA ¢ M x M,

Exp: TM D O(0) ~U(A) C M x M. (18)

We definef : M — M to be close to the identitid : M — M iff graph(f) C
U(A). This defines a neighborhodd(id »,) in C(M, M) by

V(idy) = {f € C(M, M) ; graph(f) C U(A)}. (19)
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We define¢ : M — TM to be close to the zero sectidn: M — TM iff
(M) C O(0). This defines a neighborhodd(0) in X(M) = T, C(M, M) by

W(0) ={£ € C(M, TM); {(M) C O(0)}. (20)

We want to point out thatompactness of M is important. We have the following
lemma:

Lemma2. If 7 : E — M isany vector bundle over M, denote by I'(7) = {¢ :
M — E; 7o¢ = id} the space of sections. Let O C E be an open set of E.
Thentheset T'(O) := {¢ € T'(7) ; £&(M) C O}isopeninI(7) (open in any of
the topologies I'>°, T'*, I"*) if and only if M is compact

From this lemma follows that the neighborho¥d(0) defined above is open in
I(ra) = X(M) = Tia C(M, M).
Define® : V(id py) € C(M, M) — W(0) C X(M) by

O(f) =Exp to(ida, f), f € V(id ). (21)
® is a bijection fromV(id 5;) onto W(0) with inverse
71(&) = prao Expo &, £ € W(0) (22)

wherepry, : M x M — M is the projection onto the second factor.
Therefore we have a chart about the ideniity, on C' (M, M)

O :V(idy) Cc C(M, M) —W(0) C T'(1a). (23)
A similar construction yields charts about afiyc C'(M, M), i.e. there exists
open neighborhood$V; in I'(f*7a) and V¢ in C(M, M) and bijections®; :
V¢ — Wy where®;(g) = EXpJZl o (id s, g) with EXp; = (7p+ a1, expof).
3.2.3. Change of Coordinates:

The change of charts (change of coordinates) for amye C' (M, N) is given by
the map

bpy=By0d; " dp(VrNV,) CT(f*rar) — T(g* i) (24)
which turns out to be

Oy 4(&r) = Exp, ' o Exppo &y (25)
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where Exp = (77«1, expof) and Exp = (74, exp og) are the from Exp in-
duced local diffeomorphisms in the bundlegf* ;) andT'(g*Tas) respectively.
To show that these transition magg , are smooth one needs tlieLemma
(Palais [30]).

Lemma3. (Q-Lemma)LetT: £ — M and 7’ : E/ — M be vector bundles over
M (compact!) andlet © C E beopen. Letw : O C E — FE be a C°-vector
bundle map. Then the induced map

Q, :T(0) CT(r) > T(7'), Qu(§) =woe

isa C*> map, with derivatives D*Q,, = Qgx,,, i.6 D¥Q, (&) = 0%w o &, where
0w denotes the fiber derivative.

Remarks: For the different topologieE>, I'*, T'* we have:

a) I'>°: The differentiability of the mapping,, between the Frechet spaces
I'°°(7) andI'*°(7') is Cg? in the sense of Keller [21].
b) I'*,0 < k < oo: If wis C*® thenQ, : T*(0) c T*(1) — Tk(r') is C°. If
wis CF*P, thenQ,, : TH(O) c Tk (r) — T*(7') is CP.
c) I'!,s > %dimM: If wis C*> thenQ, : I'°(0) C T'¥(r) — I'*(7') is C*°.
If wis SobolevH**t, thenQ), : T'$(O) C (1) — I'*(7') is H".
It follows from the 2-Lemma (3) that the change of chadg, is C*°, because
Dsg =, forw = Exp, ' o Exp; : Of C f*TM — ¢g*TM andw is C*. So
we have the following

Theorem 4. Under the above assumptions C*° (M, M), C*(M, M), 0 < k < oo

and C5(M, M), s > % dim M areinfinite dimensional C*>° Frechet, Banach and
Hilbert manifolds, respectively.

Remark: A similar construction works for the space(M, N), where M is a
compact manifold andV is a Riemannian (not nec. compact) manifold. Again

1 e
C>®(M,N), Ck¥(M,N),0 < k < co andC*(M, N), s > §dimM are infinite
dimensionalC*> Frechet, Banach, Hilbert manifolds.

3.3. TheDiffeomorphism Group Diff (M)

From now on we restrict our attention to the class of Sobdlgwmappings. This
is convenient for physical applications because we are working locally in Hilbert
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spaces. Similar results are true for € 0 < k < oo, case where locally we

have Banach spaces to work with. In these two cases we have the classical inverse
mapping theorem and implicit function theorem. In the cas€*®imappings the
situation is quite different. We have to work locally with Frechet spaces and there
are no easy generalizations of these theorems available; see Hamilton [20], Nash
[27], Moser [26] and Schmid [34].

3.3.1. TheLieGroup Structure of Diff* (M)

Let Diff*(M) denote the set of all diffeomorphisms of Sobolg¥ class onl\.
, : , , 1 ,
This set is well defined it > 3 dim M (which we always assume from now

on). Sof € Diff*(M) if and only if f is bijective andf, f~! : M — M are of
Sobolev clasd7®.
Diff*(M) is a group with continuous group operations

p: Diff*(M) x Diff*(M) — Diff*(M) , u(f,g)=fog
v : Diff(M) — Diff* (M), v(f)=f~!

the neutral elementis=id : M — M. SoDiff*(M) is a topological group.

The question is whether the group operatigrendr are smoothC*™,in order to
define a Lie group structure dpiff*(A/). The answer ifNO! The situation is
more complicated as indicated at the beginning.

Right multiplication: Let g € Diff*(A/). Right multiplication is the magR, :
Diff*(M) — Diff*(M) defined byR,(f) = f o g. It's tangent map (deriva-
tive) at anyf < Diff*(M) is the maply R, : TyDiff*(M) — TpoaDiff*(M) :
TrRy(&f) = &f 0 g. SOT Ry = Ry, thereforeR, is C* for any g € Diff*(M).
Left multiplication: Let g € Diff*(M). Left multiplication is the mapl, :
Diff*(M) — Diff*(M) : Ly(f) = g o f. Itis tangent map (derivative) &t €
Diﬁs(M) is the mapTng : TfDiﬁs(M) — gofDiﬁs(M) : Tng(ff) =Tgo
&s. ThereforeT'Ly = Ly, Butif g is H® thenTg is H*~! thereforeL, :
Diff* (M) — Diff*(M) is C* for any g € Diff*™*(M), (Q-Lemma).
Together we get: The group multiplicatignis C* as a map

2 DiffstR (M) x Diff$ (M) — Diff*(M). (26)

Note that fork = 0 = the multiplication is only continuous between the same
spaceDiff*(M).
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Similarly, the group inversiom is C* as a map
v : Diff*** (A1) — Diff* (M) (27)
andk = 0 = the inversion is only continuous between the same sgad&$\/ ).

3.3.2. ThelLieAlgebra of Diff*(M)

Recall that for a finite dimensional Lie grodp, the Lie algebra structure qre

T.G (e=identity) is defined as follows: fof,n € T.G define the corresponding
left invariant vector fieldsX¢(g) = T.Ly(§) , X,(9) == TeLy(n) , g € G.
Then define the Lie bracket agn by [¢,7] := [X¢, X,)](e), where[ X, X,)| =
XX, — X, X, is the commutator bracket of; and X, which is again a left
invariant vector field. Instead of left invariant vector fields one could use right
invariant ones and would get anti-isomorphic Lie algebras.

For the diffeomorphism grou@ = Diff* (M) right multiplications iSC> whereas
left multiplication is only continuous, therefore we usght invariant vector fields
rather then left invariant ones to define the Lie algepief G = Diff’(M). A
right invariant vector field omift* (M) is a mapy” : Dift*(M) — TDiff* (M) =
C*(M,TM) such thaty'(f) € TyDiff*(M), i.e Tps o X(f) = f is a vector field
alongf, andR;Y =Y, g € Diff*(M). Let¢ € Tq, Diff "' (M) = X5 (M)
be anH**!-vector fields onM, and define the right invariant vector field on
Dift*(M) by

Ye(f) :==TRy(§) =&o f, [ € Diff*(M). (28)
Ye is aC?! vector field onDiff* (M) if ¢ € X5T1(M). The brackefYz, Y;] of two
right invariant vector fields is given by

Ve, Yyl(idar) = ~[€,] , &n € X (M) (29)
where the brackei¢, n] is the commutator bracket of the vector fieldsand
nonM,ie. [£n] = &n—né I &n e XTHM) the [¢,n] € X5(M),
hence[Ye, Y, ](id 1) € X*(M) and[Ye,Y,] is a right invariantC? vector field
on Diff*(M). So the ordinary Lie brackef, n| = £&n — n¢ of vector fields onV/
is the bracket on the Lie algebga= T34, Diff**! (M) but g is not closed under
the bracket as we loose derivatives! This type of Lie algebra structure is called
“ILH Lie algebra” which we will define below.

3.3.3. TheExponential Mapexp:g — G

Recall for a finite dimensional Lie grou@ with Lie algebrag = T.G the ex-
ponential mapexp : g — G is defined as follows: Fo¢ € g let X; be the
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corresponding left invariant vector field agg(t) its integral curve at € G,
i.e. ¢ : R — G smooth,p¢(0) = e and ¢¢(t) = Xe(pe(t)). Now define
exp(§) := ¢¢(1). Then the mapxp is a local diffeomorphism from a neigh-
borhood of zero ing onto a neighborhood of in GG. This is true only in finite
dimensions!

For the Lie groups = Diff* (M) with Lie algebrag =T, Diff*™! (M) = X+ (M)
the exponential map

exp : T.Diff* (M) = %°(M) — Diff*(M) (30)

is given as follows: fort € X**1(M) let ¢, € Diff*(M) be its flow. Then

the curve¢(t) = ¢, is an integral curve of the right invariant vector fielg

on Diff*(M) throughe = id ;. Indeed,(0) = ¢o = id s, and forx €

M, i) = CLUE A ) = (o a)@) =
t=0 | t=0 .

TRy, (x) = Ye(o(t))(x). Hencep(t) = Ye(¢r) andp(0) = £. Now define

exp(§) = ¢1. (32)

Thenexp : X%(M) — Diff*(M) is continuous, bubot C*. Moreoverexp is not
locally surjective, i.eexp does not map onto any neighborhood of the identity in
Diff*(M). This is the reason we cannot use this exponential map to define directly
charts onDiff*(A/). In other words, the diffeomorphism grogp= Diff*(M)

is not generated by exponentiating vector fields. In every neighborhoat) of
there are diffeomorphisms which are not part of the flow of any vector field, in
short

Diff* (M) # exp X5(M).

Summarizing we have the following “Lie group” structureloift® (A/):

i) multiplication y : Diff*** (M) x Diff*(M) — Diff*(M) , is C*

ii) inversion v : Diff**t*(M) — Diff*(M) , is C*

iii) the Lie bracket foré, n € X*T1(M) is only H* i.e. [¢,n] € X5(M)

iv) the exponential mapxp : X**1(M) — Diff*(M) is not locally onto.

This non-classical “Lie group” structure 8fiff*( M) leads to the definition of so
called ILH-Lie groups (Inverse Limit of Hilbert).

34. ILH-LieGroupsand ILH-Lie Algebras

Definition 5. A collection of groups {G>,G* ; s > s¢} is called an ILH-Lie
group (nverse Limit of Hilbert) if:
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i) each G* is a Hilbert manifold of class C*(*) modeled on a Hilbert space E*,
and k(s) — oo ass — oo

i) for each s > sy there are linear continuous, dense inclusions FF+! — E*
and dense inclusions of class C*() . G5! — G

i) each GG* isatopological group and G> = lim G* isatopological group with

the inverse limit topology

iv) if (U*, %, E%) isachart of G° then (U* N G*, ¢*|ysnqe, EY) isachart for G*
forallt > s

v) themultiplication 1 : G® x G — G™ extendstoa C* map 11 : G5tF x G° —
G*® for all s suchthat £ < k(s)

vi) theinversion v : G* — G extendsto a C* map v : G°tF — G*, for all s
such that k£ < k(s)

vii) the right multiplication R, by g € G* extendstoa C*®*) map R, : G* — G*.

Definition 6. A collection of vector spaces {g™,g°; s > so} iscalled an ILH-
Lie algebraif:

i) each g° is a Hilbert space and for each s > s, there are linear, continuous,
denseinclusions g°t! — g° and g>®° = lim g* is a Frechet space with the inverse

S

limit topology

ii) there exist bilinear, continuous, antisymmetric maps [, | : g2 x gt*? —
gmin(st) for all s,t > sy, which satisfy the Jacobi identity on g”(s:t7) for
elementsin g5t x gtt4 x g" .

Theorem 7. Let {G*°, G* ; s > sy} be and ILH-Lie group and for each s let
g° := T.G® and g*° = lim g°. Then {g*°, g°; s > so} isthe ILH-Lie algebra of

the ILH Lie group {GOO,SGS ;S >80}
Example: Diffeomorphism Groups
{Diff>* (M), Diff*(M) ; s > %dimM}
is an ILH-Lie group with ILH-Lie algebra
{X*°(M), X°(M) ; s > %dimM}

wherek(s) = oo for all s.

Remarks:
1) The Nash—Moser implicit function theorem works for ILH!
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2) C*-diffeomorphism groups) < k < oco.

For the grourDiffk(M) of diffeomorphisms of clas€* we have a similar situa-

tion as in the casBiff* (M) of H* diffeomorphisms discussed aboueiff* (/)

is a Banach manifold and one defines the notion of ILB (Inverse Limit of Banach)—
Lie groups and ILB-Lie algebras similar to ILH. Theiff> (M), Dift*(M) ;

k € N} is an ILB Lie group with ILB-Lie algebrg X>° (M), X*(M) ; k € N}.

3) C*°-diffeomorphisms.

For the groupDiff>° (M) of diffeomorphisms of clas€*° one can take an en-
tirely different point of view. In thelZ* or C* case the major role is played by the
tower of Hilbert or Banach manifoldBiff* (/) and Diff*(M) respectively and
Diff>°(M) is only considered as limiting topological group. In contrast to this one
can studyDiff> (M) directly as Frechet manifold and Frechet Lie group. For this
to make sense one needs a differential calculus in Frechet spaces. Unfortunately,
there are many inequivalent ways to define this concept, and no matter what dif-
ferential calculus one uses, one is always faced with pathologies in the theory of
Frechet manifolds; e.g. the classical inverse function theorem and implicit func-
tion theorem do not hold. This point of view of differentiablity is developed in
Keller [21], Hamilton [20] and Schmid [34].

3.5. Gauge Groups

The diffeomorphism subgroups that arise in gauge theories as gauge groups be-
have nicely because they are isomorphic to subgroups of loop groups which are
not only ILH-Lie groups but actually Hilbert Lie groups.

Letw : P — M be a principalG bundle withG a finite dimensional Lie group
(structure group) acting oR from therightp ¢ P, g€ G, p-g € P.

TheGauge group G is the group of gauge transformations defined by

G ={¢ € Diff**(P); ¢(p-g) =d(p)-g and =(é(p)) =n(p)}. (32)

G is a group under composition, hence a subgroup of the diffeomorphism group
Diff*°(P). Since a gauge transformatigne G preserves fibers we can realize
each suchp € G via ¢(p) = p- 7(p) wherer : P — G satisfiesr(p - g) =

g l7(p)g,forp € P,g € G. Let

Gau(P) ={r € C*(P,G); 7(p-g9) = g~ '7(p)g}. (33)

Gau(P) is a group under pointwise multiplication, hence a subgroup of the loop
group C*>(P,G) (see Section 2.4.3), which extends to a Hilbert Lie group if
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equipped with theZ*-Sobolev topology. We givé&/au(P) the induced topology
and extend it to a Hilbert Lie group denoted @y« (P). Another interpretation
is thatGau(P) is isomorphic toC>°(Ad P) the space of sections of the associ-
ated vector bundlé\d (P) = P xg G. Completed in theZ® Sobolev topology
we getGau®(P) ~ H*(Ad P).

Let g denote the Lie algebra @f. Then thelLie algebra gau(P) of Gau(P) is a
subalgebra of the loop algebf# (P, g) under pointwise bracket ig, the finite
dimensional the Lie algebra of; i.e. for any¢,n € H*(P, g) the bracket is de-
fined by (£, n]gaur)(P) = [£(p), n(P)]g » p € P. Thengau®(P) is the subalgebra
of Ad-invariantg-valued functions orP, i.e.

gau(P) ={{ € C™(P,g); {(p-g9) = Ad ;1&(p)}. (34)

The Lie algebrdie G (running out of symbols) of the gauge grogpis the Lie
subalgebra oft>°(P) consisting of allG-invariant vertical vector field on P,
ie.

eG={X eX*(P); R'’X=X, X(p)cg geG, peP} (35)

with commutator brackdtX;, Xs] = X1 Xo — X0 X € lie G.

On the other hand, the Lie algebra@®(Ad P)is C*°(ad (P)) — the space of
sections of the associated vector burilé P) = (P xgg) — M with pointwise
bracket.

We have three versions of gauge grogpgrau(P) andC>(Ad P). They are all
group isomorphic. There is a natural group isomorphisau(P) — G : 7 — ¢
defined byo(p) = p- 7(p), p € P which preserves the produgt- 75 — ¢ o
¢9. ldentifying G with Gau(P) we can avoid the troubles with diffeomorphism
groups and we can extedto a Hilbert Lie group?. SoG* is actually a Hilbert
Lie group in the classical sense, i.e. the group operation§-&reAlso the three
Lie algebradie G, gau(P) andC*°(ad P) are canonically isomorphic. Indeed,
for s € C*°(ad P) define€ € gau(P) £ : P — gby&(p-a) :== Ad,-1&(p); and
for £ € gau(P) defines € C*°(ad P) by s(7(p)) := [p,&(p)].

On the other hand, faf € gau(P) defineZ; € lie G by

z(p) = LLOPED) | )

i.e. Z¢ is the fundamental vector field of, generated by < g. Z is invariant
iff {(p-g) = Ad g—1&(p).
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To topologizelie G we completeC*>(ad P) in the H*-Sobolev norm. Ifs >

1 . C .

3 dim M thenlie G° ~ H®(ad P) ~ gau®(P) are isomorphic Hilbert Lie alge-
bras.

There is a natural exponential map Exgau(P) — Gau(P), which is a local
diffeomorphism. Lekexp : g — G be the finite dimensional exponential map.
Then define

Exp: gau’(P) — Gauw’(P) : (EXp&)(p) = exp(§(p)) , & € gau®(P). (36)
Orinterms ofG, Exp: lie G° — G* : (EXp&)(p) =p-exp(&p).

Proposition 8. For s > %dimM
G° ~ Gau®’(P) ~ H*(Ad P)
isa smooth Hilbert Lie group with Lie algebra
lie G° ~ gau®(P) ~ H*(ad P)
and smooth exponential map, which isa local diffeomorphism

Exp : lie G* — G : (Exp&)(p) = p - exp(§(p))-

4. Subgroups of Diffeomorphism Groups and Applications

4.1. Volume Preserving Diffeomor phisms and Fluid Dynamics

In this section we show that the Euler equations of fluid dynamics are equivalent
to the geodesic equations on the group of volume preserving diffeomorphisms as
well as existence and uniqueness of solutions [13].

Let M be a compact manifoldlim M = n andu a volume form onM i.e. is a
nondegenerate-forms with u(x) # 0,Vx € M. Let

Diff(M) = {f € Diff*(M) 5 f*u = p} (37)

be the set of volume preservirtg® diffeomorphisms onV/. Since the pull back
satisfies(f o g)* = g* o f* it follows thatDiff}, (M) C Diff*(M) is a subgroup.
IsitaLlE SUBGROUP in the sense of ILH-Lie groups?

Let’s first look for a candidate for the corresponding Lie algebra, i.e. the tangent
space at the identity.Diff}, (M). Let§ € X*(M) with flow ¢; € Diff},(M).
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. . dey . N
Sincey; p = p it follows that0 = %‘t:o = L¢p, the Lie derivative of: along

¢. Recall that the divergence diwf a vector field is defined byl p = (div &),
S0 L¢p = 0 < div§ = 0 and we get

T.Diffs (M) = X5,(M) = {¢€ € X*(M); divé = 0} (38)

the space of divergence free (incompressible) vector field&/osincel ,; =
[L¢, Ly] we conclude thak, (M) C X°(M) is a Lie subalgebra.

How do we show thaDiff}, (/) is a Lie subgroup oDiff*(M)? Recall in the
classical (finite dimensional) case we have the following fundamental facts:

e For any finite dimensional Lie algebgthere is a finite dimensional Lie
groupG for which g is the Lie algebra, i.eg ~ T.G. This is false in infinite
dimensions!

e Any closed subgroup of a finite dimensional Lie group is a Lie subgroup.
This is false in infinite dimension!

Nevertheless the following was shown by Ebin and Marsden [13]
Theorem 9. Diff}, (M) isa closed smooth submanifold of Diff*(M).

Proof: (idea) The difficulty is to prove thdbiff;, (1/) is a smooth manifold. Let

us illustrate the proof thabiff},(1/) is a closed submanifold dbiff*(M). This
proof is typical in the theory of diffeomorphism groups, so we outline the basic
ideas, which are simple and are based on two key facts:

Let Q"(M) denote the space afforms onM and consider the map
F, : Diff*(M) — Q" (M) : Fu(f) = f"p. (39)

Then one shows that for a small enough subspageof Q" (M) this map is a

C*> submersion. Then for fixed € [u], we haveDiff;, (M) = F~'(u), ie.

Diff}, (M) is the inverse se image of one point under a submersion, hence a closed
submanifold and “Lie subgroup”.

The first step uses the Hodge decomposition theorem to ensure that the affine
spaceu], := p + d(HsT(Q"~1(M)) is a closed subspace (2" (M)). We

denote byH*(Q*(M)) the space of exteride-forms on)M of Sobolev classP.

Define the mapF), : Diff*(M) — [u]s , Fu(f) == f*(n). ThenE, is well
defined, i.e.F,,(f) € [u]s is in the right space. Indeed by the change of variable
theorem we havd,,(f*n — p) = 0, so that by the DeRham theorem we get
f*u — p = da for somea € HS=H(Q"1(M)).



76 Rudolf Schmid

The second step uses thielemma to prove thaf;, is a C> submersion. The
derivative ofF}, is obtained as

TyFu(&r) = f*(Lep), & € TyDiff*(M) (40)

where¢ = &po f~1 € X5(M). HenceF, isC®. For f = e =id py : T.F,(£) =
Lep = digp + iedp but sincep is a volume element o/, dp = 0. Moreovery
is nondegenerate, hence the map

£ € X5 (M) — igp e H*(Q") (41)

is an isomorphismi{ denotes the inner product). Therefdid, is onto, hence
F, is a submersion an8, ! (1) = Diff?,(M) is a closed submanifold @#iff* (7).

Note that this proof gives the charts ®iff;, (1) only implicitly. Omori [28]
showed the following

1 . . .
Theorem 10. {Diff7 (M), Diff;, (M) ; s > 5 dim M} isan ILH Liegroup with

{20 (M), X5,(M) 5 5> %dimM} its ILH Lie algebra.

Application to Fluid Dynamics: The main application obiff},(1/) is based on

the fact that it is the configuration space of incompressible, homogeneous, ideal
fluids. Let M be a compact orientable, finite dimensional Riemannian manifold
and letu be the Riemannian volume. Thénff} (M) admits the smooth weak
Riemannian metric as follows: Fen € M let <, >,, be the inner product on

T, M. Letn € Diff} (M) and X, Y € T;Diff},(M). ThenX (m) andY (m) are

in T},(my M. The inner product on each tangent sp&geiff;, (1) is defined as

(xYM:A/@memn%mwmm X,Y € T,Diff5(M).  (42)

With this weak Riemannian metric obiff;,(1/) we can talk about geodesics

on Diff},(M). It turns out that this metric is right invariant and that its spray is
smooth. This remarkable fact found by Ebin and Marsden [13] has as consequence
the local existence and uniqueness of geodesicBifi)(M/) and their smooth
dependence on initial conditions. Moreoverljifis an integral curve of the spray
onDiff}, (M) andn;, = 7ar oV i.e. 7 = V; then

vy = Vot (43)

satisfies thé&culer equations:

% L Vo= —Vp, divo=0 (44)
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whereV, is the covariant derivative of the metric dri. The time dependent vec-

tor field v; on M represents the Eulerian (or spatial) velocity of the fluid, whereas
the solutionV; of the geodesic spray equation represents the material velocity of
the fluid. Incompressibility of the flow implies thgt € Diff},(M). In this way,

the well-posedness of the Euler equations is equivalent to the local existence and
uniqueness of solutions for the geodesic sprayifj,(1/). The dependence of

the solution of the Euler equations on initial conditions is continuous, because the
pull backv; = V; o 77;1 involves right composition with an inverse as well as left
translation and both operations are continuous but not smooth.

Theorem 11. (Ebin—Marsden [13])
e o satisfies the Euler equations «> 7, is a geodesic on Diff}, (M)
e existence of C>° geodesics on Diff}, (A1) for small ¢
¢ the Euler equations has unique solution for small ¢, depending C* on the
initial condition wy.

The relationship; = Vton;1 represents the momentum map of the right action of
the groupDift, (M) on the weak symplectic manifoltiDiff}, (A1), the symplectic
form being induced naturally by the weak metric from the canonical symplectic
structure on the cotangent bundfeDiff, ().

We (Eichhorn and Schmid [15]) proved the same theorem for the topological Euler
equation on open (non compact) manifolds (see last chapter).

4.2. Canonical Transformations (Symplectomor phisms) and Plasma Physics

In this section we show that the Maxwell-Vlasov equations of plasma physics
are an infinite dimensional Hamiltons system on a space involving the diffeomor-
phism subgroup of canonical transformations.

Let M be a compact manifoldlim M = 2n, andw be a symplectic structurk/,
i.e.w is a nondegenerate closetl(= 0) 2-form onM. Consider

Diff} (M) = {f € Diff*(M) ; ffw =w} (45)

the group ofsymplectomorphisms, or canonical transformations, aW. Using
similar arguments as for volume preserving diffeomorphisms it is shown that

Theorem 12. {Diftf3’ (M), Diff](M); s > n} is an ILH-Lie subgroup of the
ILH-Liegroup {Diff** (M), Diff*(M); s > n}, with ILH-Liealgebra {XZ° (M),
X, (M);s > n}, where X;, (M) = {¢ € X*(M); Lew = 0} isthe Lie algebra of
locally Hamiltonian H*-vector fields.
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See Ebin—Marsden [13] and Omori [28] for details. Again the chariSidif)( /)

are obtain only implicitly. However, in this case, there is a direct method due to
Weinstein [43] to construct explicit charts using Poincare’s generating functions.
In Schmid [33], [35] it is shown directly using the so calledlifferentiability for
Frechet spaces, thBtff>° (M) is a Frechet manifold and Frechet Lie group with
I'-differentiable group operations.

4.2.1. Application to Plasma Physics

A plasma is a collection of charged particles of various species (electrons, pro-
tons, ect.) moving irR? as a “charged fluid”. For simplicity one assumes that
there is only one species of particles of chaggand massn, and it is useful

to approximate their positions € R3 and velocitiesy by a density function on
phase space which may be a smooth functfém, v,¢). Denote byE(x,t) and
B(z,t) the electric and magnetic fields respectively generated by the motion of
the charged particles. Then the plasma can be described byakeell-VIasov
equations

( Of of | q of _ .
E + v % + %(E + v X B)% = 0 (Boltzman equatlon)
0B
92 _ _curlE
ot cur

oFE .
E:curlB—Jf, where the current densitfy=q [ v f(x,v,t)dv

divE = py, where the charge density py = ¢ [ f(z,v,t)dv

divB = 0.

We think of this system of coupled, non-linear system of evolution equations as
an initial value problem for the variables E and B. The following was shown
by Marsden and Weinstein in 1982, see [25] for a summary.

Theorem 13. The Maxwell-Vlasov equations are an infinite dimensional Hamil-
tonian system, i.e. they can be written in the form

F={F H}

for a certain non-canonical Poisson bracket { , } and some Hamiltonian H.
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Let us outline the ideas of the construction of this Hamiltonian structure, see [25]
and [35] for details.

4.2.2. The Poisson—Vlasov System

We first consider the limit case whefe = 0. Then the Maxwell-Vlasov system
reduces to a single equation of the field variaffle’, v,¢) the Poisson-Vlasov
equation

— 4= - = — =0 (46)

where the scalar potential; is given by A¢; = —p;. One can show that
f(x,v,t) evolves in time by a canonical transformatigrof RS, i.e. f(z,v,t) =
nif(z,v,ty) wheren;, € Diff,,(R) andw is the canonical symplectic form
on RS, If we identify any Hamiltonian vector fieldS,(x,v) on RS with its
Hamiltonian functionh(z,v) : R® — R, we get a Lie algebra isomorphism
g = XX (R%) = C°(R) with [X}, X,] = Xy, o, Wwhere{h, g} is the canonical
Poisson bracket of functions @&f. Moreover, if we identify the dual of this Lie
algebrag* via the L2-pairing < h, f >= [ h(z,v)f(z,v)dzdv with itself g, we
can regard the plasma density g, v) € g* = C°>°(RY).

On the dualy* of any Lie algebrg we have the Lie Poisson bracket for functions
F,G:g* — R, given by the formula

(F.C}(u) = <u,[§—i, %n, neg 47)

where(;—F, Z—G are regarded as elementsgoénd| , | denotes the Lie bracket in

gand(, ) the canonical pairing betwegg andg.
Now a direct computation shows that the Poisson-Vlasov equation (46) is in Lie—

Poisson form org* = C>°(RY) i.e. F = {F, H} with energy
1 ) 1
H(f)= §/mv f(z,v,t)dedv + E/qbfpfdx (48)

and{ , } the Lie-Poisson bracket gii = C*°(R") given by

F6) 0 = [ 1{55.57 s (49)
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4.2.3. The Maxwell Equations

As we discussed in Section 2.4.2, Maxwell's equations
E=curlB, B=—curlE (50)
are canonical Hamilton’s equations @h.4 with respect to the canonical sym-

. I 1 .
plectic structure and the Hamiltonidih(E, B) = 3 J(IE)? +|B|?)dz is the total

field energy. Here the configuration spade= {4 : R® — R3} is the space

of vector potentials ofR* and B = curl A for someA € A. Then we consider
(A, E) € T*A . The invariance of Maxwell’'s equations under the gauge transfor-
mationsA — A + V¢ for any¢ € C°(R3) leads via the reduction procedure to
the two remaining Maxwell equations

divE = p, divB = 0. (51)

4.2.4. The Coupled System: The Maxwell-Vlasov Equations

Combining the Poisson—Vlasov system (46) and the Maxwell equations (50), (51)
we get the Maxwell-Vlasov system. The same symmetry giGtigR%) that

leaves Maxwell's equations invariant, acts on the coupled phase space

T Diff (R x T*A ~ C°°(R%) x T*A. Reducing by this symmetry, one
obtains a reduced phase space with a Poisson structure with respect to which the
Maxwell-Vlasov equations are a Hamiltonian system, i.e in the form

= {F.H} (52)

with the Hamiltonian
H(f,E,B)= /mv f(z,v)dzdv+ = /|B )2dz 4 = /|E )?dz (53)

which is the total energy of the plasma. The noncanonical Poisson bracket on the
reduced phase space turns out to be the following: For any two funckicarsd
G of the field variables f, £, B) we have

5F (5G

(5 e G Y g, (5 010656 araE
6E 6B OE 6B 6E oudf oE avaf )

0 6F 9 G
_|_/fB-<% 5% B 5f>dxdv (54)
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With this Poisson bracket and Hamiltonian (53) the Maxwell-Vlasov equations
are an infinite dimensional Hamiltonian system of the form

F={F H}.

Notice that the coupling of the plasma and electromagnetic fields appears in the
Poisson structure rather then in the Hamiltonian, and it is produced by the action
of the infinite dimensional gauge grodp°(R%) on the uncoupled phase space of
matter and fields.

In this example where a dynamical system of infinitely many degrees of free-
dom (the Maxwell-Vlasov equations) is described as a Hamiltonian system, infi-
nite dimensional Lie groups appear as a configuration space as well as symmetry
groups. Similar structures were found for multifluid plasma, see [25] and refer-
ences therein.

4.3. Contact Transformations on 7* M

This example of a diffeomorphism group plays an important role in our next chap-
ter, where we'll discuss the group of invertible Fourier integral operators.

Let M be a compact manifolddim M = n andT*M its cotangent bundle
with the canonical symplectic structuse= df = > dp; A dg; (locally), where

0 = pidg; is the canonical 1-form ofi* M. We want to study diffeomorphisms
p:T*M — T*M that preserve, i.e ¢*0 = 6. Such a diffeomorphism is
necessarily a lift, i.e. of the formp = T*n for somen € Diff*(M) i.e. ¢ is

just an extended point transformation. To avoid this trivial situation, we delete the
zero section i M and we considei™ M := T*M\{0}. Theny*d = 0 <

*'w =wandy(rta,) = Te(ay) forall 7 > 0,a, € TXM ie. 0 =0 < ¢ is
symplectic and homogeneous of degree one. Consider

Diff§(T* M) = {p € Diff*(T*M) ; f*0 = 6} (55)

the group ofH* contact transformations on7* M. Note thaT*M is not compact,
so we cannot apply our previous constructions to establigfi(7* /) as an ILH
Lie group. Nevertheless we (Ratiu and Schmid [32]) showed the following

Theorem 14. {Diffge(T*M), Diff(T*M) ; s > dim M + 1} isan ILH Lie
group.

Sketch of proof: The main problem is th&t* M is not compact, so our previous
methods do not apply to the full diffeomorphism groDif (7 M). Therefore,



82 Rudolf Schmid

the subgroqﬂ)iffj(T*M) of Diff*(7* M) cannot inherit a submanifold structure
from Diff*(7™* M) as described in Section 4.1.

The main idea is to “makeT*M'compact, that means to pass to the cosphere
bundle of M and show thaDiffy (7™ M) is algebraically isomorphic to the group
of contactH*-transformations (quantomorphisms) on the cosphere bundle.

4.3.1. TheCosphereBundle S(T*M)

The multiplicative groupR,. acts smoothly of™*M by a, — Tag, 7 € Ry,
o, € T*M. This action is free and proper, hence the orbit SpscE M) :=
(T*M)/R, is a smooth manifold, called thesphere bundle of M. Note that
S(T*M) is compact ifM is compact andim S(T* M) = 2n — 1. Moreover, the
canonical projectionr : T7*M — S(T*M) defines a smooth principal fiber bun-
dle with structure grouf® .. There is no canonical contact structure{i™ M ),
i.e. no one forn¥ such thatt*f = 6, but one can construct a whole family of
contact structures by use of global sectiensS(T*M) — T*M , Too = id.

Given such a global sectiom, definef, := o*6. Thend, is an exact contact
1-form onS(T*M), i.e. 6, A (6,)" ! is a volume form onS(7T*M). Note that
™0, # 0 buto is uniquely determined by a functiofy : 7*M — R defined by
o(m(ag)) = folaz)ay ; i.e. f measures the distance from the sectiofhen

™0, = f, - 0. (56)

4.3.2. Contact Transformationson S (7™ M)

Letn € Diff5(7*M) ando : S(T*M) — T*M is a fixed section. Sincg'd = 6,
n is homogeneous degree +1, there is a unique diffeomorphismy(7*M) —

S(T*M) defined byp o 7 = 7 o 7. Write ¢ = 7 o —n o o, indeed fora, €

M, p(r(ay)) = 7 (finw(w(aw))) . (%nm(%) - am) — r(nlaw)).
Computet, = o0, = @£y 6) = 0*(fr 0 1) <10 =
o*(fs o %) c0%0 = (f,o0 % 00)0, = hy - 0, Whereh, := f, o % oo.

This means that the pajfip, h, ) is acontact transformation for 6, i.e. p*0, =
hy0s, Whereh, : S(T*M) — R,..

So, to each with n*6 = 6, there corresponds a unique contact transformation
(p, h) with ©*0, = hé,. Vice versa, for a paifyp, h) with ©*6, = h, we define
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nbyn = (copom)/(homr)f,. Thenn*d = 6 and the mapg — (p,h) and

(¢, h) — n are inverses of each other.

The composition corresponds to the semidirect product in the following way: let
m < (e1,h1) andne < (g2, he), thenn o ny < (p1,h1) - (92, h2) = (10

@2, ha - (h1op2)). The above map is a group isomorphisniofty (7 M) with

the semidirect produdiff* S(T* M) b< C*(S(T*M),R), where

C*(S(T*M),R) is regarded as a multiplicative group.

Theorem 15. (Ratiu—Schmid[32])
1) The group of contact transformations

Con,(S(T*M)) =
{(,h) € Diff*S(T*M) >< C*(S(T*M),R) ; ©*0, = hf,}

isaclosed H* Lie subgroup of the semidirect product
Dift*S(T* M) v< C*(S(T* M), R).
2) Dift3(T™ M) isisomorphic (as group) to Cong (S(T*M)).

Remarks: 1) Since the cosphere bund¥7™ M) is compact, one can apply the
standard methods to show th@bn®(S(7*M)) is a closed submanifold of

Diff* S(T* M )< C*(S(T*M).

2) For two different sections andr we have an isomorphis@or. (S(T*M)) ~
Con(S(T*M)), hence the manifold structure ®iff;(7™ M) is independent of
the choice of the section.

4.3.3. TheCorresponding Lie Algebras

The Lie algebra oDiff*S(T*M)>< C*(S(T*M),R) is the semidirect product
X5(S(T*M))p< C*(S(T*M),R) with induced bracket

(X, 1), (Y, 9)] = (X, Y], X(9) = Y(f))- (57)
The Lie algebra o€on.(S(T*M)) is
cong (S(T*M))={(Y, g) € X*(S(T"M)) >< C*(S(T" M), R); Ly, =9g0o}
(58)

the space of infinitesimal contact transformations.

On the other hand, the Lie algebra Biffj(7* M) is X5(S(T*M)) = {Y <
X5(S(T*M)); Ly8 =0}. Now Ly6 = 0 < Y is a globally Hamiltonian vector
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field, homogeneous of degréei.e. Y = Yy andH is homogeneous of degree 1.
H is determined uniquely by = 6(Y).
LetCs,, (T*M) = {H € C*(T*M,R) ; H homogeneous degree 1}.
Cs (T*M)is a Lie algebra with canonical Poisson bracket
OF OH O0H0F
FHY =) ——Z——
U H) Z dq; Op;  0q; Op;

and is isomorphic to the Lie algebrﬁ(T*M) with the commutator bracket
(X, Y]=XY -YX.

Theorem 16. (Ratiu—Schmid [32]he groups Diff5 (7 M) and Cong (S (T* M)

areisomorphic asILH-Liegroupswithisomorphic ILH-Liealgebras X5 (7™ M) =
cons(S(T*M)) = C; (T*M).

hom

~—

Remarks: 1) We will see in the next section that elementsDoff5(7* M) rep-
resent phase functions of Fourier integral operators and elemegs, of 7™ M)
are interpreted as symbols of pseudodifferential operators.

2) These spaces also play a role in quantization.

4.4. Globally Hamiltonian Vector Fields

There is another interesting subgroup of the diffeomorphism gioiff) (1)
whose Lie algebra consists of gliobally Hamiltonian vector fields.

Let (M, w) be acompact symplectic manifold and denotéHy()M ) the space of
globally Hamitonian vector fields o/, i.e. X € H>*(M) iff X = Xy with H :
M — Randw(Xpy,Y) = dH - Y or equivalentlyix,w = dH. We have the
relation

Xpay = [Xu, XF| (59)
henceH> (M) is a Lie subalgebra af>°(M). The question is: Is there a corre-
sponding Lie group?
We have seen thadiff] (M) is an ILH-Lie subgroup oDiff* (M) with ILH Lie
algebraxZ® (M) the locally Hamiltonian vector fields. It was shown by Calabi [9]
and Arnold [4] that the commutator algele&° (M), X° (M )] = H>*(M ) is the
Lie algebra of globally Hamiltonian vector fields.

Recall: If g, h are Lie algebras, then their commutator algelré] is generated
by [X,Y] with X € g, Y € h. If G, H are Lie groups, then their commutator
group|G, H] is generated byhg~'h~! with g € G,h € H.

Let Diff 3’ (M) denote the identity component Diff] (M ).
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Theorem 17. (Ratiu—Schmid [32]) The commutator subgroup [Diffy (M),
DiffS(M)o] is a simple, closed ILH-Lie subgroup of Diff (M), with ILH Lie
algebra

HX (M) =[x (M), X5 (M)].

Proof: (for details see Banyaga [5] and Calabi [9]) Consider the map
S : DiffstH(M)g — HY(M,R), S(h) = [A(hy))]

whereh, is a symplectic homotopy frorh to id j; with the locally Hamiltonian

vector fieldX; = % o h; . Define A(hy) = fol i(X:)wdt which is a closed

H**1-one form defining a cocycle if* (M, R). One shows the following:

e S is a group homomorphism and Keis perfect. H'(M,R) is abelian,
therefore Kef = [Diff> (M), Diff " (M)o].

e Sis aC*> submersion, therefore K&iis a closed**!-Lie subgroup of
Diff$H (M),

4.5. The Group of Quantomorphisms

Let (M,0) be a compact exact contact manifold, i.8/ is smoothdim M =
(2n+1) andd is a 1-form such that A (d#)" is a volume element of/. Consider

Diff5(M) = {n € Diff*(M) ; n*0 = 6} (60)

called thequantomor phism group of M.

The characteristic bundle @ is given byRyy = {v € TM ; i,d0 = 0}. It
is integrable and one-dimensional. The Reeb vector fieltf Ry is the unique
section of the line bundld?yy defined byigf = 1 andigdf = 0. In local
coordinates(z?, ..., 2", y!,...,y", t), we haved) = 3" | yida’ + dt andE =
%. Let Ry = {v € TM ; 6(v) = 0} be the characteristic bundle 8f Then
dim Ry = 2n andTM = Rqy © Ry, hence%S(M) = %S(Rdg) D XS(RQ).

The leaves of the foliatiotF defined by the line bundl&g, (circle action) are the
integral curves of2. Then the quotient manifold’ = M /F is a smooth manifold
which carries a symplectic structute such that the projectiom : M — N
satisfiest*w = df. So,0 becomes the connection 1-form on this principal circle
bundle whose horizontal subbundleRg andw is its curvature 2-form. Thus/
is thequantizing manifold of N whose automorphism groupiff; (M) = {n €
Diff*(M) ; n*6 = 0} is called thequantomor phism group of (M, 0).



86 Rudolf Schmid

Let C°(N) = {¢ € Diff(N) ; Hyoy = H, = horizontal transport along ~}.
We have the following reformulation of Kostant’s prequantization theorem

Theorem 18. (Kostant [22]) The following sequence of groups is exact

0 — S* L Diff§(M) 25 K5(N) — 0

and the following sequence of Lie algebras is exact
0 — R L x5(M) 2 H(N) — 0.

We showed that this is an exact sequence of ILH-Lie groups with corresponding
ILH-Lie algebras i.e.

Theorem 19. (Ratiu—Schmid [32])The quantomor phism group Diffy° (M) isan
ILH principal circle bundle over the ILH-Lie group X>° (V) with ILH Lie algebra
X5(M) ={X € X*(M); Lx6 = 0} of infinitesimal quantomor phisms.

4.6. The Group of Gauge Transformations and Quantum Field Theory

The diffeomorphism subgroups that arise in gauge theories as gauge groups be-
have nicely because they are isomorphic to subgroups of loop groups as discussed
in Section 3.5.

Consider a principad=-bundler : P — M and the groug; of gauge transfor-
mations

G ={¢ € Diff**(P); ¢(p-g) = ¢(p) - 9, m(p) = 7(p)}
=~ {r € C™(P,G); 7(p-g9) =g '7(p)g} = Gau(P) (61)

which is a smooth Hilbert Lie group with smooth group operations (see Section
3.5). We only sketch here what role this infinite dimensional gauge ggquipys

in these quantum field theories. A good reference for this topics is P. Deligne et
al. [12]. Let.A denote the space of connection 1-formsmifvector potentials).
EachA € A defines a covariant differentidd4 and a curvature 2-form (field

1 .
strength)Fy = DyA = dA + §[A,A]. They are locally given byl = A, dx*
1
andF = §Fuydx“ A dz” whereF,, = 0,A, — 0, A, + [Au, Ay

The gauge groug acts onA via pull-back¢ € G, A € A, ¢-A = (¢ 1)*A € A,
or under the isomorphism (see Section 35 Gau(P), ¢ < 7 we have
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Gau(P) acting ond by 7- A = TAr~! 4+ rdr~!. Hence the covariant derivative
transforms ad,.4 = 7D 47! and the action on the field is- Fy := F,.4 =
TF4771. The action functional (Yang—Mills functional) i$(A) = || F4]?, lo-

. 1 . L . .
cally given by ||Fa||? = 3 [y trace (F,, F*). This action is gauge invariant

S(¢p-A) = S(A), ¢ € G, so the Yang-Mills functional is defined on the orbit
spaceM = A/G. The spaceM is in general not a manifold since the actiondof
on Ais not free. If we restrict to irreducible connections thehis a smooth infi-
nite dimensional manifold and — M is an infinite dimensional principal fiber
bundle with structure grou@. For self-dual connectionBy = xF4 (instantons)
on a compact 4-manifold the moduli space

M={AecA; A self-dual/G

is a smooth finite dimensional manifold.
Self-dual connections absolutely minimize the Yang—Mills action integral

YM(A)—/ |Fall>, @ C M compact.
Q

The Feynman path integral quantizes the action and we get the probability ampli-
tude

W(f) = /A KoL

for any gauge invariant functiongl( A).

5. BRST symmetry

In 1976 C. Bechi, A. Rouet and R. Stora [6] (and independently I. Tyutin in 1975)
discovered that in gauge field theories the effective Lagrangian, which is no longer
gauge invariant, is still invariant under a new class of transformations, now called
BRST transformations, given by

1
sA=dn+[An], sn=—5n7] (62)
where A is the potential field (connection one form) ands the ghost field. An
important property of the BRST chargés its nilpotencys’® = 0. We give an in-
terpretation of these BRST transformation in terms of the Lie algebra cohomology
of the Lie group of gauge transformations.
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5.1. Quantum Chromo Dynamics (QCD) and Quantum Electro Dynamics

(QED)

In classical field theory one considers a Lagrangdidm;, d,,¢;) of the fields; :
R" = R, i =1,..k, 0, = 8;; and the corresponding action functiortal=
JL(¢i,0u¢i)d"z. The variational principledS = 0 then leads to the Euler—
Lagrange equations of motion

oL oL

——0,—— =0. 63
96 00.0) (63)

In QED and QCE the Lagrangian is more complicated, of the form
LAY, ) =

1 . .
—4—ggtface F FM — i [y* (9 +ie A, ) +mh+(Dho) (Dho)—mPole (64)

where A, (x) is a potential 1-form (boson) and the field strengths given by
F =0,A,-0,A,+[A,, A)]. In QED the gauge group of the principal bundle
isG = U(1), and in QCD we haveésy = SU(2). The Diracy -matrices are

= < (?. _()Ui > whereo; are the Pauli matrices (canonical basissnf2))
(2
0

andy = ¢4 is the Pauli adjoint withy® = ) é >m is the electron mass,
e the electron charge angda coupling constant.

5.1.1. TheEquationsof Motion

The variational principle of the Lagrangian (64) with respect to the fidlds and

v gives the corresponding Euler Lagrange equations of motion. They describe for
instance the motion of an electra(z) (fermion, spinor) in an electromagnetic
field F', interacting with a bosonic fielg. We get from the variational principle

08 - . :

SA = 0= 0,F" = eypy”1p, which are Maxwell's equations fa¥ = U(1).

1

In the free case i.e., whepn = 0 we getg,F*” = 0, the vacuum Maxwell
equations.

ForG = SU(2) these equations beconi# F,,, = 0, the Yang—-Mills equations.

05 =0 = i(@a—m)y =0, which are Dirac’s equations, whefl = v*(d,+

oy
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ied,) = v*D';. In the free case i.e. whe# = 0 we geti(@ — m)y = 0, the
classical Dirac equation.

5.1.2. Global Formulation

Consider a principaf7-bundler : P — M, with M a compact, orientable Rie-
mannian manifold (e.gM = S* T%) andG a compact nonabelian gauge group
with Lie algebrag. Let .A be the infinite dimensional affine space of connec-
tion 1-forms onP. So eachA € A is a g-valued, equivariant 1-form o®
(also called vector potential) and defines the covariant derivative of any.fieyd

1 . .
Dap =dp+ 5[A, ©]. The curvature 2-forn¥, (or field strength) is & valued
. . 1
2-form and is defined aBy = DA = dA + 5[A, Al
In pure Yang—Mills theory the action functional is given by

1 1
S(A4) = S I1Fal? = 5 /M trace (F,, ") (65)

and the Yang—Mills equations become globally
d * FA =0. (66)

With added fermionic field) interaction the action becomes

1
S(A,9) = SlIFalP+ <Pav, ¥ > (67)
whereq is a section of the spin bundfpin® (M) and @, : Spin * (M) —

Spin (M) is the induced Dirac operator.

5.2. Symmetries
5.2.1. Gaugelnvariance

Let G be the group of gauge transformations as introduced in Sections 3.5 and 4.6.
Sop € G & ¢ P — Pis adiffeomorphism oveid y/, i.e. ¢(p - g) = é(p) - g,

p € P, g € G. Theng acts onA andSpin*(M) by ¢ - A = (¢~ !)*4, and

¢ -1 = (¢~ 1)*4. The action functional$ are gauge invariant:

Yang-Mills:  S(¢-A)=S(A), Ac A, ¢eg. (68)
QED: S(¢-A¢-¢)=S(Ay), AcA, ¢ €Spin*(M),¢€d (69)
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5.2.2. Chiral Symmetry

The chiral symmetry is the symmetry that leads to anomalies and the BRST in-
variance. In QCD the chiral symmetry of the Fermi figlds given by

Y ey (70)
whereg is a constant angs = iv°y'72~3. The classical Noether current of this
symmetry is given by

J,u = 7;'7#75¢ (71)
which is conserved, i.€#J,, = 0.

This conservation law breaks down after quantization and one gets

2

otJ, = 2im Pysy) — %traee FuF" =w#0 (72)

This valuew is called thechiral anomaly.

5.3. Quanization
The quantization is given by the Feynman path integral:

[ [ s epape = (7 w) (73)
A/G xSpin

which computes the expectation valg( A, 1)) of the functionF (A, ). Thisin

an integral over two infinite dimensional spaces, the gauge orbit spAGeand

the fermionic Berezin integral over the spin-spa&geén®(M). These integrals

are mathematically not defined but physicist compute them by gauge fixing, i.e.
fixing a sectiornr : A/G — A, (e.9.0(A) = 9,A* = 0, the Lorentz gauge) and
then integrate over the sectien Such a section does not exist globally, but only
locally (Gribov ambiguity!). The effect of such a gauge fixing is that one gets extra
terms in the Lagrangian (gauge fixing terms) and one has to introduce new fields,
so called ghost fieldg via the Faddeev—Popov procedure. The such obtained
effective Lagrangian is no longer gauge invariant. Téfisctive Lagrangian has

the form in QCD:

1
Leg (A, 0, m) = Etrace (FuFH) kinetic energy
1
-l-%trace (0,A")?  gauge fixing term (74)
—g0,1D"n ghost term

+.... .. interaction terms
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We can write this globally as
1 2 1 2 =
Leff = §HFAH +§||O'(A)|| —|—77M77—|—... (75)

where M = %(U(d) - A)) is the Faddeev—Popov determinant, acting like the

Jacobian of the global gauge varla'u%u over the sectiomr. Writing this term in

the exponent of the action functional like a “fermionic Gaussian integral” leads to
the Faddeev—Popov ghost fielglsj in the formdet M = [ e~ "M dsdy.

The effective Lagrangiaf.s is NOT gauge invariant but has a new symmetry,
called BRST symmetry.

5.4. BRST Symmetries

Named after Becchi, Rouet and Stora [6] and Tyutin [41] who discovered this
invariance in 1975 and 1976 the BRST operat@ given as follows

sA = dn+[A,1]
1 Leg is BRST invariant. (76)
s =~ 5.1

Note that the BRST operatermixes bosons and fermions and it is nilpotent i.e.
s> = 0. The question arises whether this operatds the coboundary operator
of some kind of cohomology. The affirmative answer is given by the following
theorem:

Theorem 20. (Schmid [36] and [38])Let C?P(lie G,,.) be the Chevalley—
Eilenberg complex of the Lie algebra lie G of infinitesmal gauge transforma-
tions, with respect to the induced adjoint representation on local forms Q.. , with
boundary operator

(510(3 : Cq’p([ie g, Qloc) — Cq+1’p([ie g, Qloc )7 5120(: =0.
(-1

g+1
1forg=0,p=1, Ac AcCCo, thensA =dn+ [A, 1)

Thenwith s := Soc  We have s2 = 0 and the following:

1
2)forq=1, p=0, n € C-°, then sn = — =[n, n] the Maurer Cartan form
n n 9 mn

3) the chiral anomaly w (given by equ. (72)) is represented as cohomology class
of this complex [w] € HE%ST(ﬁe G, oc ).
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5.4.1. The Chevalley—Eilenberg Cohomology

We are now going to explain the previous theorem, in particular the general defini-
tion of the Chevalley—Eilenberg [11] complex and the corresponding cohomology.

Let G be a Lie group with Lie algebrg and leto be a representation gfon the
vector spacdV. Denote byC?(g, W) the space ofV-valuedg-cochains org
and define the coboundary operatarC?(g, W) — C3t1(g, W) by

q

0B (&, ,fq)—Z<— Vo (E)D(Eoy 1 Eir e 1 &q)

FY D) G &) ()

1<j

We haves? = 0 and define the Lie algebra cohomology @iwith respect to
(o,W) asH*(g, W) = ker(6)/im(d). This is called the Chevalley—Eilenberg
cohomology [11] of the Lie algebrg with respect to the representation

5.4.2. Local Differential Forms

Local forms(,. are defined as follows in terms of the jet bundfé(x) of the
associated vector bundie Consider the space of exterior forms &h x I™,
Le. QM x I'*(7)) = @), , 21 (M x I'>°(m)) which has a bigradation induced
from the productM x I'*°(7). Aform a € QP9(M x I'*°(x)) is calledlocal iff
for any sections € I'*°(), and vector fieldsX; - - - X, on J*(r), the induced
p-forma(s, Xi - -- X,) on M, defined by

a(87 Xy XQ)(‘T) = (iX1(s) T in(s)a)(m7 8) (78)
depends or, X;(s), -, X4(s) in a local fashion, i.e.a(s, X; --- X,)(z) de-
pends only on finite jets (i.e. finite derivatives) 9fX; (s),--- , X,(s) atz. In

local coordinates a local form looks like:

o= Z Oéil...ipjl...jqdl‘il A A dl‘ip A @Ujl VANCEIIVA aujq (79)

.3

where the;, ...; j, ...;, are local(0,0) forms, thedz; s are local(1, 0) forms and
thedu; s are local(0, 1) forms.
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5.4.3. Special Case: The BRST-Cohomology

In our case for the BRST symmetry we have the following special case of the
Chevalley—Eilenberg construction: The Lie groupds= G the infinite dimen-
sional Lie group of gauge transformations and the Lie algebrg is lie G
the infinite dimensional Lie algebra of infinitesimal gauge transformations and
W = @p OF (P, g) the space of Lie algebra valued ad-equivarlanal p-forms

loc

on P with ¢ the representation of on W induced by the adjoint representa-
tion. We have the double comple®?? = C%(lie G, (P,g)) with cobound-

loc

ary operatow,,. = ¢ + d. The induced cohomology is tH#RST-cohomology

5.4.4. “Proof” of the Theorem

We sketch the proof of the above theorem:
1) Forg = 0, p = 1 we have the following identifications:

CcrP = CO(lie G, QY(P,g)) = Q(P,g) Lie algebra valued 1-forms and C
QY(P,g). Thens = § and forA € A, X € lie G we get:

S(A)(X) = 6AX) = o(X) - A=ad(X) - A=DuX =dX + %[A,X].
Alsodn(X) =d(n(X)) = dX, and [X,n](A) = [A,n(X)] = [A, X] hence
SA(X) = (dn) (X) + 5[4, ](X).

2) Forg = 1, p = 0 we have the following identifications:

CoP = Cl(lie G,0°(P,g)) = Hom (lie G,lie G). Forn =id : ie G — lie G ;
1

n(X): P — g. Thens = —3 0 and forXy, X; € lie G we get:

s1(Xo, X1) = — 5 (ad (Xo)n(X1) —ad (X1)n(Xo)) —n[Xo, X1]

1
2
1
=- §(LX0X1 — Lx, Xo — [Xo, X1])

=— %[XO,XJ = —%[W(Xo)m(Xl)] = —%[n,n](XoaXl)
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5.5. Anomalies

The Noether current induced by the chiral symmetry (after quantization) for the
free case () = 0) i.e. for pure Yang—Mills becomes

2
o, =— %E‘“’mtrace FuF,

— _iﬂ_QElJfl/PTtraCe aM(AI/apAT + ;AMApAT) (80)

= w # 0 anomaly, se¢72).

Note the similarity with the Chern—Simon Lagrangian
2
L(A) = / trace (AdA + §A3)' (81)
M

We are going to derive a representation of the chiral anomaiy the BRST
cohomology, i.elw] € HpRer(lie G, Qe )-

The question is, ikw = 0, does there exist bocal functional F/(A), such that

w = s(F(A)) i.e., isw BRSTs-exact ? The answer in general is NO, ice.
represents a nontrivial cohomology class. This class is given by the Chern—Weil
homotopy.

5.5.1. TheChern-Weil Homotopy

LetA = A+n € % xCY0andF = sA+ A% = F;. Fort € [0,1] let
F; = tF + (t* — t)A? and define the Chern—Simons form

1
Wog—1 = q/ trace (AF?) dt (82)
0

we get i
Swaq—1 = trace F7. (83)

We write wy,—1 as sum of homogeneous terms in ghost number (upper index)
and degree (lower indexyy,—1 = w3,y + wi,_o + wi,_5+ - +wil . Let
w(X> A) = fM w%q—2(X)'

Theorem 21. (Schmid [38])The formw(X, A) = [,, fo AE{™(X)dt satisfies
the Wess—Zumino consistency condition (sw)(Xp, X1, A) = 0 and represents the
chiral anomaly [w] € H%op(lie G, Qoc )-
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We have an explicit form of the anomaly (B¢ — 2) dimensions:

1 ~ ~
w%q% =q(q— 1)/0 (1 — t)trace (ndioc (Ath72)) dt. (84)

So forg = 2 the non-Abelian anomaly in 2-dim. becomgls= trace (1dj,c 4),
and forqg = 3 the non-Abelian anomaly in 4-dim. becomes

1.
wi = trace <77610C (Adjoc A + §A3)> ) (85)

5.6. TheWess-Zumino Consistency Condition

This is a problem in local cohomology. We consider the bicomgglex =
{C?P A}, pen With total differential A = 6o —1)Pd wheredyoe : CTP(lieG, Qo)
— Cq+1’p([ie g,QlOC) andd : Cq,p([ie Q,Qloc) — Cq’p+1([ie Q,Qloc). We
haveA? = 6o d + ddje = 02, =d? = 0.

loc
The Wess-Zumino consistency condition forc G, means that there exists an
a € Cy . such that

Oocw +da=0. (WZ)

Any solution of (WZ) of the formw = 6§58 + dvy, B,7 € Cj. is trivial,

i.e. d,cw = 0. The consistency condition (WZ) produces the so called descent
equations. [%,.w + do = 0 taking di,. of (WZ) we getdi. 2w + djoc dov = 0
henced,,. da = 0. The Poincare lemma implies there exists a local forsuch

that o« + df = 0. By definition djoc [w] = [a. If w is trivial, i.e. w =
doc B + dy thend,. dy = —da, hencex = oy + dA, i.e. [a] = 0.

We get the descent equations

Oocw +dwi = 0

Oocwi +dwy = 0
(86)

OlocwWg—1 +dwr = 0

wherek is the smallest integer such tHaf € HE _(fie G) with djocw = 0.

5.6.1. g-Symplectic Structures

Definition 22. A g-symplectic structure on P is a g-form 2 € Q?(P, g) which
is closed and nondegenerate, i.e. dQ2 = 0 and for each p € P the map Q(p) :
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T,P x T,P — g is bilinear and nondegenerate. \\e have the induced linear
injective map Q(p)# : T,P — L(T,P,g) ; Qp)* (v) - w = Qp)(v, w).

A vector field X on P is called g-Hamiltonian if there exists a g-function f :
P — gsuchthatdf = ixQ.

A g-vector field X is locally g-Hamiltonian iff its flow ¢ is g-symplectic, i.e.
;1 = Q. We have the

Lemma 23. Poincare lemma: For any o € QP(R", g) with daw = 0 there exists
locally a 3 € 9"~ 1(R", g) such that o = d3 and

1
B(z) = /0 otz dL.

Theorem 24. (Schmid [39]) If G is semi simple, then every G-orbit O, of the
right action of G on P is a g-symplectic manifold induced by the Maurer Cartan
formon G.

5.6.2. The Canonical Momentum Map on O,

Proposition 25. (Schmid [39])For every ¢ € g the fundamental vector field &
on O, defined by

d
gP(Q) = a‘tzoRexp tf(q)

islocally g-Hamiltonian.

Corollary 26. For every ¢ € g there exists a g-function H : O, — g such that
fp = Xy,i.eedH = iﬁpr- Epr|C|tIy

H() = ~3le.a- €]

Proposition 27. (Schmid[39]) The g-momentummap J : O, — L(g,g) of the
right action of G on O, defined by (J(q), &) = H(q), q € Op, £ € gisgiven by

J(q) =ad, o TR,

wheren = Ry Xi(g9), ¢=p - g.
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5.6.3. A Solution of Consistency Condition

The infinite dimensional analogue of the previous construction leads to the follow-
ing: Consider a principal bundle(P, =, M), whereP = (*( P, g) with the ad-

joint G action andM = P/G. For A € (P, g) the canonical 1-forn®4 on the

orbit 04 induced from the Maurer—Cartan form Grbecomesama@, : O4 —
QOl(P,g) ~ Cy! and the momentum map: O — L(lie G, lie G) = Cpr.
Theorem 28. (Schmid [39])The momentum map J satisfies the consistency con-
dition for the canonical 1-form (Maurer—Cartan) ©4 of G

0loc©Oa +dJ = 0.

6. Liegroupsof pseudodifferential and Fourier integral operators

Pseudodifferential operators and Fourier integral operators are used in physics to
construct solutions of partial differential equations, e.g. the fundamental solu-
tion of the heat equation is a pseudodifferential operator. They are also used to
prove local formulas for index theorems. Geometric properties are used to de-
scribe Fourier integral operators as a symmetry group for the KdV equation as
Hamiltonian system. These will be discussed in Section 8. These operators have
very nice geometric properties which we will discuss here.

Fourier integral operatorsF(/O for short) generalize pseudodifferential opera-
tors (@ DO for short) which themselves generalize differential operatb® for
short). So as sets we have the inclusions

FIO D vDO D DO.

6.1. Pseudodifferential Operators ¥ DO

Consider a differential operatdt on2 C R" of orderm with smooth coefficients
Qg
Pu(z) = Z ao(z)DYu(z) , uwe C®(Q). (87)
la|<m

We associate to the operatBrthe polynomial

p(x,€) Y aa(z)€” (88)

laj<m
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called thesymbol of P. Using the Fourier transformi(¢) of u(x) we have
Dou(¢) = ¢va(€) andD2u(z) = (2m) " [e®4¢va(€) d€ so we can write

Pu(z) = (2m)™" / &€ p(r, €)i(€) dé
— 2n)" / / V€ p(, €uly) dyde. (89)

A pseudodifferential operator P is of the form (89) but with symbab(x, &) of
a more general class then polynomials. A smooth function ¢) on 2 x R*
belongs to the symbol clas§’s(2), 0 < § < p < 1if for any compactk’ C ©,
anya, 3 there exists a const,g(K) > 0 such that for al € K, € R”

IDIDE p(z, €)| < Cap(K)(L+ [¢])m Pl (90)

We restrict ourselves tolassical symbols, i.e. those who have an asymptotic
expansion of the form

p(xvf) ~ me—J(xvg) , M= order Ofp (91)
=0

where eachp,,,_;(,£) € C=(Q x R") is homogeneous of degree— j in &, i.e.
Pm—j(x,TE) = rm—jpm_j(m,g), 7 > 0. ThenP is aclassical pseudodifferential
operator of ordem if P is of the form

Pu(z) = (27) " / / SEDE (e Euly) dyde 92)

with p(z, ) a classical symbol of the form (91). Tipeincipal symbol of P is
the leading termp,, (x, £).

Denote byV DO,, the space of classical pseudodifferential operators of order
and let¥ DO = |J,, YDO,, be the space of all pseudodifferential operators of
all order. ¥ DO is an infinite dimensional graded Lie algebra with commutator
bracket satisfying the following: iP € ¥DO,, and@ € VDO, then[P,Q] =

PQ — QP € ¥DO,,1,—1. Note that¥ DO, the space of pseudodifferential
operators of ordert is an infinite dimensional Lie subalgebrawiO.

Itis a natural question to ask whether there exist corresponding Lie groups having
U DO, and¥ DO as their Lie algebras respectively? The answeYkS! The

Lie group that hasl DO, as its Lie algebra is the group of invertible Fourier
integral operators of order zero, denoted(b% (). and the group fo DO is

the group of all invertible Fourier integral operators, denoted'hy).. We shall

now discuss these Lie group structures following Adams, Ratiu and Schmid [1-3].
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6.2. Fourier Integral Operators FIO

Fourier integral operators generalize pseudodifferential operators by allowing mo-
re general phase functiongz, y, £) then the one we have for pseudodifferential
operators in (92p(z,y, &) = i(z—y)-£. These are given by generating functions

of canonical transformations.

6.2.1. Generating Functionsfor Canonical Transfor mations:

LetS : @ xR"™ — R be a smooth function in a neighborhood(af, {y) € Q2 xR™

&S (x,¢) 05(x,&)
such thatTaé # 0. Then®(y,&) = (z,n) wheren = o Y=
65((;; §) defines a local canonical transformation
d: (yo,&) € T*R™ — (xg,m0) € TR, d*w=w (93)

wherew = > | dp; A dg; is the canonical symplectic form ofiR"”. The
function S is called thegenerating function of ®. Vice versa, every canonical
transformationd has a locally generating functia# Note thatS is homogeneous
of degree one ig if and only if ® is homogeneous i&.

Example: LetS(z,£) =z - £. Thenn = g_S =& y= ?9_? =z henced =id.
X

6.2.2. Fourier Integral Operators

Let S(z,&) be a generating function andz, £) a classical symbol ordern. De-
fine a classicakourier integral operator A of orderm by

Au(a) i= [ &5 a(a, ale) dg
=(2m)~ / / a(z, &)u(y) dyde. (94)
More generally, a Fourier integral operatdrof orderm is defined by
Au(w) = (2m) ™" / / AT a(x, €)u(y) dyds (95)

wherep(z, y, £) is nondegeneratehase function (homogeneous +1) and the sym-
bol a(z,&) € ST
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Notice if S(x,£) = = - £ or generalp(x, y,£) = (x — y) - € then the operatoA is
a pseudodifferential operator defined by (92) and we fai® > VDO D DO.

These Fourier integral operators are singular operators but make sense as oscilla-
tory integrals and they have nice properties in the following sense:

Property 1) Fourier integral operators are invariant under diffeomorphisms. So
they can be defined on manifold¢ as bounded linear operata#s: C* (M) —
C>°(M), (M compact!) such that is locally of the form (95); moreover, they
extend continuously to distributiond : £(M) — D'(M). Any P € ¥DO,,
extends as bounded linear operakor H (M) — HZ~™(M).

Property 2) Pseudodifferential operators have properties which are close to dif-
ferential operators (DO):
P e DO < Pislocal, i.e.supp Pu C supp u.
P e VDO = P is pseudolocal, i.esing supp Pu C sing supp u.
Property 3) Pseudodifferential operators preserves the wave frontigétsi.e.
WF(Pu) C WF(u) whereW F(u) C T*M, 75WF(u) = sing supp u.
Fourier integral operators generalize pseudodifferential operators in the sense that
they move the wave front sekt€ I by a canonical relatio, i.e. if A € F'1O then
WF(Au) C Ao WF(u) where the canonical relatioh ¢ 7*M x T*M is a
conic Lagrangian submanifold, locally generated by the phase fungtiony, &),
ie.
A= {(x¢y>d(z,y)90(xay)§)) ) deO = 0} (96)

Remarks:

a) IfA=A=((z),(z,¢)) the diagonal thesl € T DO.

b) Any A € FIO is determined by its symbal(z, £) and canonical relatioA.

c) The principal symbol is globally defineg), (z, ¢) : T*M — R.
Property 4) Fourier integral operators are closed under multiplication: Assume
® . T*M — T*M is a globally defined canonical transformation, #&w = w,
which is locally generated b§(z, £). Denote byF'10,,(®) the space of Fourier
integral operators of ordern associated to the canonical relatidn= graph(®).
If Ay € FIO,,, (1) and Ay € FIO,,,(®2) thenA; o Ay € FIOp, 4m, (P10
®y). If A€ FIO,,(®) andA™! € FIO exists, them™! € F10,,(®~") . Note
thatif ® =id : T*M — T*M thenFI10,,(id ) = ¥YDO,,, i.e. Fourier integral
operators associated with the identity are pseudodifferential operators.
Example: Let f : M — M be a diffeomorphism. Then

fru(z) = @m)" / / U@ () dy de
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defines aF' /O A = f* : C*°(M) — C*°(M) whose phase function generates
the canonical cotangent Iift*f : T*M — T*M.

Notation: Denote byFIO,, ¥YDO,, (FIO;,)«, (¥YDO,,). the invertible ele-
ments in the corresponding spaces, 8iff3°(7* (M) the group o) preserving
diffeomorphisms ori™* (M) whered = 3" p;dg; is the canonical 1-form. Note
that F10,, VDO, (FIOy)., (YDOy,). are groups under operator multiplica-
tion.

6.2.3. Exact Sequence

Let S(x, &) be the generating function df . SincesS is homogeneous of degree
+1in &, this implies that® homogeneous of degreel in . Together with
d*w = w we getd*fd = 0 henced € Diffy (7T M). So we get a surjective map

p: FIO, — Diffy(T*M) , p(A) = ®

where graph®) = A the canonical relation ofl. The kernel ofp is p~!(e) =
VDO, , e =id j.,,. Both¥DO, and FI10, are groups under operator multi-
plication, graded by the order (which is additive) anid a group homomorphism
p(AoB) =p(A)op(B). Sowe get an exact sequence of groyphé inclusion)

[ — WDO, <> FIO, - Diff§(1* M) — e. (97)

We want to make this into an exact sequence lif GROUPS.

Notice that the zero order operatd®BD (). and(F10y). are groups and form
exact sequence

[ — (UDOy), & (FIOy). 2= Diff5(T* M) — e. (98)

First we are going to give ILH-Lie group structures to this sequence (98) of zero
order operators, then we'll move these structures by a fixed elliptic opeFatwr
any orderm, e.9.T7 = (1+ AY™2: FIOy — FIO,,.

For the parameter spaces we look at the corresponding Lie algebras of
[ — (WDOy), < (FIOy), - Diff5(T* M) — e. (99)
The Lie algebras are

0 — WDOy & WDO; ™ O%(T* M) — 0 (100)
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wherer(P) is the principal symbol (homogi-1) of P € ¥DO,. The space of
homogeneous functior@_ﬁ(T*M) is isomorphic to the space of globally Hamil-
tonian vector fieldo%S (T M) = X3°(T*M) = {X ; Lx0 = 0}, as discussed
in Section 4.4.

Remark: Clearly FTO # exp(¥DO) sinceDiff§(T* M) # exp(X3(T*M), i.e.
we cannot obtain a chart at the identityfiid O, by exponentiating the Lie algebra
UDO.

The idea to construct a manifold and a Lie group structuré 6 is to construct

an infinite dimensional principal fiber bundle with

base space Biff§(7* M)

total space XFI10).

fiber =p=1(®) = (FIOy(®)). = (¥DOy).

structure group &V D0y)...

We outline this construction in 7 steps (for details see Adams, Ratiu and Schmid
[1-3]:

Step 1: We show thddiff° = lim Diff§(7* M) is an ILH-Lie group.

Step 2: We show thatl DOy) . = lgn(\I/DOS)* is an ILH-Lie group.

Step 3: We piece 1 & 2 together via a local section U C Diﬁ};(T*M) —

(F10gp).. Then(F10y), is locally of the formo(U) ~ U x (¥DOy).. This
gives a chart at the identity € (F1Op)..

Step 4. We move this chart around by the group the structuﬂéi@(T*M)

= (FI0O,) is a topological group.

Step 5: We check that the chart transitions are smesthF' /(). is a smooth
manifold.

Step 6: We check that multiplication is “smooth% (FI(). is an ILH-Lie
group.

Step 7: We identify(1 — A)™/2 : (FIOy). = (FIO,,). = FIO, is an ILH-Lie
group.

Let us go through some more details.

6.24. Step 1. Dif-fg(T*M) asILH LieGroup
In Section 4.3 we proved the following Theorem 16:

Theorem 29. Diffy° = lim Diffj(7*M) is an ILH Lie group where
Diff (7™ M) isisomorphic to the semidirect product
Diffg(ST*M) = {(p, h) € Dift*(ST*M) v< C*(ST*M) ; ¢*0s = hfg}
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with ILH Liealgebra X3(S(1"M)) = {Y € X*(S(T*M)) ; Lyt = 0} isomor-
phicto C%,(T*M) = {H € C°(T*M,R) ; H homogeneous of degree gne

6.25. Step2: (PDOg). aslLH LieGroup

We define anff®* norm on¥ DO, and complete this space DO; which is

a Hilbert algebra, hencel' DO;). is a Hilbert Lie group. The topology is de-
termined by the symbols of pseudodifferential operators. If we want to define
seminorms on¥ DO, directly we would end up with a Frechet space because
eachP € UDO, has a symbol of the form(z,¢&) = z;;g pj(x,§), so we
would have to control an infinite number of functions and their derivatives, and
an infinite product of Hilbert spaces is no longer a Hilbert space. So what we
do is we cut the symbol at the term;, for some fixed: < oo. In terms of the
operators, we look at the quotient spadeB0,, ;, := ¥YDO,,/¥DO_j_; and
similarly FIO,,, (®) := FIO,(®)/FIO_j_1(®), FIO . ; = UsFI0,, 1(®),
whereFI10,,(®) = {A € FIO,, ; p(A) = ®}.

Composition is still well defined in? DOy, and F10, ), and we denote by
(¥DOy i)« and (FI1Oy ). the groups of invertible elements DO, ;, and
FI0,  respectively. We still have the exact sequence of groups:

I — (WDOy)s > (FIOy)s 2 Diffy(T*M) — id. (101)

For P € ¥DO,,  with symbolp(z,§) = pm(x,§) + - - - + p_i(x,§) we define
the norm by

1P ks = 1Bl + 1B 113 g + -+ [1B&l12 (102)

where p,,,—; is the restriction ofp,,_; to the cosphere bundl§(7*M) and
1Bm—i |2 4y 1S the H*HFm=J-Sobolev norm orf (T*M). Let WDO; , de-
note the completion o¥ DO, ;, with respect to this norm and fer = 0 denote
by (¥ DOy )« the group of invertible elements InDC ;..

Theorem 30. (Adams—Ratiu—Schmid [2Por each s > n the group (\IIDOak)*
is a Hilbert Lie group with Lie algebra W D0 ;.. That means (¥ DO )« is a
smooth (C*°) Hilbert manifold with smooth group operations. Moreover the in-
verselimit (W DOy 1)« = Olggs(\I/DOg,k)* isan ILH Lie group.

At the end of the day we will take the limit — oc!
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6.2.6. Step 3: TheLocal Section:
We piece togethebiff; (7% M) and¥ DO} by a local section
o :U C Diff5(T* M) — (FIOy). (103)

wherel/{ is a neighborhood oid € Diff§(7*M). This gives(FI0y), a local
product structure
oU)=U x (VDOy)«

defined byA — (p(A), Ao a(p(A))~1), and inversdyp, P) — P - o(p). Hence
we get a chart at the identity € (FI10y)..

Problem: Fourier integral operators are only locally defined but we negldlzal
writing of Fourier integral operators, i.e. a global phase function for Fourier inte-
gral operators close tb. This is done by constructing an explicit chart abalit

of Diff§(7* M) in the following manner.

Theorem 31. (Adams—Ratiu-Schmid [2]) .
A) Let H € C5(T* M) close to zero and define gy : T*M x M — R

oo, y) = ag - (exp, ' (y) + H(ay) (104)

where exp is defined by a Riemannian metric on M. Then there existsan ¢ ¢
Diff§(7*M) closeto id such that oy isa global phase function for graph(®).
B) The map H < & is a bijection from a neighborhood V(0) ¢ C53H(T* M)
onto a neighborhood 2/ (e) C Diff§(7* M).

For the inverse let ® ¢ Diff5(7*M) be close to e (7* : T*M — M isthe
projection) and define / : T*M — R by

H(ap) = —a - exp, (7507 (ay)). (105)
Then ¢y defined by ( 104)is a global phase function for graph(®).
Now we define a local section of the sequence (98)
o :U C Diff§(T* M) — (FIOy), (106)

as follows: letd € U  Diff§(7* M) (close toid ) and definer(®) by

o(®)u( (2m)~ / / x(2, y)e¥H oWy (y)| det exp, [dydé  (107)
T*MBL;(z
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where Bs(x) is the open neighborhood of, whereexp, is a local diffeomor-
phism, andy(x, y) is a bump function.

Theno(®) is a Fourier integral operator with smooth phase functign the
global generating function of graph) and amplitudez = 1. Notice thatH

is smooth if® is smooth, in which case(®) is a well defined Fourier integral
operator of order zero. Moreover(®) is invertible modulo smoothing operators
since® is invertible and its principal symbol is = 1, hences(®) € (FIO))..

In particularo(®) € (FI10y )+ for any k. Furthermorep(o(®)) = & for any

® € U, hencer is a local section of the exact sequences (98) and (101). We use
this local sectiorv to give (F' 10y ). the local product structure

p L U) ~U x (FDOy), (108)

Now we define the topology around the identity (iRI( ). by the bijection
B:p  (U) — U x (WDORY ™). 1 B(A) = (p(A), A0 a(p(4))™") and
B~YH®, P) = Poo(®), whereU? = U/ N Diff2". This defines a local chart at the
identity I € (F1Og )«

6.2.7. Step4: (FI0Oy). asTopological Group

We move this chart (constructed in step 3) around by the group structure of
Diﬁ";(T*M). Compatibility conditions for the group structure and the topology
give conditions orr to make(F10y). a topological group.

To define the topology oF 10, ). we move the open set ' (U?) by right
translations (smooth!). We complete this topological space in the right-uniform
structure and denote it iy"10; ;). For eacht > n/2 we obtain(F 10} ;). as a
topological group andF' 10y 1)« = ﬂt(FIOak)* with the inverse limit topology

is a topological group as well.

To prove this, we have to show that the mah B) — AB~! is continuous for
anyA,B € (FIO{M)*. This amounts to show that the following map in local
coordinates is continuous:

(U x wDO ™M) x (U x wDOR ™) — (U* x wDOy ™)

((®1, Py), (Do, P2)) — (@100, 1, PLo(®y)a(®2) Py to(®r0®, 1)) (109)

which involves a very careful study of products of symbolgdiOs.
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6.2.8. Step 5: (FI0g). as Smooth Manifold

Overlap conditions in local charts give conditions @rio make(F1()., into
a smooth manifold. To prove that the transition maps between local charts are
smooth it amounts to show that the following map is differentiable

(U -anU?-5) x (DO ™). — (¥DOS ™).

(®,P) — Po(®oa HAB to(®o )t (110)

forany A, B € (FIO; )+, wherea = p(A), 3 = p(B). The symbol calculus
shows that this map is of class’, hence(FI0j ). is a smooth manifold of
classC".

6.2.9. Step 6: (FIOg)«aslILH LieGroup

We check smoothness of multiplication and inversion

p: (FI1Og)s x (F10g)x — (FI1O0)«, p(A,B)=AoB (111)
v:(FIOy), — (FIOg)., v(A)=A"1, (112)

To show that the group multiplication {10 ;). is smooth it amounts to show
that the following map is differentiable

(U2(t+s) @) X (\Ija(]i+s+k))* % (U2(t+s) - B) x (\Ija(ZJrerk))*

— (U (rac- B) x (L),

(P21, P1), (2, P2))
(10 @9, Pio(@1 0 a” AP (P28 A o (@1P28 1)) (113)

forany A € (FIOG%)., B € (FIO} ;). wherea = p(A), 8 = p(B).
This makeg F'I0y). = lim (FIOj). into an ILH Lie group.

6.2.10. Step 7: FIO, asLieGroup

To obtain a Lie group structure dn/ O, of all invertible Fourier integral operators
we use the Laplace operator to identify — Ay*/2 : (FIOg), = (FIO,,).
and induce the corresponding manifold structurefaf(O,. Multiplication has
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the same smoothness properties as before between the appropriate spaces, which
makesF 10, into an ILH Lie group.

The final result is the following:

Theorem 32. (Main Theorem) (Adams, Ratiu and Schmid [1-3he group
FIO.(M) of invertible Fourier integral operators on a compact manifold M is
a graded infinite dimensional ILH-Lie group with graded infinite dimensional Lie
algebra W DO(M) of all pseudodifferential operators on M. FIO.(M) isand
infinite dimensional principal fiber bundle over the base manifold Diff;(7* M)
of contact transformations of 7 M with gauge group W DO, (M) of invertible
pseudodifferential operators.

We have the following smoothness properties:

(FIOo k)« = limt(FIO(t) )« is an ILH Lie group
00— ’

the multiplication .. : (FIOLF). x (FIO} )« — (FIO§ )« : (A, B) = AB
is CP differentiable,
the inversion v : (F[Oéﬁf)* — (FIO(t),k)* : v(A) = A~Lis CP differentiable,

right multiplicationsR, : (FI0f )« — (FIO§ )« : Ra(B) = BAare C*
differentiable, for anyd € FI0} ,

the left multiplicationsLy : (FIOf )« — (FIOf )« : La(B) = AB are C°
(continuous), for anyl € FIO; . -

7. Diff (M) and FIO for non-compact manifolds. Application to
fluid dynamics and quantization

The “classical” theory of diffeomorphism groups and the groups of Fourier in-
tegral operators was developed in the 1970’s and 1980’s. This was all done for
compact manifolds, mainly for technical reasons. Many attempts to deal with
noncompact manifolds failed, until in the 1990’s after J. Eichhorn published his
papers on the manifold structures of maps between open manifolds [14] and we
joined forces to overcome the technical difficulties one encounters dealing with
noncompact manifolds. Two typical quotations about the hon-compact case:

1) “Topology & Analysis: Atiyah—Singer Index Formula & Gauge Theoretic
Physics” (Boos—Bleecker [7], p. 182):
In what follows, the manifolds M is “ closed” i.e. compact, without boundary.
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We make this convention in part for convenience (in order to make some proofs
go easier) but also because otherwise some of the following theorems would be
meaningless or false.

2) J. Eichhorn:" There is exactly one thing that work in the non-compact case:
NOTHING”

Example of what’'s going wrong: Let M, N be compact manifolds, thef :
M — N is of Sobolev clas¢/® < the local representativq§ :U; CR™ —
V; C R™ are of classH®, whereM = J(Ui,¢:), N = U(Vj,¢;), f; =
Ypjofo gbi_l. These covers arfnite if M, N are compact. This definition is
invariants s > g + 1. In the compact case we can define the distance by

S i i 1
d°(f,g) == (Z £ —ng§)2
2%
These definitions are meaninglesdifand NV are open!

7.1. Bounded Geometry

The idea of overcoming compactness is to beended geometry, which means

that we will have control over the metric and its derivatives and the maps are
adapted to the bounded geometry, i.e. we have control over the mappings and
their derivatives by the metric as well.

Definition 33. A Riemannian manifold (M™, g) has bounded geometry of or der
k,0 < k < oo, if it has a positive injectivity radius and the curvature and all is
derivatives up to order £ are uniformly bounded; i.e the following two conditions
are satisfied:

I) : rinj(M) = inf Ting(z) > 0 (114)
By):|[V'R|<C;, 0<i<k. (115)

These conditions can be expressed as follows:

I) The exponential mapxp, : 7, M — M is a diffeomorphism from an open ball
B, (0,r) C T, M of radiusr around0 in 7;, M/ onto an open neighborhodd. , C
M of zin M. Letr, := sup(r) be the biggest radius i, M such thakxp, is

a diffeomorphism. Then the injectivity radius is definedipy := inf cps 75, i.€
rinj 1S the smallest distance fromwhere geodesics intersect. Hence,

I) & there exists a ball aroun@in R™ which is domain of normal (geodesic)
coordinatedor all x € M.
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By) < there exists a constady (independent of € M) such that|g;;||cx < di
in any normal coordinate system

& |D%g;j] < cq, |a] < kin any normal coordinate system

& [T ler—1 < dj inany normal coordinate system.
Examples of manifolds with bounded geometry are compact manifolds, Lie
groups, homogeneous spaces, covering spaces of Riemannian manifolds, leaves
of foliations of compact manifolds.
Fact: There isno topological obstruction for the existence of a complete Rieman-
nian metric with bounded geometry of any order.

7.2. Bounded Maps C*>" (M, N)

We consider maps which are adapted to the bounded geometry of the manifolds.
Let (M, g) and(N, h) be open, complete Riemannian manifolds satisfying I) and
Bx) and f € C*°(M,N). Then the differentiallf = f. = Tf is a section
of T*M ® f*TN. We endowf*T N with the induced connectiofi*V". Then
V9 and f*V" induce connection¥ in all tensor bundlegy(M) @ f*T¥(N).
Therefore thent” derivative V" df is well defined. Assume < k. We denote
by C°>"(M, N) the set of allf € C>°(M, N) satisfying

r—1

|df] := Z sup |Vidf|, < oo. (116)
i—0 reM

[0}

Equivalently: f € C*"(M,N) < aa—af” is uniformly bounded in any normal
i
coordinate system for albe| < r, 1 <r < k.
Thetopology on C°" (M, N):
Let f € C®"(M,N) and§ € C*°(f*T'N). Definege : M — N by ge(z) :=
exp(z)(§(f(2)), (= exp &). Assumer < k and define
‘£|r = Z sup |vz£‘:p <on < 'rinj(N)' (117)
i—0 zeM
Thenge = exp £ € C°"(M, N). We definef to be close tgy in C*" (M, N)
in the L,-category as follows. Lél < § < %rmj (N),1<p< 0.

Vs :={f,9g€ C®"(M,N); 3¢ € C*°(f*TN) suchthatg = gc } ~ (118)

and fge = ([ S IVERdvoli(o)? <3} (119)
=0
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ThenV := {Vs}o<s<r,,,(a)/2 IS @ basis for a metrizable uniform structure on
C*"(M,N). LetCP" (M, N) be the completion of>>" (M, N) in this uniform
structure. Thelw?" (M, N) is aC*+1-"-Banach manifold and fgr = 2 a Hilbert
manifold.

Remarks:
1) A neighborhood/.(f) of f € CP"(M, N) is given by:
U(f) ={g € CP"(M,N); g=exp & § € CF(f'TN), [{lpm <€} (120)

where0 < e < 74, (V).
2) The tangent space #tis given byZ;C?" (M, N) = CP"(f*T'N).

3) The change of coordinates is given dxyp, oexpfl, itis Ck=m+1 If M is
compact therk = cc.

4) If g € comp (f) thenTyCP"(M,N) ~ T,CP"(M, N), otherwise not.

7.3. TheBounded Diffeomor phism Group Diff?" (M)

Problem: f bounded# f~! bounded, i.eC°>™ (M) N Diff(M) is not a group,
hencef € C°>™(M) N Diff(M) # f~1 € C>~™(M). We need an additional
assumption to obtain a group. LpY.:,(df) denote the absolute value of the
eigenvalues of the Jacobian pfand set

Diff?" (M) := {f € CP" (M, M) ; f bijective and |A|min(df) >0} (121)

thenDiff?" (M) is open inCP" (M, M), hence aC*+1=" Banach manifold and
we have the following

Theorem 34. (Eichhorn and Schmid [15])Let (M™, g) be an open, oriented,
complete Riemannian manifold satisfying I), B,,) and let r > " L 1. Then

p
Diff*(M) = lim. Diff”" (M) is an ILB-Lie group and for p = 2 it is an
ILH-Lie group.
7.3.1. Differentiability of the Group Operations:

The differentiability of the group operations (composition and inversion) follow
from thea- andw- lemma.
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Lemma35. (a-lemma)Assumer < k, r > L + 1, f € Diff»"(M). Then the
p

right multiplication o : Diffy"" (M) — Diff?"(M), ays(g) = g o f isof class
Ck—i—l—r_

Lemma36. (w-lemma)Let k+1—(r+s) > s, f € Diff5"™*(M) C Diff})" (M),
r > 1. Then the left multiplication wy : Diff>" (M) — Diff" (M), w(g) =

p
fogisofclass C®.
Theorem 37. (Eichhorn and Schmid [15])Let (M™, g) be an open, oriented,

complete Riemannian manifold satisfying 1), B.). Let Difff™ (M) :=
lim. Diffy" (M) with the inverse limit topology. Then

{Diffy> (M), Diff2" (M) ; v > % +1}

isan ILB-Lie group and for p = 2 itisan ILH-Lie group.

7.4. Volume Preserving and Symplectic Diffeomor phisms.

We have analogous results as in the compact case for the subgroups of volume
preserving and symplectic diffeomorphism. The ideas of the proofs are similar
but technically much more complicated, so we just state the results (for proofs
see Eichhorn and Schmid [15]). Letbe aC*°-bounded non-degenerajdform,
g=norqg=2,letDiff?’" = {f € Diff" ; f*w = w}.

Theorem 38. (Eichhorn and Schmid [15])

a) Diff?>° = lim. , Dift?," is an ILH-Lie group with Lie algebra consisting of
divergence free ( ¢ = n), or locally Hamiltonian (¢ = 2) vector fields £ with finite
Sobolev norm [¢],, - for all r.

b) Dift?," is an infinite dimensional Riemannian manifold, with (weak) metric

9(X,Y)q = /(X, Y),dvol,(g).
M

7.5. Contact Transformations on 7* M

If (M™,g) is an open, oriented, complete Riemannian manifold satisfying 1) and
B;) then the Sasaki metric on the co-sphere bundl& it satisfies I) and B_1).
Let # be the canonical 1-form dh* M and consider

Diff5" (T*M) = {f € DiffP"(T*M) ; f*0 =0 }.
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Theorem 39. (Eichhorn and Schmid [15])
Diffy>(1T* M) = lim Diff5" (T* M)
isan ILH-Lie group.

This is the space of phase functions for the Fourier integral operators!

7.6. Pseudodifferential Operatorsand Fourier Integral Operatorson
Open Manifolds

If (M™,g) is open the previous definitions of pseudodifferential operators and
Fourier integral operators doest make sense. We need to adapt the class of
symbols and phase functions to the bounded geometiy/ oh order to obtain
globally defined Fourier integral operatoss: C°(M) — D'(M). Then the
corresponding spaceBDO and F 10O have similar properties as in the compact
case and we can use the same ideas as before to construct Lie group structures.
We need the following adaptations for a Fourier integral operator

Au(z) = (2m)™" // @8 g (., u(y)dy dE. (122)

e Symbols: The family of local symbols(z, £) together with their derivatives
should be uniformly bounded.
e Phase functions: The phase functiong(zx,y,¢) should locally generate
canonical transformations in the spdotl)” (7 M).
These symbols and phase functions define the class of so callfedm pseudo
differential and Fourier integral operators denotedbyDQ0,, andU F'10,, re-
spectively. The details are quite technical, so we present here only the basic ideas
and final result and refer to Eichhorn and Schmid [16] for detalils.

As in the compact case (Section 6) we get an exact sequence of groups

[ — UYDO), & UFIOy), % Diff?” (T*M) —id.  (123)

Now we follow the same ideas as in the compact case: step 1,2...7 to construct
ILH Lie groups structures on these spaces.

Theorem 40. (Eichhorn and Schmid [16])

UV DO = lim U¥DO? is an ILH Lie group

0S8

UFIO = lith/{FIOt is an ILH Lie group
00—
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the multiplication p : UFIO™™ x UFIO! — UFIO! u(A,B) = ABis
C* differentiable, k = min(r,t)

theinversion v :UFIO™" — UFIO!; v(A) = A~V isC* differentiable,
k = min(r,t)

the right multiplications R4 : UFIO! — UFIO! : Ra(B) = BA are C*
differentiable, for any A € UF IO

the left multiplications Ly : UFIO' — UFIO! : La(B) = AB are C°
(continuous), for any A € UFIO.

8. Applicationsto Fluid Dynamics and Quantization

We briefly discuss some applications to fluid dynamics, the periodic and non-
periodic KdV equations, the classical, topological and non-homogeneous Euler
equations, as well as quantization. Some of this work is still in progress.

8.1. TheKdV Equation and the Group of Fourier Integral Operators

The Korteweg deVries (KdV) equatiom; = 6uu, — gz, iS an infinite dimen-
sional Hamiltonian system with respect to the Poisson bracket

0F . G
(.6} w) = [ 50,5 (124)
and Hamiltonian .
H(u) = / (u + §u§)dx (125)

which means that a functiom satisfies Hamiltons equationg = {u, H} if and
only if u is a solution of the KdV equation. This was shown by Gardner and
Kruskal in 1971.

The question we asked is: Where does this Poisson bracket (124) and this Hamil-
tonian (125) come from? Is there a natural space on which this Hamiltonian sys-
tem lives? And the answer is the following:

Theorem 41. (Adams, Ratiu and Schmid [1])

A) The Poisson bracket (124)is the natural Lie-Poisson bracket on the coadjoint
orbit of the Lie group of invertible Fourier integral operators G = F'I1Q, through
the Schrodinger operator.

B) The Kostant—Symes theorem applied to a splitting of the Lie algebra of FI(Q,,
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the space of pseudodifferential operators g = WDO gives the complete integra-
bility of KdV, i.e. the Gelfand-Dikii family of commuting integrals, including the
Hamlitonian (125)

We can only outline the ideas of the proves and refer to [1] for details.

The Kostant—-Symes Theorem [23],[40] states the following: Suppose we have
a vector space decomposition of a Lie algeprmto a direct sum of two sub-
algebras,g = h @ ¢. This gives the corresponding decomposition of the dual
g* = t- @ b which allows us to identify the dualg = ¢~ ande* = ht. We
obtain functions in involution as follows: Ldf, H : g — R be two functions
that are constant on coadjoint orbits@fn g*. Then forA € b*, {F4,Hs} =0,
whereFy and H 4 are the restriction of” and H to the coadjoint orbit ofd in .

For the KdV equation the Lie group § = FIO,(S') with Lie algebrag =
¥DO(S), whereM = S* is the unit circle. Then each pseudodifferential opera-
tor P € ¥DO,,(S") has atotal symbol of the forp(z, £) =3~ _i,, pj(x)&7.

The Lie algebrggs = ¥ DO decomposes into the two subalgebbas Y DO_ =
Um<0¥ DOy, andt = VDO, = Up,>o¥DO,,, i.e.g = h ® t becomest DO =
VDO_ e VYDO,.

We have an inner produc(tP Q) := trace (P - Q) where the trace is defined
by trace (P) := [p_i(z)dz. With this we identifiest DO* ~ ¥DO and
(YDO_ ) ~ \I/DO+ So forg =hotwegetg: =t dhtie

g* = UDO* ~ UDOL & ¥DOL ~ VDO* ® WDOL ~ VDO, @ VDO
The Lie—Poisson bracket dyi = VDO* ~ VDO, atA € YDO, becomes

(F,H}(A) = (4, [fs_i g—ﬂ> _ / (Ao B_Z (;—ZD_ldx (126)

where(...)_; means taking the ordér-1) part of the symbol.

The Lie—Poisson evolution equatioAs= { F, H} for any functionF” on & DO*
are equivalent to

A=Xy(A) = ad”%(A) = [g—i A] (127)

onvDO* ~ ¥DO,, where]...]+ means taking only the part DO, . For the
Schidinger operatord € ¥ DO, with total symbol given by:(z, ¢) = a(x) +&
the Lie—Poisson bracket of two functiof$G : Y DO* — R at A becomes

{F,G} = /5F 5G dz , which is the Gardner bracket (124)
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For the functionaldd,(A) = trace (A¥) = [(A*)_;dx, k € Nwe have

OHy k-1 OHy | _ k-17 _

SA =kA ,hence[A, 5A] =[A, kA" =0.

Thus H;, are constant on coadjoint orbits. By the Kostant-Symes theorem, re-
stricting theH), to Y DO* ~ W DO, gives the Gelfand—Dikii family of commut-

ing integrals for KdV.

N 1
We get the following integrals, for exampléh) = [adz, H; = [ §a2 dz,

1 L S
Hy = /(a3 + §a§)dx = H, which is the Gardner Hamiltoniafi25)
) 5 1
Hs = / <§a4 + Zaai + —a§x> dx etc.

8.2. TheKdV Equation and theLie Group UF IO,

We showed above that the periodic KdV equation (which describes shallow water
waves) is a Hamiltonian system on a coadjoint orbit of the Lie group of Fourier
integral operators on the compact manifdltl = S' the circle. Having done all

the work for open manifolds we proved the similar result for the non periodic KdV
equation on the real lingé/ = R.

Theorem 42. (Eichhorn and Schmid [17]Jhe non-periodic KdV equation on the
real line is a Hamiltonian system with respect to the Lie—Poisson bracket on the
coadjoint orbit through the Schrodinger operator of the infinite dimensional Lie
group of invertible Fourier integral operators G = UFIO.(R).

8.3. Hydrodynamics and the Diffeomor phism Group Diff ;" (M)

1. The Euler Equations and Diff ;" (M)

The topological Euler equations are given by

ou
Etop { E + vu(t)u(t) = gradp (128)
div, u(t) = 0.

We call these equations thiepological Euler equations becauseu is a fixed
volume form on(M™, g), not necessarily the phase space volume given by the



116 Rudolf Schmid

Riemannian metrig. So we have two different volume forms @r. The covari-
ant derivativeV = V9 is taken with respect to the Riemannian meirievhereas
the divergence div= div,, defined byLxu = (div,X)u, is the divergence with
respect tqu. The vector field: = u(x,t) is a time dependern@! vector field on
(M™,g). Thenu(t) defines a 1-parameter family of diffeomorphishslefined
by

(ZZS‘SZt = u(t) o fy (129)
We have the analogoues result as discussed in Section 4.1, Theorem 11 ( Ebin—
Marsden) for non-compact manifolds.

Theorem 43. (Eichhorn and Schmid [15Rssume (M™, g) is an open Rieman-
nian manifold satisfying I) and By). Then wu(t) satisfies the topological Euler
equations E;,,, iff { f;}; isageodesicin Diﬁff””(M).

Theclassical Euler equations for an incompressible, homogeneous fluid without
viscosity are a special case with= dwvol,(g) the volume of the Riemannian
metricg andV = V9, div = divgy, (g)-

2. The Non-Homogeneous Euler Equations

The non-homogeneous Euler equations with a mass density(z,t) > 0 are
given by

ou

ot

Eng § Op

ot

1
+ Vypu(t) = ;gradp

+gradp-u = 0 (130)

div, u(t) = 0.

If p = constant these are the classical homogeneous Euler equationg. =For
1(g) the corresponding equations diiff;, (1) arenot right invariant, i.e. they
are not derivable from Arnold’s method as above. But if we take p,u(g) as
volume form, then we have the following

Theorem 44. (Eichhorn and Schmid [17]x(¢) is a solution of Exg < (fi):
the flow of u(t) is a geodesic on Diff;, (M) and p(z,t) = po(f71(x)), where the
volume formis ii = pou(g).

Proof: One needs a generalization of the Hodge decomposition theorem with
densities for open manifolds (work in progress).
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8.4. ¥ DO and Quantization

Another interpretation of the exact sequences of Lie groups (99) and their Lie
algebras (100) discussed in Section 6 leads to quantization

[ — (UDOy)* &> (FIO)% 2= Diff(T* M) — ¢ (131)
0 — WDOy < WDO; > CX(T*M) — 0. (132)

For P € WDO; its principal symbolr(P) :T*M — R is a smooth function, ho-
mogeneous of degreel. Hencer(P) € C3(T*M). Moreoverr is a surjective
Lie algebra homomorphism
1

7([P,Q)) = {r(P), 7(Q)}. (133)
That means the commutator bracket of the operators corresponds to the Poisson
brackets of their principal symbols, which meapsntization of C39 (7% M) via
UDO,!
Consider the Lie subalgebiaO; C ¥ DO, of all differential operators of order
1 which is isomorphic to the space of all smooth vector filed\éni.e. DO, =
X°°(M). We consider a vector field on M as a pseudodifferential operator of
order 1. Locally we haveX = 5~ X7 (x)ai, hence its principal symbol is given

Lj

by 7(X) =" X7¢; and we writeX as pseudodifferential operator

Xu(z) = (2m)™" / / V(X )u(y)dydé. (134)

Consider the Lie subalgebia(T* M) C jﬁ(T*M) of all smooth functions on
T*M linear on each fibef*M. Locally f € L(T*M) is of the form f(x,¢) =

> ()¢5

Theorem 45. (Schmid [37]) The symbol map 7 induces a Lie algebra isomor-
phism 7 : X*°(M) — L(T*M) : n(X) - ap =iag - X(x),xr € M,a, € TxM

71X, Y]) = T{n(X), 7(V)}.

This meanguantization of L(T*M) via X*°(M).
In general, by Egorov’s theorem we have the following: For Anye C°(T*M)

defineP, @ € ¥ DO such thatP has principal symbaf and@ has principal sym-
bol g. Then the principal symbol d, Q] if {f, g}.

References: Because of space limitations we give only a short, incomplete list of
references, but more detailed references can be found in the papers listed below.
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