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FUNCTIONAL EQUATION FOR THE MORDELL-TORNHEIM
MULTIPLE ZETA-FUNCTION

Takuya Okamoto, Tomokazu Onozuka

Abstract: We show a relation between the Mordell-Tornheim multiple zeta-function and the
confluent hypergeometric function, and using it, we give the functional equation for the Mordell-
Tornheim multiple zeta-function. In the double case, the functional equation includes the known
functional equation for the Euler-Zagier double zeta-function.

Keywords: Mordell-Tornheim multiple zeta-function, functional equation, confluent hypergeo-
metric function.

1. Introduction

Let r be a positive integer, sj be complex numbers for j = 1, 2, . . . , r + 1, and
i =
√
−1 in this paper.

Matsumoto [8] introduced the Mordell-Tornheim multiple zeta-function

ζMT,r(s1, . . . , sr; sr+1) =

∞∑
m1,...,mr=1

1

ms1
1 · · ·m

sr
r (m1 + · · ·+mr)sr+1

(1.1)

which is absolutely convergent in a certain region (see Lemma 2.1). In the case
r = 2, this series (1.1) was introduced by Tornheim [12] and he studied its values
when these complex variables are integers in the region of absolute convergence.
Also Mordell [10] independently considered the case s1 = s2 = s3 of the above
sum, and studied the values of the following multiple sum:

∞∑
m1,...,mr=1

m−1
1 · · ·m−1

r (m1 + · · ·+mr + a)−1,
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where a > −r. Also Matsumoto [8] proved that (1.1) can be continued mero-
morphically to Cr+1 by the Mellin-Barnes integral formula and he determined the
possible singularities of (1.1).

The major purpose of this paper is to study the functional equation for (1.1).
In the case of the Euler-Zagier double zeta-function which is defined by

ζEZ,2(s1, s2) =

∞∑
m,n=1

1

ms1(m+ n)s2
, (1.2)

the functional equation has been studied by Matsumoto [9]. We also note that
(1.2) is absolutely convergent when <s2 > 1, <s1 +<s2 > 2 ([8, Theorem 3]) and
can be continued meromorphically to C2 ([1, Theorem 1], [14, Theorem 5], [8]).
In [9], Matsumoto gave the following functional equation for (1.2):

Theorem 1.1 ([9, Theorem 1]). We have

g(u, v)

(2π)u+v−1Γ(1− u)
=
g(1− v, 1− u)

iu+v−1Γ(v)
+ 2i sin

(π
2

(u+ v − 1)
)
F+(u, v), (1.3)

where u, v are complex variables and F+(u, v), g(u, v) are defined by

F+(u, v) =

∞∑
k=1

σu+v−1(k)Ψ(v, u+ v; 2πik), (1.4)

g(u, v) = ζEZ,2(u, v)− Γ(1− u)

Γ(v)
Γ(u+ v − 1)ζ(u+ v − 1), (1.5)

respectively. Also we put σl(k) =
∑
d|k d

l and the confluent hypergeometric func-
tion

Ψ(a, c;x) =
1

Γ(a)

∫ ∞eiφ
0

e−xyya−1(1 + y)c−a−1dy, (1.6)

where <a > 0, −π < φ < π, |φ+ arg x| < π/2.

The infinite series on the right-hand side of (1.4) is convergent only in the
region <u < 0, <v > 1. However it can be continued meromorphically to C2

and satisfies a good functional equation ([9, Proposition 2]). The function g(u, v)
is a modified function of (1.2), and the equation (1.3) implies that g(u, v) has a
relation at two points (u, v) and (1 − v, 1 − u), thus the above theorem can be
regarded as a functional equation for the Euler-Zagier double zeta-function. Fur-
thermore, we have to note that Matsumoto gave the generalization of Theorem 1.1
([9, Theorem 2]).

In the present paper, we discuss the same type of functional equation for the
Mordell-Tornheim multiple zeta-function. We have to prepare some functions to
state the main theorem. First we introduce two divisor functions

σa(`1, . . . , `r) =
∑

d|`1,...,d|`r

da
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and

σMT,r(s1, . . . , sr, sr+1; `1, . . . , `r) =
∑

d1|`1,...,dr|`r

ds11 · · · dsrr (d1 + · · ·+ dr)
sr+1 ,

where `1, . . . , `r are positive integers and a is a complex number. We call σa and
σMT,r by r-divisor function and Mordell-Tornheim r-divisor function, respectively.
These functions fulfill an important role in the present paper.

We also introduce two functions

F±r (s1, . . . , sr+1) =

∞∑
`1,...,`r−1=1

σs1+···+sr+1−1(`1, . . . , `r−1)

`s11 · · · `
sr−1

r−1

×Ψ(sr+1, sr + sr+1;±2πi(`1 + · · ·+ `r−1)) (1.7)

which performs the same role as (1.4) and this function is absolutely convergent
when <sj > 1, <sr < 0 and <sr+1 > 0 for 1 6 j 6 r − 1 (see Theorem 3.3).
Moreover, it can be continued meromorphically to Cr+1 (see Theorem 3.4). Fur-
thermore, we put

gr(s1, . . . , sr+1) =
1∏r+1

j=1 Γ(sj)

∫ ∞
0

ysr+1−1

×

r−1∏
j=1

f(sj , y)

∫ ∞
0

xsr−1h(xr + y)dxr

 dy, (1.8)

where f(s, y) =

∫ ∞
0

xs−1

ex+y − 1
dx and h(z) = 1/(ez − 1) − 1/z. This function

performs the same role as (1.5) and can be continued meromorphically to the whole
Cr+1 space (see Theorem 3.4). Then we have the functional equation for (1.8).

Theorem 1.2.
We have

gr(−s1, . . . ,−sr−1, 1− sr+1, 1− sr)
isr+sr+1−1Γ(sr+1)

+ e
πi
2 (sr+sr+1−1)F+

r (s1, . . . , sr+1) + e−
πi
2 (sr+sr+1−1)F−r (s1, . . . , sr+1)

=
gr(s1, . . . , sr−1, sr, sr+1)

(2π)sr+sr+1−1Γ(1− sr)

+ e−
πi
2 (sr+sr+1−1)

∞∑
`1,...,`r−1=1

σMT,r−1(s1, . . . , sr−1, sr + sr+1 − 1; `1, . . . , `r−1)

×
{

Ψ(sr+1, sr + sr+1; 2πi(`1 + · · ·+ `r−1))

+ Ψ(sr+1, sr + sr+1;−2πi(`1 + · · ·+ `r−1))
}
.
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In Section 3, we will prove

gr(s1, . . . , sr+1) = ζMT,r(s1, . . . , sr; sr+1)

− Γ(1− sr)Γ(sr + sr+1 − 1)

Γ(sr+1)
ζMT,r−1(s1, . . . , sr−1; sr + sr+1 − 1). (1.9)

Hence, by (1.9), we are able to regard this theorem as the functional equation
for the Mordell-Tornheim multiple zeta-function. Hence Theorem 1.2 is the main
theorem in the present paper. Also, we note that Theorem 1.2 is a generalization
of Theorem 1.1. Indeed, we will give the equation

g2(s1, s2, s3) = ζMT,2(s1, s2; s3)− Γ(1− s2)Γ(s2 + s3 − 1)

Γ(s3)
ζMT,1(s1; s2 + s3 − 1)

by (1.9). Hence we have

g2(0, s1, s2) = g(s1, s2) (1.10)

since ζMT,2(0, s1; s2) = ζEZ,2(s1, s2) and ζMT,1(0; s1 + s2 − 1) = ζ(s1 + s2 − 1).
Moreover, we have

F±2 (0, s1, s2) =

∞∑
`=1

σs1+s2−1(`)Ψ(s2, s1 + s2;±2πi`) (1.11)

and

σMT,1(0, s1 + s2 − 1; `) = σs1+s2−1(`). (1.12)

Substituting (1.10), (1.11) and (1.12) to Theorem 1.2, we obtain Theorem 1.1.
We have to study (1.8) and show the relation between the Mordell-Tornheim

multiple zeta-function and the confluent hypergeometric function (see Theorem 3.3)
to prove Theorem 1.2. Moreover, to show the relation, we have to use the residue
of calculus around the contour C(R) and D(R) (see proof of Theorem 3.2). The
same type of the residue calculus in the present paper has been often applied to
study the functional equation (e.g., [3], [6], [7] and [9]).

Also (1.1) relates with the zeta-function of the root system of type Ar defined
by

ζr(s;Ar) =

∞∑
m1,...,mr=1

∏
16i<j6r+1

(mi + · · ·+mj−1)−sij ,

where s = (sij) ∈ Cr(r+1)/2. In fact, we have

ζr(s;Ar) = ζMT,r(s12, . . . , sr,r+1; s1,r+1),
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where s = (s12, s23, s34, . . . , sr,r+1, s1,r+1, 0, . . . , 0). Especially, the zeta-function
of the root system of type A2 is identical with the Mordell-Tornheim double zeta-
function. The zeta-function of the root system is introduced by Komori, Mat-
sumoto and Tsumura [5] and this function is a generalization of the Witten zeta-
function introduced by Witten [13] which is an important function in mathematical
physics. Hence it is valuable that we study the functional equation for (1.1) in
this viewpoint.

In the next section, we give two lemmas to prove Theorem 3.4 which implies
that gr(s1, . . . , sr+1) can be continued meromorphically to the whole Cr+1. The-
orem 3.4 is one of the most important theorem to prove Theorem 1.2.

2. The region of absolute convergence and convolution for ζMT,r

First we give the region of absolute convergence for (1.1). This is the generalization
of Theorem 2.2 in [11].

Lemma 2.1. The series (1.1) is absolutely convergent when

j∑
`=1

<sk` + <sr+1 > j

with 1 6 k1 < k2 < · · · < kj 6 r for any j = 1, 2, . . . , r.

Proof. We prove this theorem by induction. In the case r = 2, this theorem
is Theorem 2.2 in [11]. Hence we assume the validity of Lemma 2.1 in the case
r = k, and we will prove Lemma 2.1 in the case r = k + 1. By Lemma 2.1 in [11]
as n = mk+1 and m = m1 + · · ·+mk, we have

|ζMT,k+1(s1, . . . , sk+1; sk+2)|

�
∞∑

m1,...,mk=1

1

m<s11 · · ·m<skk

∞∑
mk+1=1

1

m
<sk+1

k+1 (m1 + · · ·+mk+1)<sk+2

�



∞∑
m1,...,mk=1

1

m<s11 · · ·m<skk (m1 + · · ·+mk)<sk+2

(<sk+1 > 1)

∞∑
m1,...,mk=1

log(m1 + · · ·+mk)

m<s11 · · ·m<skk (m1 + · · ·+mk)<sk+2

(<sk+1 = 1)

∞∑
m1,...,mk=1

1

m<s11 · · ·m<skk (m1 + · · ·+mk)<sk+1+<sk+2−1
(<sk+1 < 1).

By the assumption of Lemma 2.1 in the case r = k, we obtain Lemma 2.1 when
r = k + 1. �
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Next we introduce a convolution of the multiple zeta-function. We put

ζMT,r(s1, . . . , sr; sr+1; f) =

∞∑
m1,...,mr=1

f(m1, . . . ,mr)

ms1
1 · · ·m

sr
r (m1 + · · ·+mr)sr+1

,

where f is a multi-variable arithmetic function.

Lemma 2.2. Let a be a complex number. Then, in the region

<sk1 + <sr+1 > 1 (1 6 k1 6 r),

<sk1 + <sk2 + <sr+1 > 2 (1 6 k1 < k2 6 r),

· · ·
<sk1 + <sk2 + · · ·+ <skr−1

+ <sr+1 > r − 1 (1 6 k1 < k2 < · · · < kr−1 6 r),

<s1 + <s2 + · · ·+ <sr+1 > max{r,<a+ 1},

we have

ζ(s− a)ζMT,r(s1, . . . , sr; sr+1) = ζMT,r(s1, . . . , sr; sr+1;σa(m1, . . . ,mr)),

where s = s1 + · · ·+ sr+1.

Proof. In the above region, ζMT,r(s1, . . . , sr; sr+1) and ζ(s − a) are absolutely
convergent by Lemma 2.1. Hence we have

ζ(s− a)ζMT,r(s1, . . . , sr; sr+1)

=

∞∑
n,m1,...,mr=1

na

(nm1)s1 · · · (nmr)sr (nm1 + · · ·+ nmr)sr+1

=

∞∑
`1,...,`r=1

∑
n|`1,...,n|`r n

a

`s11 · · · `
sr
r (`1 + · · ·+ `r)sr+1

.

Therefore we obtain this lemma. �

3. Integral expression for ζMT,r and the properties of gr

We give the following integral expression for (1.1).

Theorem 3.1. In the region <sj > 1 and <sr+1 > 0 for 1 6 j 6 r, we have

ζMT,r(s1, . . . , sr; sr+1) =
1∏r+1

j=1 Γ(sj)

∫ ∞
0

ysr+1−1

 r∏
j=1

f(sj , y)

 dy, (3.1)

where f(s, y) =

∫ ∞
0

xs−1

ex+y − 1
dx for y > 0 and s ∈ C with <s > 1.
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Proof. First we assume <sj > 1 and <sr+1 > 0 for 1 6 j 6 r. For 1 6 j 6 r, we
have

Γ(sj)

∞∑
mj=1

e−mjym
−sj
j = f(sj , y). (3.2)

By (3.2), we have

r+1∏
j=1

Γ(sj)

∞∑
m1,...,mr=1

m−s11 · · ·m−srr (m1 + · · ·+mr)
−sr+1

=

∫ ∞
0

ysr+1−1

 r∏
j=1

f(sj , y)

 dy.

This equality is justified since <sj > 1 and <sr+1 > 0 for 1 6 j 6 r. Hence we
obtain Theorem 3.1. �

Next, using the function h(z) = 1/(ez−1)−1/z, we divide the right-hand side
of (3.1) in order to deform the path of the integral. We have

ζMT,r(s1, . . . , sr; sr+1)

=
1∏r+1

j=1 Γ(sj)

∫ ∞
0

ysr+1−1

r−1∏
j=1

f(sj , y)

∫ ∞
0

xsr−1
r h(xr + y)dxr

 dy

+
1∏r+1

j=1 Γ(sj)

∫ ∞
0

ysr+1−1

r−1∏
j=1

f(sj , y)

∫ ∞
0

xsr−1
r

xr + y
dxr

 dy

= gr(s1, . . . , sr+1) + g∗r (s1, . . . , sr+1), (3.3)

say. Using (3.1) and the reflection formula∫ ∞
0

xsr−1
r

xr + y
dxr = ysr−1Γ(sr)Γ(1− sr),

we have

g∗r (s1, . . . , sr+1) =
Γ(1− sr)

Γ(sr+1)
∏r−1
j=1 Γ(sj)

∫ ∞
0

ysr+sr+1−2

r−1∏
j=1

f(sj , y)

 dy

=
Γ(1− sr)Γ(sr + sr+1 − 1)

Γ(sr+1)

× ζMT,r−1(s1, . . . , sr−1; sr + sr+1 − 1). (3.4)

Substituting (3.4) to (3.3), we obtain (1.9).
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Now we start to consider the functional equation for (1.8). We first deform
the path to the contour C, which consists of the half-line on the positive real axis
from infinity to a small positive number, a small circle counterclockwise round the
origin and the other half-line on the positive real axis back to infinity. We also
remark that = log xr varies from 0 to 2π round C. Hence we have

gr(s1, . . . , sr+1) =
1

(e2πisr − 1)
∏r+1
j=1 Γ(sj)

×
∫ ∞

0

ysr+1−1

∫
C

xsr−1
r h(xr + y)dxr

r−1∏
j=1

f(sj , y)

 dy.

The right-hand side of the above equality is absolutely convergent when <sr+1 > 0,
<sr < 1 and <sj > 1 for 1 6 j 6 r − 1. In fact, by the following estimate in [4],

h(x+ y) = O(e−K|x| + (|x|+ 1)−1), (3.5)

which holds with a positive absolute constant K, uniformly for any x, y ∈ C ∪
[0,∞), we obtain ∫

C

xsr−1
r h(xr + y)dxr = O(1) (3.6)

when <sr < 1. Also, for <s > 1, we have

f(s, 0) = O(1) (3.7)

since

1

ex − 1
�

{
x−1 if 0 < x 6 2,
e−x if x > 2.

Then, in the region <sr+1 > 0, <sr < 1 and <sj > 1 for 1 6 j 6 r − 1, we
have

gr(s1, . . . , sr+1)�
∫ ∞

0

y<sr+1−1f(<s1, y)dy � 1,

where the first estimate is justified by (3.6) and (3.7), and the second follows from

f(s, y)�

{
1 if 0 < y 6 2,
e−y if y > 2

(3.8)

for <s > 1.
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Next, changing the path of the integral in xr, we obtain the following theorem:

Theorem 3.2. In the region <sj > 1, <sr < 0 and <sr+1 > 0 for 1 6 j 6 r − 1,
we have

gr(s1, . . . , sr+1) =
−2πi

(e2πisr − 1)
∏r+1
j=1 Γ(sj)

∑
n 6=0

Ir(n), (3.9)

where

Ir(n) =

∫ ∞
0

ysr+1−1(−y + 2πin)sr−1

r−1∏
j=1

f(sj , y)

 dy. (3.10)

Proof. First, by the residue theorem, we obtain

∫ R/2

0

ysr+1−1

∫
C(R)

xsr−1
r h(xr + y)dxr

r−1∏
j=1

f(sj , y)

 dy

+

∫ R/2

0

ysr+1−1

∫
D(R)

xsr−1
r h(xr + y)dxr

r−1∏
j=1

f(sj , y)

 dy

= −2πi

∫ R/2

0

ysr+1−1
∑

|n|6N,n6=0

(−y + 2πin)sr−1

r−1∏
j=1

f(sj , y)

 dy (3.11)

where R = 2π(N + 1/2) for a sufficiently large positive integer N , the contour
C(R) consists of the half-line on the positive real axis from −y + R to a small
positive number, a small circle counterclockwise round the origin and the other
half-line on the positive real axis back to −y + R and the contour D(R) consists
of a circle of the radius R clockwise round −y.

By the above argument, we have

∫ R/2

0

ysr+1−1

∫
C(R)

xsr−1
r h(xr + y)dxr

r−1∏
j=1

f(sj , y)

 dy

→
∫ ∞

0

ysr+1−1

∫
C

xsr−1
r h(xr + y)dxr

r−1∏
j=1

f(sj , y)

 dy (R→∞) (3.12)

in the region <sj > 1, <sr < 1 and <sr+1 > 0 for 1 6 j 6 r − 1.
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Next we estimate the second term on the left-hand side of (3.11). By (3.7) and
(3.8), we have

∫ R/2

0

ysr+1−1

∫
D(R)

xsr−1
r h(xr + y)dxr

r−1∏
j=1

f(sj , y)

 dy

� R<sr

(∫ 2

0

y<sr+1−1dy +

∫ R/2

2

y<sr+1−1e−ydy

)
� R<sr → 0 (R→∞) (3.13)

in the region <sj > 1, <sr < 0 and <sr+1 > 0 for 1 6 j 6 r − 1.
Lastly we consider the right-hand side of (3.11). In the region <sj > 1, <sr < 0

and <sr+1 > 0 for 1 6 j 6 r − 1, we obtain

∫ ∞
0

ysr+1−1
∑
n 6=0

(−y + 2πin)sr−1

r−1∏
j=1

f(sj , y)

 dy

�
∫ 2

0

y<sr+1−1
∞∑
n=1

|−y + 2πin|<sr−1dy

+

∫ ∞
2

y<sr+1−1
∞∑
n=1

e−y|−y + 2πin|<sr−1dy

�
∫ 2

0

y<sr+1−1dy

∞∑
n=1

n<sr−1 +

∫ ∞
2

y<sr+1−1e−ydy

∞∑
n=1

n<sr−1 � 1 (3.14)

by (3.7) and (3.8). Hence we have

− 2πi

∫ R/2

0

ysr+1−1
∑

|n|6N,n6=0

(−y + 2πin)sr−1

r−1∏
j=1

f(sj , y)

 dy

→ −2πi

∫ ∞
0

ysr+1−1
∑
n 6=0

(−y + 2πin)sr−1

r−1∏
j=1

f(sj , y)

 dy (R→∞)

(3.15)

in the region <sj > 1, <sr < 0 and <sr+1 > 0 for 1 6 j 6 r − 1.
Therefore we obtain Theorem 3.2 by (3.12), (3.13) and (3.15). �

Now we assume <sj > 1, <sr < 0 and <sr+1 > 0 for 1 6 j 6 r − 1. Then,
in the case n > 0, by (3.2) and changing the variable of the integral for Ir(n) by
y = e−πi/22πny′, we obtain by using (1.6) with x = 2πn(m1 + · · ·+mr−1)e−πi/2
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and φ = π/2 that

∑
n>0

Ir(n) =

∞∑
n=1

r−1∏
j=1

Γ(sj)

 ∞∑
m1,...,mr−1=1

m−s11 · · ·m−sr−1

r−1

×
∫ ∞

0

ysr+1−1(−y + 2πin)sr−1e−(m1+···+mr−1)ydy

= (2π)sr+sr+1−1eπi(sr−sr+1−1)/2

r−1∏
j=1

Γ(sj)


× Γ(sr+1)

∞∑
m1,...,mr−1=1

m−s11 · · ·m−sr−1

r−1

×
∞∑
n=1

nsr+sr+1−1Ψ(sr+1, sr + sr+1;−2πin(m1 + · · ·+mr−1)).

Similarly, in the case n < 0, changing the variable y = 2πeπi/2|n|y′ in the integral
for Ir(n) and using (1.6) with x = 2π|n|(m1 + · · ·+mr−1)eπi/2 and φ = −π/2 we
obtain∑

n<0

Ir(n) = −(2π)sr+sr+1−1eπi(3sr+sr+1−1)/2

r−1∏
j=1

Γ(sj)


× Γ(sr+1)

∞∑
m1,...,mr−1=1

m−s11 · · ·m−sr−1

r−1

×
∞∑
n=1

nsr+sr+1−1Ψ(sr+1, sr + sr+1; 2πin(m1 + · · ·+mr−1)).

Hence, using the formula

1

Γ(sr)(e2πisr − 1)
=

Γ(1− sr)
2πieπisr

,

we obtain

gr(s1, . . . , sr+1) = (2π)sr+sr+1−1Γ(1− sr)
∞∑

m1,...,mr−1=1

m−s11 · · ·m−sr−1

r−1

×
{
e−πi(sr+sr+1−1)/2

∞∑
n=1

nsr+sr+1−1

×Ψ(sr+1, sr + sr+1;−2πin(m1 + · · ·+mr−1))

+ eπi(sr+sr+1−1)/2
∞∑
n=1

nsr+sr+1−1

×Ψ(sr+1, sr + sr+1; 2πin(m1 + · · ·+mr−1))
}
. (3.16)
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We remark that the definition of the confluent hypergeometric function Ψ is
given by (1.6). Then, putting `j = mjn and changing the sum on the right-hand
side of (3.16), we can express (1.8) in terms of (1.7):

Theorem 3.3. In the region <sj > 1, <sr < 0 and <sr+1 > 0 for 1 6 j 6 r − 1,
we have

gr(s1, . . . , sr+1) = (2π)sr+sr+1−1Γ(1− sr)

×
(
eπi(sr+sr+1−1)/2F+

r (s1, . . . , sr+1) + e−πi(sr+sr+1−1)/2F−r (s1, . . . , sr+1)
)
.

(3.17)

Recalling (1.7) and (1.9), Theorem 3.3 shows the relation between the Mordell-
Tornheim multiple zeta-function and the confluent hypergeometric function. Now
we have to consider the analytic continuation for (1.8) to give the functional equa-
tion for (1.8).

Theorem 3.4. The functions F±r (s1, . . . , sr+1) and gr(s1, . . . , sr+1) can be con-
tinued meromorphically to the whole space Cr+1.

Note that the region where Theorem 3.3 is valid can be extended to the whole
space by Theorem 3.4.

Proof of Theorem 3.4. First we assume <sj > 1, <sr < 0 and <sr+1 > 0 for
1 6 j 6 r − 1. Then, by Theorem 3.3, it is sufficient to show that F±r can be
continued meromorphically to the whole Cr+1.

Applying the formula (cf. [2, 6.5 (6)])

Ψ(a, c;x) = x1−cΨ(a− c+ 1, 2− c;x) (3.18)

to (1.7), we obtain

F±r (s1, . . . , sr+1)

= (±2πi)1−sr−sr+1

∞∑
`1,...,`r−1=1

σs1+···+sr+1−1(`1, . . . , `r−1)

`s11 · · · `
sr−1

r−1 (`1 + · · ·+ `r−1)sr+sr+1−1

×Ψ(1− sr, 2− sr − sr+1;±2πi(`1 + · · ·+ `r−1)). (3.19)

We remark that we have the asymptotic expansion (cf. [2, 6.13.1 (1)])

Ψ(a, c;x) =

N−1∑
k=0

(−1)k(a− c+ 1)k(a)k
k!

x−a−k + ρN (a, c;x), (3.20)

where N is an arbitrary non-negative integer, (a)k = Γ(a+ k)/Γ(k) and

ρN (a, c;x)

=
(−1)N (a− c+ 1)N

Γ(a)

∫ ∞eiφ
0

e−xyya+N−1

∫ 1

0

(1− τ)N−1

(N − 1)!
(1+τy)c−a−N−1dτdy.
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Applying (3.20) to (3.19) and using Lemma 2.2, we obtain

F±r (s1, . . . , sr+1)

=

N−1∑
k=0

(−1)k(sr+1)k(1− sr)k
(±2πi)sr+1+kk!

ζMT,r−1(s1, . . . , sr−1; sr+1 + k)ζ(−sr + 1 + k)

+ (±2πi)1−sr−sr+1

∞∑
`1,...,`r−1=1

σs1+···+sr+1−1(`1, . . . , `r−1)

`s11 · · · `
sr−1

r−1 (`1 + · · ·+ `r−1)sr+sr+1−1

× ρN (1− sr, 2− sr − sr+1;±2πi(`1 + · · ·+ `r−1)). (3.21)

Applying the estimate (cf. [7, (6.2)])

|ρN (1− sr, 2− sr − sr+1;±2πi(`1 + · · ·+ `r−1))|

6
|(sr+1)N |Γ(−<sr +N + 1)

N !|Γ(1− sr)|
eπ(|=sr|+|=sr+1|)/2(2π(`1 + · · ·+ `r−1))<sr−N−1,

where <sr < N + 1 and <sr+1 > −N , to the second term on the right-hand side
of (3.21) and using Lemma 2.2, we have

(±2πi)1−sr−sr+1

∞∑
`1,...,`r−1=1

σs1+···+sr+1−1(`1, . . . , `r−1)

`s11 · · · `
sr−1

r−1 (`1 + · · ·+ `r−1)sr+sr+1−1

× ρN (1− sr, 2− sr − sr+1;±2πi(`1 + · · ·+ `r−1))

� |(sr+1)N |Γ(−<sr +N + 1)

N !|Γ(1− sr)|
eπ(|=sr|+|=sr+1|)

× ζMT,r−1(<s1, . . . ,<sr−1;<sr+1 +N)ζ(−<sr + 1 +N).

Hence the second term on the right-hand side of (3.21) is convergent absolutely
when <sr < N and

j∑
`=1

<sk` + <sr+1 > j −N

with 1 6 k1 < k2 < · · · < kj 6 r − 1 for any j = 1, 2, . . . , r − 1 by Lemma 2.1.
Since N is arbitrary, F±r (s1, . . . , sr+1) can be continued meromorphically to the
whole space Cr+1. �

Lastly we give the proof of Theorem 1.2.

Proof of Theorem 1.2. . By Theorem 3.4, gr(s1, . . . , sr+1) can be continued
meromorphically to the whole Cr+1. Hence, changing (s1, . . . , sr−1, sr, sr+1) by
(−s1, . . . ,−sr−1, 1 − sr+1, 1 − sr) in (3.19) and then rearranging the lj sum on
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putting lj = dmj (j = 1, 2, . . . , r − 1), we have

gr(−s1, . . . ,−sr−1, 1− sr+1, 1− sr)

= Γ(sr+1)×
{ ∞∑
`1,...,`r−1=1

σMT,r−1(s1, . . . , sr−1, sr + sr+1 − 1; `1, . . . , `r−1)

×Ψ(sr+1, sr + sr+1;−2πi(`1 + · · ·+ `r−1))

+

∞∑
`1,...,`r−1=1

σMT,r−1(s1, . . . , sr−1, sr + sr+1 − 1; `1, . . . , `r−1)

×Ψ(sr+1, sr + sr+1; 2πi(`1 + · · ·+ `r−1))
}
. (3.22)

By (3.17) and (3.22), we obtain Theorem 1.2. �
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