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EXACT DIVISORS OF POLYNOMIALS WITH PRIME VARIABLE

Eira J. Scourfield

In memory of Heini Halberstam

Abstract: In 1952 Paul Erdős obtained upper and lower bounds of the same order of magnitude
for the number N(x) of divisors of an irreducible polynomial f(n) with integer coefficients for
n up to x; an asymptotic formula for N(x) when f has degree at least 3 has not yet been
established. However progress has been made in the corresponding problem when the divisors of
f(n) are restricted in some way and f is not necessarily irreducible. In this paper we consider
a polynomial f with integer coefficients that may not be irreducible or squarefree. Our aim is to
obtain an asymptotic formula for the number of exact divisors up to y of f(p) for p a prime less
than x with y as large as possible in terms of x. We utilize the result that Vaughan established
for his elementary proof of the Bombieri-Vinogradov Theorem.

Keywords: exact divisors, polynomials with prime variable, Siegel-Walfisz theorem, Bombieri-
Vinogradov theorem.

1. Introduction

Let f ∈ Z[x] where f is not necessarily irreducible but the degree of each irre-
ducible factor is at least 2. Many authors have investigated problems concerning
the divisors of f(n) for n 6 x. A key result is due to Paul Erdős [2] who proved
using complicated elementary techniques that if f is irreducible then

x log x�
∑
n6x

τ(f(n))� x log x

where τ(k) is the number of positive divisors of k. When f is an irreducible
quadratic polynomial an asymptotic formula for this sum was established by Bell-
man and Shapiro (see [2]) and studied further in [5], [6], [7], [8], [12] but to the
author’s knowledge no corresponding asymptotic formula has been established for
irreducible f of degree at least 3. However it is sometimes possible to derive an
asymptotic formula for the number of divisors of f(n) for n 6 x satisfying an
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additional property. When f =

l∏
i=1

fi where the fi are pairwise coprime and of

degree at least 2 we proved in [13] that∑
n6x

#{m 6 x : m|f(n)} = Cx(log x)l
(

1 + O

(
1

log x

))
(1.1)

where C is a constant, and we obtained an asymptotic formula for the correspond-
ing sum when P (m) := max

p|m
p 6 y, valid for y > exp((log log x)

5
3 +ε) with ε > 0, so

m is a smooth or friable divisor of f(n). The proof of this latter result is related
to and depends on ideas in [4] by Hanrot, Tenenbaum and Wu.

If d|k and (d, kd ) = 1, d is called an exact divisor of k and we write d ‖ k.
In this paper we consider divisors and exact divisors up to y = y(x) of f(p) for
a general polynomial f over the integers and p a prime 6 x. For the simplest case
considering the divisors of f(p) = p − a, Linnik used his dispersion method to
establish that

∑
a<p6x

τ(p − a) ∼ Ex where the constant E depends on a. Using

Bombieri’s Theorem G. Rodriguez [11] and H. Halberstam [3] gave independently
a much simpler proof of this result obtaining an error term O(x log log x

log x ). Our
results below concern polynomials

f =

l∏
i=1

frii

where each fi ∈ Z[x], is irreducible and of degree > 2, the fi are pairwise coprime,
and 1 6 r1 6 ... 6 rl. Our main aim is to investigate the exact divisors 6 y of f(p)
for primes p 6 x, with y as large as possible in terms of x, but we also look at the
analogous problem for the divisors of f(p). As is usual in this type of problem we
utilize the von Mangoldt function, defined by

Λ(n) =

{
log p if n = pα for α > 1,

0 otherwise.
(1.2)

Our goal is to obtain an asymptotic formula for∑
M6y

∑
n6x

M‖f(n)

Λ(n)

for M ∈ N, from which we deduce an asymptotic formula for∑
M6y

∑
p6x

M‖f(p)

1.

Our result depends on applying the Siegel-Walfisz Theorem (see Lemma 4.3) and
a result of Vaughan (see Lemma 4.4 and [15]) that he used to give an essentially
elementary proof of the Bombieri-Vinogradov Theorem.
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We denote a polynomial of degree k by Pk(.) and assume that ε > 0 is arbi-
trarily small. If r1 > 2, l > 1, let

∆ = (1− 1

lrl
+ ε), y∆ 6 x1/6(log x)−A−4. (1.3)

If r1 = 1, l > 1, let

∆ = (3− 1

lrl
+ ε), y∆ 6 x1/2(log x)−A−4. (1.4)

In both cases we assume that A > 0 is the constant in Lemma 4.3 and that
y

1
lrl
−ε � (log x)A+4.
Throughout we put

E(y) = exp(−(log y)
3
5−ε). (1.5)

Theorem 1.1. When y satisfies (1.3) or (1.4)∑
M6y

∑
p6x

M‖f(p)

log p = x(Pl(log y) + O(E(y)) + O(x(log x)−A)

where the leading coefficient of the polynomial Pl is given in (3.11).

Corollary 1.2.∑
M6y

∑
p6x

M‖f(p)

1 = li(x)(Pl(log y) + O(E(y)) + O(x(log x)−A).

The method used to prove Theorem 1.1 yields an analogous result when M ‖

f(p) is replaced by M | f(p). Let R =

l∑
i=1

ri. Suppose that for lrl > 1, y satisfies

(1.3) and for lrl = 1, ∆ = 2− 1
lrl

+ ε = 1 + ε, assume that y∆ 6 x1/2(log x)−A−4,

and that in both cases y
1
lrl
−ε � (log x)A+4.

Theorem 1.3.∑
M6y

∑
p6x

M | f(p)

log p = x(PR(log y) + O(E(y)) + O(x(log x)−A)

where the polynomial PR has degree R and leading coefficient given by (6.6).

As in the Corollary 1.2, to replace the summand log p by 1 just replace x by
li(x) in the main term.

The leading coefficients of Pl and PR depend on the residue of certain Dedekind
zeta functions at their pole s = 1.

We can ask the corresponding question when the prime variable p is replaced
by n ∈ N. The error term here is much easier to obtain, and in order to derive an
asymptotic formula the maximum value of y can be much larger.



86 Eira J. Scourfield

Theorem 1.4.

(i) Suppose 1 = r1 = ... = rj < rj+1 6 ... 6 rl for some j (0 6 j 6 l). Then

(a) ∑
M6y

∑
n6x

M‖f(n)

1 = x(Pl(log y) + O(E(y)) + O(y(log y)l+j−1);

(b) ∑
M6y

∑
n6x

M‖f(n)

1 = x(Bl(log y)l+O((log y)l−1 log log y))+O(y(log y)l−1)

for j > 0 where Bl is the leading coefficient of Pl(.).

(ii) With R =

l∑
i=1

ri as in Theorem 1.3

∑
M6y

∑
n6x

M |f(n)

1 = x(PR(log y) + O(E(y)) + O(y(log y)R−1).

We obtain an asymptotic formula in (i)(a), with main term xPl(log y), when
y(log y)l+j−1 = o(x) and in (i)(b) when y

log y = o(x); however in (b) we only have
one term of the polynomial Pl(log y). When f is irreducible, so l = j = 1, and
y = x, we obtain an asymptotic formula from (i)(b) but not from (i)(a). For an
asymptotic formula with main term xPR(log y) in (ii) we need y(log y)R−1 = o(x).
For a special case of (ii) with a weaker result see (1.1) above, and for a related
result with an analogous proof see Lemma 3.9 in [14].

When f is an irreducible quadratic polynomial it is known that∑
M

∑
n6x

M |f(n)

1 = Cx log x+ O(x)

for C a constant; see [5] for a stronger result in the special case f(n) = n2 +a, and
(1.1) and [13] for an arbitrary such f. For exact divisors of an irreducible quadratic
polynomial f, in section 7 we deduce from Theorem 1.4(i)(b)

Corollary 1.5. ∑
M

∑
n6x

M‖f(n)

1 = 2B1x log x+ O(x log log x).
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2. Notation and preliminary results

As in section 1 write f =

l∏
i=1

frii ∈ Z[x] where the fi are irreducible, have degree

> 2, are pairwise coprime and 1 6 r1 6 ... 6 rl. Let

f0 =

l∏
i=1

fi.

Throughout this paper p, q denote primes, and ε > 0 is arbitrary.

Lemma 2.1.

(i) If qα|frii (n) then qt|fi(n) with t = d αri e, so α = (t − 1)ri + βi with t > 1

and 1 6 βi 6 ri. Hence if Mi|frii (n) and Mi =
∏

qα‖Mi

qα, then mi :=∏
qα‖Mi

qt|fi(n) where t = d αri e.

(ii) There exists p0 such that if q > p0 and q|f(n) then q|fi(n) for exactly one

value of i. Hence if (M,
∏
q<p0

q) = 1 and M |f(n) then M =

l∏
i=1

Mi where

Mi|frii (n) for i = 1, ..., l and (Mi,Mj) = 1 for i 6= j.

(iii) If Mi ‖ frii (n) then mi = M
1/ri
i ∈ N and mi ‖ fi(n). Hence in (i) each

βi = ri and α = rit.

Proof. Part (ii) follows since if i 6= j then fi and fj are coprime over Q, and the
other parts are routine. �

Notation. If (M,
∏
q<p0

q) = 1 and M ‖ f(n) then M =

l∏
i=1

Mi with Mi ‖ frii (n)

and m ‖ f0(n) for m =

l∏
i=1

mi =

l∏
i=1

M
1/ri
i ∈ N.

Let Di denote the discriminant of fi and choose p0 large enough for q -
l∏
i=1

Di

when q > p0.
Define

ρi(mi) = #{n(modmi) : mi|fi(n)} (2.1)

ρ(m) = #{n(modm) : m|f0(n)}. (2.2)

Lemma 2.2.

(i) ρi(mi) is multiplicative. If q > p0, then ρi(qα) = ρi(q) for all α > 1, and
if q < p0 then ρi(qα)� 1 for all α > 1.
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(ii) If (m,
∏
q<p0

q) = 1 then ρ(m) =

l∏
i=1

∏
q|mi

ρi(q) =
∏
q|m

ρ(q).

Proof. See Theorems 53 and 54 in [9]. �

We assume throughout that M,M0 denote positive integers satisfying

(M,
∏
q<p0

q) = 1, (M0,
∏
q>p0

q) = 1, (2.3)

so (M,M0) = 1. Then our aim in Theorem 1.1 is to consider when MM0 ‖ f(p).
If q < p0 and l > 1, both q|fi(n) and q|fj(n) may hold for the same n when i 6= j,
so we need to treat M0 separately from M.

Let
λ(M) = #{n(modM) : M |f(n)}
λ(M0) = #{n(modM0) : M0|f(n)}
λ∗(M) = #{n(modM) : M ‖ f(n)}.

 (2.4)

Lemma 2.3. If 2 6 r1 6 ... 6 rl then

λ∗(M) =
M

m
ρ(m)

∏
q|m

(1− 1

q
) = ϕ(M)

ρ(m)

m
. (2.5)

Proof. Let M, m, Mi, mi be as in the notaion above; then if Mi > 1 we see that
Mi > mi since ri > 1. Let Mi =

∏
qα‖Mi

qα with ri|α, so mi =
∏
qt‖mi

qt with α = rit.

It follows that if qα ‖ frii (n) then qt|fi(n) but qt+1 - fi(n). Since by Lemma 2.2(i)
and (2.1)

#{n(mod qt+1 : qt ‖ fi(n)} = qρi(q
t)− ρi(qt+1) = (q − 1)ρi(q)

we deduce that

#{n(mod qα : qα ‖ frii (n)} = qα−(t+1)(q − 1)ρi(q) = qα−t(1− 1

q
)ρi(q).

Hence by multiplicity

λ∗(M) =

l∏
i=1

Mi

mi

∏
q|Mi

(1− 1

q
)ρi(q) = ϕ(M)

ρ(m)

m
. �

We treat the case r1 = 1 when M1 = m1 differently from that of r1 > 1. We
observe that if M ‖ f(n) then M |f(n) but for all squarefree k > 1 with k|M we
have Mk - f(n).

Lemma 2.4. Let r1 = 1 and k be as above. Then

λ(Mk) = λ(M) =
M

m
ρ(m). (2.6)
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Proof. If ri|α and qα+1|frii (n) then q
α
ri

+1|fi(n). With the above notation, it
follows that Mk|f(n)⇔ mk|f0(n), and hence

λ(Mk) = #{n(modMk) : mk|f0(n)}

=
Mk

mk
#{n(modmk) : mk|f0(n)} =

M

m
ρ(m)

since ρ(mk) =
∏
q|mk

ρ(q) = ρ(m) as k|m. �

Note: If ri - α and qα+1|frii (n) then qdα/rie|fi(n) so the above argument fails.

Lemma 2.5.

λ(M0)�M
1− 1

lrl
0

∏
qα‖M0

ec
√
α (2.7)

where c = π
√

2
3 .

Proof. If q|M0 and l > 1, we observed that both q|fi(n) and q|fj(n) may hold

when i 6= j. However if qα|f(n) then qαi |frii (n) for i = 1, ..., l with
l∑
i=1

αi = α.

Given α > 1 the number of such sets {α1, ..., αl} is at most l!p(α) � ec
√
α, c =

π
√

2
3 , where p(α) denotes the number of partitions of α into positive integers; see

Theorem 10.12 in [10]. If q < p0 and qα|f(n) with α > 1 then for at least one
partition of α of the above type

0 < #{n(mod qα) : qαi |frii (n), i = 1, ..., l.}
6 min
αi>1,16i6l

#{n(mod qα) : qαi |frii (n)}

� min
αi>1,16i6l

qα−dαi/rieρi(q
dαi/rie)� q

α(1− 1
lrl

)

since dαi/rie > αi/ri, max
16i6l

αi > α/l and ri 6 rl. Hence λ(qα) � q
α(1− 1

lrl
)
ec
√
α,

and the result of Lemma 2.5 follows for l > 1. When l = 1, (2.7) holds since

λ(M0)�M
1− 1

r1
0 . �

Corollary 2.6. Let M, k, M0 be as above and k0 be a squarefree divisor of M0.
Then

λ(MkM0k0) = λ(M)λ(M0k0) (2.8)

where λ(M0k0)�M
1− 1

lrl
+ε

0 .
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3. Generating functions

Let Ki = Q(θi) where fi(θi) = 0, so θi /∈ Q. For σ = Re s > 1 the Dedekind zeta
function ζi(s) associated with Ki is defined by

ζi(s) =
∑
a

(N(a))−s =
∏
p

(1− (N(p))
−s

)−1 (3.1)

where a denotes an ideal and p a prime ideal of Ki and N(.) denotes the norm.
ζi(s) has a simple pole at s = 1 with residue that we denote by λi.

Lemma 3.1. For a suitable choice of p0 and for σ > 1

ζi(s) =
∏
q>p0

(1− q−s)−ρi(q)hi(s) (3.2)

where hi(s) is analytic in σ > 1
2 and hi(1) > 0.

This is well known; for example, see Lemma 2 and equation (2.19) of [13].
Suppose that F (s) is a product of j Dedekind zeta functions (not necessarily

distinct), each having a simple pole at s = 1, together with a functionH(s) analytic
in σ > 1− δ for some δ (0 < δ < 1). We assume that the Dirichlet series for F (s)
in σ > 1 is of the form

F (s) =

∞∑
n=1

na(n)n−s (3.3)

where a(n) is multiplicative and non-negative. We consider several such functions
below and we require estimates for

S(y) :=
∑
n6y

na(n), T (y) :=
∑
n6y

a(n). (3.4)

Lemma 3.2.
(i) S(y) = yPj−1(log y) + O(yE(y)) (3.5)

where Pj−1 is a polynomial of degree j − 1 and E(y) is given by (1.5).
(ii)

T (y) = Pj(log y) + O(E(y)) (3.6)

where Pj has degree j and leading coefficient

1

j!
lim
s→1

(
(s− 1)jF (s)

)
. (3.7)

Proof. This follows by standard analytical methods, starting from

1

y

∫ y

1−
S(u)du =

1

2πi

∫ κ+i∞

κ−i∞
F (s)

ys

s(s+ 1)
ds = yPj−1(log y) + O(yE(y))

with κ = 1 + 1
log y , and then using that S(u) in (3.4) is non-decreasing to obtain

(3.5) and partial summation to deduce (3.6). �
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Let M, M0 be as in (2.3), m be as in the notation and k0|M0 be squarefree.

Lemma 3.3.∑
MM06y

ρ(m)

m

1

ϕ(M0)

∑
k0|M0

µ(k0)

k0
λ(M0k0) = Pl(log y) + O(E(y)) (3.8)

where the polynomial Pl of degree l has leading coefficient given in (3.11).

Proof. Let

F1(s) :=
∑
M

M

m
ρ(m)M−s =

l∏
i=1

∏
q>p0

(
1 + ρi(q)

∞∑
t=1

qt(ri−1)−tris

)

=

l∏
i=1

ζi(ri(s− 1) + 1)H1(s) (3.9)

on using (3.2), where H1(s) is analytic in σ > 1− 1
2rl
. Let

G1(s) =
∑
M0

M0

ϕ(M0)

∑
k0|M0

µ(k0)

k0
λ(M0k0)M−s0 . (3.10)

The coefficient of M−s0 is � M
1− 1

lrl
+ε

0 by Lemma 2.5 and since the sum over k0

has a bounded number of terms so M0/ϕ(M0) � 1. Hence G1(s) is analytic in
σ > 1− 1

lrl
+ ε.

We now apply Lemma 3.2(ii) to obtain (3.8) with the function in (3.3) given
by F (s) = F1(s)G1(s); by (3.7) the leading coefficient of Pl is

1

l!
lim
s→1

l∏
i=1

((s− 1)ζi(ri(s− 1) + 1))H1(s)G1(s) (3.11)

=
1

l!

l∏
i=1

λi
ri
H1(1)G1(1). �

By a similar argument we have:

Lemma 3.4. ∑
MM06y

ρ(m)

m

∏
q|m

1 + 1
q

1− 1
q

1

ϕ(M0)
M

1− 1
lrl

+ε

0 � (log y)l. (3.12)

Lemma 3.5. Let ω(m) denote the number of distinct primes dividing m.∑
MM06y

M

m
ρ(m)2ω(m)λ(M0)� y(log y)2l−1. (3.13)
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Proof. In this case the generating function F1(s) in (3.9) is replaced by

F2(s) =

l∏
i=1

∏
q>p0

(
1 + 2ρi(q)

∞∑
t=1

qt(ri−1)−tris

)
=

l∏
i=1

ζ2
i (ri(s− 1) + 1)H2(s)

with H2(s) analytic in σ > 1− 1
2rl
, and instead of G1(s) in (3.10) we use

G2(s) =
∑
M0

λ(M0)M−s0 .

Now apply Lemma 3.2(ii) again to obtain (3.13). �

Lemma 3.6.

M
ρ(m)

m
2ω(m) �M

1− 1
rl

+ε
. (3.14)

Proof. Let d = deg f0. Then since ρ(q) 6 d for each prime q > p0, ρ(m) 6 dω(m).
We now use that

ω(m) 6
logm

log2m
(1 + O(

1

log2m
)), M1/rl 6 m =

l∏
i=1

M
1/ri
i 6M1/r1

to deduce that

M

m
ρ(m)2ω(m) 6M1− 1

rl exp

(
log(2d)

logm

log2m
(1 + O(

1

log2m
))

)
6M1− 1

rl exp

(
log(2d)

r1

logM

log2M
(1 + O(

1

log2M
))

)
and now (3.14) follows. �

4. Properties of the Ψ function

The von Mangoldt function Λ(n) is defined in (1.2). Let χ denote a character and
χ0 the principal character (modK) and suppose (b,K) = 1. Define

Ψ(x; b,K) =
∑
n6x

n≡b(modK)

Λ(n), (4.1)

Ψ(x;χ) =
∑
n6x

Λ(n)χ(n). (4.2)

Lemma 4.1. Let χ(modK) be induced by the primitive character χ′. Then

Ψ(x;χ) = Ψ(x;χ′) + O((log(xK))2). (4.3)
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Lemma 4.2.

Ψ(x; b,K) =
x

ϕ(K)
+ O

 1

ϕ(K)

∑
χ 6=χ0

|Ψ(x;χ)|+ xE(x)

 (4.4)

where E(x) is given by (1.5).

For these two lemmas see, for example, section 28 of [1] where the argument
after equation (2) includes an extra term Ψ(x;χ0)− x in the sum on the right of
(4.4) above and this is � xE(x) by the prime number theorem.

Lemma 4.3 (Siegel-Walfisz Theorem). Let χ be a non-principal character
(modK) and suppose K 6 (log x)A for some A > 0. Then there exists an
ineffective constant C(A) such that

Ψ(x;χ)�A x exp(−C(A)(log x)1/2). (4.5)

See, for example, equation (3) of section 22 in [1].

Lemma 4.4. Let
∑∗

χ
denote the sum over all non-principal primitive characters

χ(modK). For Y > 1, x > 2∑
K6Y

K

ϕ(K)

∑∗

χ
max
X6x
|Ψ(X;χ)| � (x+ x5/6Y + x1/2Y 2)(log(xY )4. (4.6)

See, for example, the main Theorem in [15], or equation (2) in section 28 of [1].
Our aim is to investigate the sum∑

MM06y

∑
pα6x

MM0‖f(p)

Λ(pα).

We assume M, M0 satisfy (2.3) and consider separately the cases r1 > 1, r1 = 1.
Let δ = 1

lrl
− ε > 0, so 0 < δ < 1

2 if lrl > 2 and δ = 1 − ε when rl = l = 1.

Assume in the next two lemmas that Y δ > (log x)A+4 with A as in Lemma 4.3.

Lemma 4.5. For 0 < δ < 1
2 suppose Y 1−δ 6 x1/6(log x)−A−4 with A > 0. Then∑

K6Y

K1−δ

ϕ(K)

∑∗

χ
|Ψ(x, χ)| � x(log x)−A. (4.7)

When δ = 1 − ε with ε positive and small, then (4.7) holds for Y 1+ε 6
x1/2(log x)−A−4.

Proof. Let W = 2k for k in the range (log x)
A+4
δ < 2k 6 Y. Then by (4.6)∑

W<K62W

K1−δ

ϕ(K)

∑∗

χ
|Ψ(x, χ)| �W−δ

∑
W<K62W

K

ϕ(K)

∑∗

χ
|Ψ(x, χ)|

�W−δ(x+ x5/6W + x1/2W 2)(log(xW ))4. (4.8)
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Summing (4.8) over k in the range given above we find that

∑
(log x)(A+4)/δ<K6Y

K1−δ

ϕ(K)

∑∗

χ
|Ψ(x, χ)|

�
(

x

(log x)A+4
+ x5/6Y 1−δ + x1/2Y 2−δ

)
(log(xY ))4. (4.9)

For 0 < δ < 1
2 , min(x1/6(1−δ), x1/2(2−δ)) = x1/6(1−δ) and for δ = 1 − ε,

min(x1/6(1−δ), x1/2(2−δ)) = x1/2(1+ε), so the right side of (4.9) is � x(log x)−A

when Y satisfies the conditions in the lemma.
By (4.5) with A replaced by (A+ 4)/δ, we deduce, since

∑∗
χ has at most ϕ(K)

terms, that

∑
K6(log x)(A+4)/δ

K1−δ

ϕ(K)

∑∗

χ
|Ψ(x, χ)|

� (log x)(A+4)(2−δ)/δx exp(−C((A+ 4)/δ)(log x)1/2)

� x(log x)−A (4.10)

for x sufficiently large. The result of the Lemma 4.5 now follows from (4.9) and
(4.10). �

Lemma 4.6. For 0 < δ < 1 and Y 3−δ 6 x1/2(log x)−A−4

Y 1−δ
∑

Y <K6Y 2

1

ϕ(K)

∑∗

χ
|Ψ(x, χ)| � x(log x)−A. (4.11)

Proof. Let W = 2k for k in the range Y < 2k 6 Y 2. Then by (4.6)∑
W<K62W

1

ϕ(K)

∑∗

χ
|Ψ(x, χ)| �

( x
W

+ x5/6 + x1/2W
)

(log(xW ))4. (4.12)

Summing (4.12) over k in the range given above we have

Y 1−δ
∑

Y <K6Y 2

1

ϕ(K)

∑∗

χ
|Ψ(x, χ)| � Y 1−δ

( x
Y

+ x5/6 log Y + x1/2Y 2
)

(log(xY ))4.

(4.13)
Since min(x1/6(1−δ), x1/2(3−δ)) = x1/2(3−δ) for all δ with 0 < δ < 1, (4.11) follows
from (4.13). �

Corollary 4.7. For 0 < δ < 1 and Y 3−δ 6 x1/2(log x)−A−4

∑
K6Y 2

min(K1−δ, Y 1−δ)

ϕ(K)

∑∗

χ
|Ψ(x, χ)| � x(log x)−A. (4.14)
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This follows from Lemmas 4.5 and 4.6, and is required when r1 = 1. When
r1 > 1, Lemma 4.5 suffices.

When 2 6 r1 6 ... 6 rl we see by Lemma 2.3 that M ‖ f(n) for n lying in
λ∗(M) residue classes (modM). Let k0|M0 be squarefree, and let bj , 1 6 j 6
λ∗(M)λ(M0k0), denote the residue classes (modMM0k0) for which

M ‖ f(n), M0k0|f(n).

Lemma 4.8. When 2 6 r1 6 ... 6 rl

∑
n6x

MM0‖f(n)

Λ(n) =
∑
k0|M0

µ(k0)

λ∗(M)λ(M0k0)∑
j=1

∑
n6x

n≡bj(modMM0k0)

Λ(n). (4.15)

Now suppose r1 = 1 and k|M, k0|M0 are both squarefree. As in the re-
mark before Lemma 2.4 MM0 ‖ f(p) ⇐⇒ MM0|f(p) but MkM0k0 - f(p) for all
squarefree kk0 > 1. By (2.8), (2.6) and (2.7)

λ(MkM0k0) = λ(M)λ(M0k0) =
M

m
ρ(m)λ(M0k0)

where λ(M0k0)�M
1− 1

lrl
+ε

0 since k0 6
∏
q<p0

q � 1. Let bj , 1 6 j 6 λ(MkM0k0),

denote the residue classes (modMkM0k0) for which MkM0k0|f(n), so bj depends
on k, k0 as well as M,M0.

Lemma 4.9. When r1 = 1

∑
n6x

MM0‖f(n)

Λ(n) =
∑
k|M
k0|M0

µ(k)µ(k0)

λ(Mk)λ(M0k0)∑
j=1

∑
n6x

n≡bj(modMkM0k0)

Λ(n). (4.16)

Lemmas 4.8 and 4.9 follow from above and the inclusion-exclusion principle.

We note that

∑
n6x

MM0‖f(n)

Λ(n)−
∑
pα6x

MM0‖f(p)

Λ(pα)�
∑
pα6x
α>2

Λ(pα)�
√
x. (4.17)
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5. Proof of Theorem 1.1

Case 1: 2 6 r1 6 ... 6 rl
By (4.4), (4.17) and Lemma 4.8∑

p6x
MM0‖f(p)

log p =
∑
n6x

MM0‖f(n)

Λ(n) + O(
√
x)

=
∑
k0|M0

µ(k0)

λ∗(M)λ(M0k0)∑
j=1

Ψ(x; bj ,MM0k0) + O(
√
x)

= x
λ∗(M)

ϕ(M)

∑
k0|M0

µ(k0)
λ(M0k0)

ϕ(M0k0)
+ E(x;M,M0) (5.1)

where by Lemmas 4.1 and 4.2

E(x;M,M0)

� λ∗(M)
∑
k0|M0

|µ(k0)|λ(M0k0)

×
{

1

ϕ(MM0k0)

(∑∗

χ
|Ψ(x;χ)|+ xE(x)

)
+ (log(xMM0k0))2

}
+
√
x (5.2)

with
∑∗

χ
defined in Lemma 4.4 and χ denoting a character (modMM0k0). The

sum over k0 in (5.1) and (5.2) has a bounded number of terms since q|k0 =⇒ q < p0,

and by (2.7) λ(M0k0) � M
1− 1

lrl
+ε

0 on using that k0 � 1 for squarefree k0|M0.
Hence

C(M0) :=
1

ϕ(M0)

∑
k0|M0

µ(k0)

k0
λ(M0k0)�M

− 1
lrl

+ε

0 . (5.3)

By (2.5) the coefficient of x in the main term of (5.1) is ρ(m)
m C(M0). By (3.8)

∑
MM06y

ρ(m)

m
C(M0) = Pl(log y) + O(E(y)) (5.4)

where the leading coefficient of the polynomial Pl is given in (3.11).
It remains to estimate

∑
MM06y

|E(x;M,M0)| which we split into several parts.

(i) For squarefree k0|M0, k0 6
∏
q|M0

q = c0 � 1, so MM0 6 y ⇒ MM0k0 6

c0y. By (2.5), (2.7) and (3.14) λ∗(M)λ(M0k0) � (MM0)1−δ where δ =
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1
lrl
− ε. Hence with K = MM0k0 and Y = c0y, we have by (4.7) provided

Y 1−δ 6 x1/6(log x)−A−4 that∑
MM06y

λ∗(M)
∑
k0|M0

|µ(k0)|λ(M0k0)
1

ϕ(MM0k0)

∑∗

χ
|Ψ(x;χ)|

�
∑
K6Y

K1−δ

ϕ(K)

∑∗

χ
|Ψ(x;χ)| � x(log x)−A (5.5)

where χ denotes a primitive character (modK).

(ii) By (2.5) and (3.12)

xE(x)
∑

MM06y

λ∗(M)

ϕ(M)

∑
k0|M0

|µ(k0)|λ(M0k0)
1

ϕ(M0k0)

� xE(x)
∑

MM06y

ρ(m)

m

λ(M0)

ϕ(M0)

� xE(x)(log y)l. (5.6)

(iii) ∑
MM06y

λ∗(M)
∑
k0|M0

|µ(k0)|λ(M0k0)(log(xMM0k0))2

� (log(xy))2
∑

MM06y

ϕ(M)
ρ(m)

m
λ(M0)

� (log(xy))2y(log y)l−1 (5.7)

on adapting the proof of (3.13) by removing the factor 2ω(m).

On combining (5.2), (5.5), (5.6) and (5.7) and assuming (1.3) we find that∑
MM06y

|E(x;M,M0)|

� x(log x)−A + xE(x)(log y)l + (log(xy))2y(log y)l−1 +
√
xy

� x(log x)−A. (5.8)

From (5.1), (5.4) and (5.8) we obtain under the assumption (1.3) that when
r1 > 1 ∑

MM06y

∑
p6x

MM0‖f(p)

log p = x(Pl(log y) + O(E(y)) + O(x(log x)−A) (5.9)

which is Theorem 1.1 for this case. �
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Case 2: 1 = r1 6 r2 6 ... 6 rl
In this case (2.5) is not relevant so we proceed in a different way using the

remark after the proof of Lemma 2.3. By (4.16) and (4.17)

∑
p6x

MM0‖f(p)

log p =
∑
k|M
k0|M0

µ(k)µ(k0)

λ(Mk)λ(M0k0)∑
j=1

Ψ(x; bj ,MkM0k0) + O(
√
x)

= x
∑
k|M
k0|M0

µ(k)µ(k0)
λ(Mk)

ϕ(Mk)

λ(M0k0)

ϕ(M0ko)
+ E(x;M,M0)

= x
ρ(m)

m
C(M0) + E(x;M,M0) (5.10)

on using (2.6), (4.4), (5.3) and noting that
∑
k|M

µ(k)
ϕ(Mk) = 1

M .

With χ a character (modMkM0k0), we have using (4.3) and (4.4) that

E(x;M,M0)

�
∑
k|M
k0|M0

|µ(k)µ(k0)|λ(Mk)λ(M0k0)

×
{

1

ϕ(MkM0k0)

(∑∗

χ
|Ψ(x;χ)|+ xE(x)

)
+ (log(xMkM0k0))2

}
+
√
x. (5.11)

We now want to sum (5.10) and (5.11) over MM0 6 y, and we have by (5.4)
that the main term is x(Pl(log y) + O(E(y)) as required. We split the sum of
the error term into three parts as in case 1. Note that k 6

∏
q|m

q 6 m 6 M

for r1 = 1 and that the sum over k has 2ω(m) terms. When MM0 6 y we can
certainly say that MkM0k0 6 y2 for each squarefree k|M, k0|M0. Moreover given
K 6 y2, K = MkM0k0 in at most 2ω(mm0) ways.

(i) By (2.6), (2.7) and (3.14) λ(Mk)λ(M0k0)2ω(mm0) � (MM0)1−δ where
δ = 1

lrl
− ε. Hence with χ a character (modK) and Y = y, Y 3−δ 6

x1/2(log x)−A−4 we deduce from (4.14) that∑
MM06y

∑
k|M
k0|M0

|µ(k)µ(k0)|λ(Mk)λ(M0k0)
1

ϕ(MkM0k0)

∑∗

χ
|Ψ(x;χ)|

�
∑
K6Y 2

min(K1−δ, Y 1−δ)

ϕ(K)

∑∗

χ
|Ψ(x;χ)| � x(log x)−A. (5.12)

This holds even when lrl = 1.
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(ii) ∑
MM06y

∑
k|M
k0|M0

|µ(k)µ(k0)|λ(Mk)

ϕ(Mk)

λ(M0k0)

ϕ(M0ko)

�
∑

MM06y

ρ(m)

m

∏
q|m

1 + 1
q

1− 1
q

M
− 1
lrl

+ε

0

� (log y)l (5.13)

on using (2.6), (2.7) and (3.12).
(iii) ∑

MM06y

∑
k|M
k0|M0

|µ(k)µ(k0)|λ(Mk)λ(M0k0)(log(xMkM0k0))2

� (log(xy))2
∑

MM06y

M
ρ(m)

m
2ω(m)M

1− 1
lrl

+ε

0

� y(log y)2l−1(log(xy))2 (5.14)

by (3.13).

From equations (5.11) to (5.14) we deduce∑
MM06y

|E(x;M,M0)|

� x(log x)−A + xE(x)(log y)l + y(log y)2l−1(log(xy))2 + y
√
x

� x(log x)−A (5.15)

provided (1.4) holds. Then it follows from (5.10), (5.15) and (5.4) that (5.9) holds
in this case. This completes the proof of Theorem 1.1. �

Proof of Corollary 1.2. This follows from the formula

π(x; b,K) =
1

ϕ(K)
li(x) + O( max

n6x, (b,K)=1

∣∣∣∣Ψ(n; b,K)− n

ϕ(K)

∣∣∣∣+
√
x). (5.16)

To establish this, substitute Λ(n) = Ψ(n; b,K) − Ψ(n − 1; b,K) in π(x; b,K) =∑
26n6x

n≡b(modK)

Λ(n)
logn + O(

√
x) and then use partial summation, subtract n

ϕ(K) from

Ψ(n; b,K) and compensate; then use partial summation again to obtain the main
term. We can now use (5.16) in an argument analogous to the two cases of the
proof of Theorem 1.1 and we obtain the same polynomial Pl(log y) and an error
term involving the same estimate of

∑
MM06y

|E(x;M,M0)| in the result. �
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6. Sketch proof of Theorem 1.3

As in Lemma 2(i) write α = (ti − 1)ri + βi with 1 6 βi 6 ri and assume q|Mi ⇒
q > p0. Then

Mi :=
∏

qα‖Mi

qα | frii (n)⇐⇒ mi :=
∏

qα‖Mi

ti=
⌈
α
ri

⌉
qti | fi(n).

Note that mi >M
1/ri
i >M1/rl

i . With M =
l∏
i=1

Mi, m =
l∏
i=1

mi we have

M | f(n)⇐⇒ m | f0(n),
M

m
6M1− 1

rl .

By (2.2), (2.4), (2.6) and (3.14)

λ(M) =
M

m
ρ(m) < M

1− 1
rl

+ε 6M1− 1
lrl

+ε
. (6.1)

By (2.3), (2.4) and (2.7) λ(M0)�M
1− 1

lrl
+ε

0 .
Denote the residue classes (modMM0) for which MM0 | f(n) by aj , j =

1, ..., λ(M)λ(M0). Then

∑
MM06y

∑
n=pα6x

MM0 | f(p)

Λ(n) =
∑

MM06y


λ(M)λ(M0)∑

j=1

Ψ(x; aj ,MM0) + O(
√
x)


= x

∑
MM06y

λ(M)λ(M0)

ϕ(M)ϕ(M0)
+ O

 ∑
MM06y

|E(x;M,M0)|


(6.2)

where for χ a character (modMM0) we have by (4.2), (4.3) and (4.4)

E(x;M,M0)

� λ(M)λ(M0)

ϕ(M)ϕ(M0)

{∑∗

χ
|Ψ(x;χ)|+ xE(x)

}
+ (log(xMM0))2λ(M)λ(M0)

+
√
x. (6.3)

The main term in (6.2) is obtained from Lemma 3.2 on using the generating
functions

F (s) =
∑
M

M
λ(M)

ϕ(M)
M−s =

l∏
i=1

∏
q>p0

1 +
qρ(q)

q − 1

ri∑
βi=1

∞∑
ti=1

q−ti−((ti−1)ri+βi)(s−1)


=

l∏
i=1

ri∏
βi=1

ζi(βi(s− 1) + 1)H(s) (6.4)
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where H(s) is analytic in σ > 1 − 1
2rl
, and G(s) =

∑
M0

M0
λ(M0)
ϕ(M0)M

−s
0 which is

analytic in σ > 1− 1
lrl

+ ε. Since F (s) has a pole at s = 1 of order
l∑
i=1

ri = R, we

deduce from (3.6) and (3.7) that

∑
MM06y

λ(M)λ(M0)

ϕ(M)ϕ(M0)
= PR(log y) + O(E(y)) (6.5)

where the leading coefficient of PR is

1

R!

l∏
i=1

λrii
ri!

H(1)G(1). (6.6)

By (2.7), (6.1), (6.3), Lemma 4.5 and an argument similar to that in section 5
it follows that ∑

MM06y

|E(x;M,M0)| � x(log x)−A (6.7)

provided ∆ and y satisfy the conditions given in Theorem 1.3.
Theorem 1.3 now follows from (6.2), (6.5) and (6.7) with (6.6) giving the leading

coefficient of PR. �

7. Outline proof of Theorem 1.4

(i)(a) Suppose r1 = ... = rj < rj+1 6 ... 6 rl for some j (0 6 j 6 l), and let

g =
j∏
i=1

fi, h =
l∏

i=j+1

f ri
i . If M |f(n) then M = MgMh with Mg|g(n), Mh|h(n),

(Mg,Mh) = 1, so Mg =
j∏
i=1

Mi = mg, Mh =
l∏

i=j+1

Mi, mh =
l∏

i=j+1

mi, m = mgmh

on using our previous notation. Define λ∗h(Mh), λh(Mh), λg(Mg), λ(M0) in an
analogous way to (2.4), and then by (2.5), (2.6), (2.7)

λ∗h(Mh) = ϕ(Mh)
ρh(mh)

mh
, λh(Mh) =

Mh

mh
ρh(mh),

λg(Mg) = λg(mg) = ρg(mg), λ(M0)�M
1− 1

lrl
+ε

0 (7.1)

and ρf (m) = ρg(mg)ρh(mh).
Suppose kg|mg, k0|M0 are squarefree. In order to consider whenMM0 ‖ f(n)

we use ideas from case 2 in the proof of Theorem 1.1. We see that

# {n(modMhmgkgM0k0) : Mh ‖ h(n), mgkg|g(n), M0k0|f(n)}
= λ∗h(Mh)λg(mg)λ(M0k0) (7.2)
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since λg(mgkg) = λg(mg) = ρg(mg). Then by the inclusion-exclusion principle we
have on using (7.1) and (7.2) that

# {n 6 x : Mh ‖ h(n),mg ‖ g(n),M0 ‖ f(n)}

= λ∗h(Mh)
∑
kg|mg

µ(kg)λg(mgkg)
∑
k0|M0

µ(k0)λ(M0k0)

(
x

MhmgkgM0k0
+ O(1)

)

= x
ρf (m)

m

∏
q|m

(
1− 1

q

)
ϕ(M0)

M0
C(M0) + O

(
ρf (m)

ϕ(Mh)

mh
2ω(mg)M

1− 1
lrl

+ε

0

)
(7.3)

where C(M0) is defined in (5.3). On summing (7.3) over MM0 6 y and using
arguments similar to those in (3.8) and (3.13) we establish Theorem 1.4(i)(a) that∑
MM06y

# {n 6 x : MM0 ‖ f(n)} = x(Pl(log y) + O(E(y))) + O(y(log y)l+j−1).

The leading coefficient of Pl is similar to (3.11) except that the values of H1(1),
G1(1) are marginally different. This establishes (i)(a).

To derive (i)(b) let Y = y(log y)−j . Then by (i)(a)∑
MM06Y

# {n 6 x : MM0 ‖ f(n)} = x(Pl(log Y ) + O(E(Y )) + O(Y (log Y )l+j−1)

= x(Bl(log y)l + O((log y)l−1 log log y)).

With M =
l∏
i=1

Mi, M
1/ri
i ∈ N as in section 6 and using an argument similar to

that used to prove Theorem 1.4(ii) we have∑
Y <MM06y

# {n 6 x : MM0 ‖ f(n)}

6
∑

Y <MM06y

# {n 6 x : MM0|f(n)}

= x(Ql(log y)−Ql(log Y ) + O(E(y)) + O(y(log y)l−1)

� x(log y)l−1 log log y

where Ql(.) is a polynomial of degree l. The result of (i)(b) follows.
(ii) Defining M, m as in section 6, by (6.1) and an argument similar to (6.5)

and (6.6) we deduce Theorem 1.4(ii) that∑
MM06y

# {n 6 x : MM0|f(n)}

= x
∑

MM06y

ρ(m)

m

λ(M0)

M0
+ O

 ∑
MM06y

M

m
ρ(m)λ (M0)


= x (PR(log y) + O(E(y))) + O(y(log y)R−1)

where the leading coefficient of PR is similar to that in (6.6) but with slightly
different values for H(1), G(1). �
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To deduce the Corollary 1.5 from (i)(b) for f an irreducible quadratic, let

X =

(
sup |
n6x

f(n)|

)1/2

×x. To each exact divisor M > X of f(n), f(n)
M is an exact

divisor < X. Hence∑
M

∑
n6x

M‖f(n)

1 = 2
∑
M6X

∑
n6x

M‖f(n)

1−
∑
M6X

∑
n6x

M‖f(n)
|f(n)|
M 6X

1. (7.4)

The first double sum on the right of (7.4) equals 2B1x log x+O (x log log x) by
(i)(b). Since | f(n)| > cn2 for some c > 0, the second double sum on the right of
(7.4) is

6
∑
M6X

∑
n6
√

XM
c

M |f(n)

1 6
∑
M6X

ρ(M)

(√
X

cM
+ O(1)

)
� x.

Corollary 1.5 now follows from (7.4). �
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