COMPARING LOCAL CONSTANTS OF ORDINARY ELLIPTIC CURVES IN DIHEDRAL EXTENSIONS

SUNIL CHETTY

Abstract: We establish, for a substantial class of elliptic curves, that the arithmetic local constants introduced by Mazur and Rubin agree with quotients of analytic root numbers.

 ${\bf Keywords:}\ {\bf elliptic\ curves},\ {\bf rank},\ {\bf Selmer\ groups},\ {\bf parity\ conjecture}.$

1. Introduction

Let E/k be an elliptic curve over a number field k. Fix a rational prime p>3 for which E is ordinary¹ and a quadratic extension K of k. Next, fix a character ρ of $\operatorname{Gal}(\overline{k}/K)$ of order p^n and let $\tau_\rho = \operatorname{ind}_{K/k} \rho$ and $\tau_1 = \operatorname{ind}_{K/k} 1$ be the induced representations² from $\operatorname{Gal}(\overline{k}/K)$ to $\operatorname{Gal}(\overline{k}/k)$. With ρ we define $L = \overline{k}^{\ker \rho}$, a cyclic extension L/K of degree p^n , and we assume ρ is such that L/k is Galois and that the non-trivial element $c \in \operatorname{Gal}(K/k)$ acts on $g \in \operatorname{Gal}(L/k)$ via conjugation as $cgc^{-1} = g^{-1}$. Following [9] we refer to such extensions L/k as dihedral.

Let v denote a prime of K, u the prime of k below v, w a prime of L above v, and denote k_u , K_v and L_w for the completions at u, v, and w. We consider $\operatorname{Gal}(L_w/k_u) \leqslant \operatorname{Gal}(L/k)$, and we set $\tau_{\rho,u}$ (resp. $\tau_{1,u}$) to be τ_{ρ} (resp. τ_1) restricted to $\operatorname{Gal}(L_w/k_u)$.

For a self-dual complex representation τ of $\operatorname{Gal}(L/k)$, one has a conjectural functional equation for the completed L-function $\Lambda(E/k, \tau, s)$ (see [12, §21])

$$\Lambda(E/k, \tau, s) = \left(\prod_{u} W(E/k_u, \tau_u)\right) \Lambda(E/k, \tau, 2 - s), \tag{1.1}$$

This material is based upon work supported by the National Science Foundation under grant DMS-0457481. The author would like to thank Karl Rubin for his many helpful conversations on this material and reading of initial drafts of this paper.

²⁰¹⁰ Mathematics Subject Classification: primary: 11G05; secondary: 11G07, 11G40 ¹There is, to date and to our knowledge, only one result [9, Theorem 5.7] at supersingular primes analogous to our considerations.

²Context will determine the field of values. See [7, §5] for a discussion of this.

with $W(E/k_u, \tau_u) \in \{\pm 1\}$ and the product taken over places u of k. Even though the functional equation is conjectural, the $W(E/k_u, \tau_u)$ can often be made explicit.

In [9] Mazur and Rubin define constants δ_v , for each prime v of K, which relate the ρ -part and 1-part of the pro-p-Selmer $\operatorname{Gal}(\bar{k}/K)$ -module $\mathcal{S}_p(E/L)$ (see §2.2)

$$\dim_{\overline{\mathbb{Q}}_p} \mathcal{S}_p(E/L)^\rho - \dim_{\overline{\mathbb{Q}}_p} \mathcal{S}_p(E/L)^1 \equiv \sum_v \delta_v \mod 2.$$
 (1.2)

Defining γ_u by $(-1)^{\gamma_u} = W(E/k_u, \tau_{\rho,u})/W(E/k_u, \tau_{1,u})$, for each prime u of k, the invariance of $\Lambda(E/k, \tau, s)$ under induction (see [12, §8]) and (1.1) give

$$\operatorname{ord}_{s=1} \Lambda(E/k, \tau_{\rho}, s) - \operatorname{ord}_{s=1} \Lambda(E/k, \tau_{1}, s) \equiv \sum_{u} \gamma_{u} \mod 2.$$
 (1.3)

With the Shafarevic-Tate and Birch-Swinnerton-Dyer Conjectures in mind, the left-hand sides of (1.2) and (1.3) are equal, and so we aim to show in as many cases as possible that $\gamma_u = \sum_{v|u} \delta_v$.

Our main new result is Theorem 4.1, and it yields a new proof of a case of a relative version of the Parity Conjecture, Corollary 4.2. This Corollary is already known by different methods via work by de la Rochefoucauld in [1], Dokchitser and Dokchitser in [3] and [2], and can also be recovered from work by Greenberg in [5, §13]. Our calculations of δ_v in bad reduction also provide a new extension of the results of [9, §7-8] regarding growth in rank of $\mathcal{S}_p(E)$ over dihedral L/K, for example by relaxing the conditions in Theorem 8.5 of [9].

2. Local constants of elliptic curves

In this section we recall the relevant parts of [13] and [9].

2.1. Analytic local constants

We denote ω_u for the standard valuation on k_u and c_6 for the constant appearing in a simplified Weierstrauss model for E/k_u (see [17, §III.1]). For τ a representation of $\operatorname{Gal}(\overline{k}_u/k_u)$ with real-valued character, we call $W(E/k_u, \tau) \in \{\pm 1\}$ the analytic local root number for the pair $(E/k_u, \tau)$. We call the constants $\gamma_u \in \mathbb{Z}/2\mathbb{Z}$ defined as quotients of local root numbers in §1 the analytic local constants.

When τ has finite image, set $\mathfrak{c}(\tau) := \det \tau(-1)$ and for two representations τ and τ' of $\operatorname{Gal}(\overline{k}_u/k_u)$ with finite image define $\langle \tau, \tau' \rangle := \langle \operatorname{tr}(\tau), \operatorname{tr}(\tau') \rangle$, with the right-hand side the usual inner product on characters.

Let H be the unramified quadratic extension of k_u and η the unramified quadratic character of $\operatorname{Gal}(\overline{k}_u/k_u)$, i.e. the character of $\operatorname{Gal}(\overline{k}_u/k_u)$ with kernel $\operatorname{Gal}(\overline{k}_u/H)$. For e=3, 4, or 6 and $q\equiv -1 \mod e$, where $q=\#(k_u/u)$, let ϕ_e be a tamely ramified character of $\operatorname{Gal}(\overline{k}_u/H)$ with $\phi_e|_{\mathcal{O}_H^\times}$ of exact order e and such that $\sigma_e=\operatorname{ind}_{H/k}\phi_e$ is irreducible and symplectic. For θ the unramified quadratic character of $\operatorname{Gal}(\overline{k}_u/H)$ set $\hat{\sigma}_e:=\operatorname{ind}_{H/k_u}(\phi_e\theta)$, which is a dihedral representation of $\operatorname{Gal}(\overline{k}_u/k_u)$ (see p. 316-318 of [13]).

Define a representation σ_{E/k_u} by applying the results of [12, §4] to

$$\sigma_{E/k_u,\ell}: \operatorname{Gal}(\overline{k}_u/k_u) \to \operatorname{GL}(V_{\ell}(E)^*),$$

where $V_{\ell}(E)^*$ is the dual of $V_{\ell}(E) = T_{\ell}(E) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$. From

$$W(E/k_u, \tau) = W(\sigma_{E/k_u} \otimes \tau),$$

Rohrlich proves the following formulae.

Theorem 2.1 (Theorem 2 of [13]). Suppose $\tau = \bar{\tau}$ is a 2-dimensional representation of $Gal(k_u/k_u)$ and denote ℓ for the residue characteristic of k_u .

- (i) If $\ell = \infty$ then $W(E/k_u, \tau) = (-1)^{dim \tau} = 1$.
- (ii) If $\ell < \infty$ and E has good reduction over k_u then $W(E/k_u, \tau) = \mathfrak{c}(\tau)$.
- (iii) If $\ell < \infty$ and $\omega_u(j) < 0$ then

$$W(E/k_u, \tau) = \mathfrak{c}(\tau)(-1)^{\langle \chi, \tau \rangle}$$

where χ is the character associated to the extension $k_u(\sqrt{-c_6})$. (iv) If $5 \leq \ell < \infty$, $\omega_u(j) \geq 0$, and $e = \frac{12}{\gcd(\omega_u(\Delta_E), 12)}$

$$W(E/k_u, \tau) = \begin{cases} \mathfrak{c}(\tau) & \text{if } q \equiv 1 \mod e \\ \mathfrak{c}(\tau)(-1)^{\langle 1, \tau \rangle + \langle \eta, \tau \rangle + \langle \hat{\sigma}_e, \tau \rangle} & \text{if } e > 2, \ q \equiv -1 \mod e. \end{cases}$$

Proposition 2.2 (Proposition 7 of [13]). If $\sigma_{E/k_u} = \psi \oplus \psi^{-1}$ for some character ψ of k_u^{\times} and τ is as in Theorem 2.1, then $W(E/k_u, \tau) = \mathfrak{c}(\tau)$.

2.2. Arithmetic local constants

Let $\operatorname{Sel}_{p^{\infty}}(E/K)$ be the p^{∞} -Selmer group of E (see [9, §2] or [4, §2]). Define the pro-p Selmer group of E over K as the Pontrjagin dual of $Sel_{p^{\infty}}(E/K)$

$$S_p(E/K) := \operatorname{Hom}(\operatorname{Sel}_{p^{\infty}}(E/K), \mathbb{Q}_p/\mathbb{Z}_p),$$

and consider it as a \mathbb{Q}_p -module by tensoring with \mathbb{Q}_p .

When $L_w \neq K_v$, let L'_w be the unique subfield of L_w containing K_v with $[L_w:L_w']=p$, and otherwise let $L_w':=L_w=K_v$.

Definition 2.3 (Corollary 5.3 of [9]). For each prime v of K, define the arithmetic local constant $\delta_v = \delta(v, E, \rho) \in \mathbb{Z}/2\mathbb{Z}$ to be

$$\delta_v := \dim_{\mathbb{F}_p} E(K_v)/(E(K_v) \cap \mathcal{N}_{L_w/L_w'} E(L_w)) \mod 2.$$

Theorem 2.4 (Theorem 6.4 of [9]). If S is a set of primes of K containing all primes above p, all primes ramified in L/K, and all primes where E has bad reduction, then

$$\dim_{\overline{\mathbb{Q}}_p} \mathcal{S}_p(E/L)^\rho - \dim_{\overline{\mathbb{Q}}_p} \mathcal{S}_p(E/L)^1 \equiv \sum_{v \in S} \delta_v \mod 2.$$

Proof. Following the notation of [9, §3], let R be the maximal order in in the cyclotomic field of p^n -roots of unity, so R has a unique prime \mathfrak{p} above p. Define $\mathcal{I} := \mathfrak{p}^{p^{n-1}}$ and define the \mathcal{I} -twist of E by $A := \mathcal{I} \otimes E$ (in the sense of [10] and [9]), an abelian variety with $R \subset \operatorname{End}_K(A)$. We then have

$$\dim_{\overline{\mathbb{Q}}_p} \mathcal{S}_p(E/L)^{\rho} = \operatorname{corank}_{R \otimes \mathbb{Z}_p} \operatorname{Sel}_{p^{\infty}}(A/K),$$

$$\dim_{\overline{\mathbb{Q}}_p} \mathcal{S}_p(E/L)^1 = \operatorname{corank}_{\mathbb{Z}_p} \operatorname{Sel}_{p^{\infty}}(E/K).$$

Thus the conclusion above is equivalent to Theorem 6.4 of [9]

$$\operatorname{corank}_{R\otimes\mathbb{Z}_p}\operatorname{Sel}_{p^\infty}(A/K)-\operatorname{corank}_{Z_p}\operatorname{Sel}_{p^\infty}(E/K)\equiv\sum_{v\in S}\delta_v\mod 2.$$

3. Local computations

We keep the setting and notation of Theorem 2.1 and §1. Recall that c is the non-trivial element of Gal(K/k).

3.1. Preliminary calculations

Proposition 3.1. If $v^c \neq v$, then $\gamma_u \equiv \delta_v + \delta_{v^c} \equiv 0$.

Proof. When $v \neq v^c$, we have $\operatorname{Gal}(L_w/k_u) = \operatorname{Gal}(L_w/K_v)$. It follows that $\tau_{\rho,u} = \rho \oplus \rho^{-1}$ and $\tau_{1,u} = 1 \oplus 1$, so $\det \tau(-1) = 1$ for $\tau = \tau_{\rho,u}$ or $\tau = \tau_{1,u}$. Also $\langle \psi, \tau \rangle \equiv 0$ mod 2 for $\psi = 1$, η , χ , or $\hat{\sigma}_e$, and by Theorem 2.1, we have $W(E/k_u, \tau) = 1$. Applying Lemma 5.1 of [9] for δ_v finishes the claim.

Proposition 3.2. If $v^c = v$, v is unramified in L/K then $\gamma_u \equiv \sum_{v|u} \delta_v \equiv 0$.

Proof. In this case, v splits completely in L/K by [9, 6.5(i)], i.e. for every prime w of L lying above v, $L_w = K_v$. Now, we have

$$\tau_{\rho,u}, \tau_{1,u} : \operatorname{Gal}(L_w/k_u) = \operatorname{Gal}(K_v/k_u) \to \operatorname{GL}_2(\mathbb{C})$$

viewing $\operatorname{Gal}(K_v/k_u)$ as the v-decomposition subgroup of $\operatorname{Gal}(L/k)$. One sees by direct calculation (see for example [14, §5.3]) that $\tau_{\rho,u} \cong \tau_{1,u}$, and by applying Corollary 5.3 of [9] for δ_v the claim follows.

3.2. Good reduction

In the case of good reduction, the arithmetic local constant has been determined by Mazur and Rubin in [9].

Theorem 3.3 (Theorem 5.6 and 6.6 of [9]). If v is a prime of K with $v \nmid p$, $v = v^c$, v is ramified in L/K, and E has good reduction at v, then $\delta_v \equiv 0$.

Theorem 3.4 (Theorem 6.7 of [9]). If $v \mid p$ and E has good ordinary reduction at v, then $\delta_v \equiv 0$.

For the corresponding situation on the analytic side:

Proposition 3.5. If E has good reduction over K_v then $\gamma_u \equiv 0$.

Proof. By Theorem 2.1(ii), it suffices to see $\det \tau_{\rho,u} \equiv \det \tau_{1,u} \mod \mathfrak{p}$ for some $\mathfrak{p} \mid p$. Fixing a basis for the spaces of ρ and 1 respectively, we have $\rho \equiv 1 \mod \mathfrak{p}$ since L/K is a cyclic p-power extension. This implies $\tau_{\rho,u} \equiv \tau_{1,u} \mod \mathfrak{p}$ (component-wise), viewed as matrices with function-valued entries, and $\det \tau_{\rho,u} \equiv \det \tau_{1,u} \mod \mathfrak{p}$.

3.3. Potential multiplicative reduction

Here, in view of Propositions 3.1-3.2, we assume $v^c = v$ and v ramifies in L/K, i.e. $L_w \neq K_v$.

Analytic

Proposition 3.6. If E/k_u has potential multiplicative reduction, then $\gamma_u \equiv 0$ if and only if E does not have split multiplicative reduction over K_v .

Proof. Applying the arguments of Proposition 3.5, it remains to determine $\langle \chi, \tau \rangle$. If E has split multiplicative reduction at $u, \chi = 1$ and since $L_w \neq K_v$, dim $\tau = 2$. We have $\tau = \tau_{1,u} = 1 \oplus \mu$, with μ the character associated to the extension K_v/k_u . When E has split multiplicative reduction at $u, \chi = 1 \not\cong \mu$ and so $\langle \chi, \tau \rangle = 1$. For the other cases, $\chi \cong \mu$ if and only if K_v/k_u is the quadratic extension over which E acquires split multiplicative reduction.

Arithmetic

Proposition 3.7. If E has potential multiplicative reduction over k_u , then $\delta_v \equiv 0$ if and only if E does not have split multiplicative reduction over K_v .

Proof. Let H be the quadratic extension over which E attains split multiplicative reduction. If $H = K_v$, there is a $q \in k_u^{\times}$ such that $E(L_w) \cong L_w^{\times}/q^{\mathbb{Z}}$ as $Gal(L_w/K_v)$ -modules, and with the isomorphism defined over K_v (loc. cit. [17]). This case is Lemma 8.4 of [9].

Suppose now that $H \neq K_v$. Define E' to be the quadratic twist of E associated to H/k_u , so that E' has split multiplicative reduction at u, and $E \stackrel{\phi}{\to} E'$ is an isomorphism over H. As before, we have a $Gal(HL_w/k_u)$ -isomorphism

$$\lambda: E'(HL_w) \to HL_w^{\times}/q^{\mathbb{Z}},$$

with $q \in k^{\times}$. Let $Gal(HL_w/L_w) = \langle \sigma \rangle$ and define the minus-part of HL_w^{\times} to be

$$(HL_w^{\times})^- := \{ z \in HL_w^{\times} : z^{\sigma} = z^{-1} \}$$

and similarly for all other $Gal(HL_w/L_w)$ -modules³. The map obtained by precomposing λ with ϕ restricts to

$$E(L_w) \xrightarrow{\phi} E'(HL_w)^- \xrightarrow{\lambda} ((HL_w^{\times})/q^{\mathbb{Z}})^-.$$

If $q \notin \mathcal{N}_{HL_w/L_w}$ then we also have $((HL_w^{\times})/q^{\mathbb{Z}})^- \cong (HL_w^{\times})^-$. If $q \in \mathcal{N}_{HL_w/L_w}$ then the projection of $(HL_w^{\times})^-$ has index 2 in $((HL_w^{\times})/q^{\mathbb{Z}})^-$, hence prime to p. Both cases will be similar, so we proceed with the former. One has a similar situation with $E(L_w') \to (HL_w'^{\times})^-$.

Since these maps commute with $N := N_{HL_w/HL'_w}$, the snake lemma gives

$$[E(L'_w): N(E(L_w))] = [(HL'_w)^- : N((HL_w)^-)].$$

We claim that this index is 1, implying $E(K_v) \subseteq E(L'_w) = N(E(L_w))$ and hence

$$\dim_{\mathbb{F}_p} E(K_v)/(E(K_v) \cap \mathcal{N}_{L_w/L'_{av}} E(L_w)) = 0.$$

To see that the index is 1, we note that local class field theory gives an injection

$$((HL'_w)^{\times})^-/N((HL_w^{\times})^-) \hookrightarrow \operatorname{Gal}(HL_w/HL'_w) = \operatorname{Gal}(L_w/L'_w)^-.$$

Since we know that σ conjugates $Gal(L_w/L'_w)$ trivially, $Gal(L_w/L'_w)^-$ is trivial.

3.4. Potential good reduction

Again, we assume $v^c = v$ and v ramifies in L/K, so $L_w \neq K_v$ as before.

Analytic

Denote ℓ for the common residue characteristic of k_u , K_v , L_w , and suppose E/k_u has additive and potential good reduction. Throughout we set H to be the unique unramified quadratic extension of k_u .

Proposition 3.8. Suppose $v \nmid 6$. If $v \nmid p$ or K_v/k_u is unramified then $\gamma_u \equiv 0$.

Proof. Here, we use the notation of Theorem 2.1, and from $v \nmid 6$, we have $\ell \geqslant 5$. For $\tau = \tau_{\rho,u}$ or $\tau = \tau_{1,u}$, we have $\langle 1, \tau \rangle + \langle \eta, \tau \rangle \equiv 0 \mod 2$, using that K_v/k_u is unramified for the latter.

In this setting $\hat{\sigma}_e$ is the representation of $\operatorname{Gal}(k_u/k_u)$ induced from a character $\hat{\phi}_e$ of order e=3, 4, or 6 (see [13, p. 332]). Hence, we may view $\hat{\sigma}_e$ as a representation of $\operatorname{Gal}(K_1/k_u)$ for some extension K_1/K_v .

Consider $\tau = \tau_{\rho,u}$. Lifting $\hat{\sigma}_e$ and τ to some appropriate extension K_2/k_u , since τ is irreducible, we see $\langle \hat{\sigma}_e, \tau \rangle = 1$ if and only if $\hat{\sigma}_e \cong \tau$. Restricting τ and $\hat{\sigma}_e$ to $\mathrm{Gal}(K_2/K_v)$, these representations decompose as $\tau = \rho \oplus \rho^c$ and $\hat{\sigma}_e = \phi_e \oplus \phi_e^c$. The order of ρ is a power of $p \geqslant 5$ and the order of ϕ_e is 3, 4, or 6, so $\langle \hat{\sigma}_e, \tau \rangle = 0$.

³For example, restriction of σ gives $Gal(HL_w/L_w) \cong Gal(HL'_w/L'_w)$, providing HL'_w a $Gal(HL_w/L_w)$ -module structure.

Proposition 3.9. Suppose $v \nmid 6$ and K_v/k_u is ramified. If E acquires good reduction over an abelian extension of k_u , then $\gamma_u \equiv 0$.

Proof. Here $\ell \geqslant 5$, so we are in case (iii) of Theorem 2.1, and the condition that E acquires good reduction over an abelian extension of k_u is equivalent to (see [11, Prop 2]) $\mathcal{W}(M/k_u)$ being abelian, where M is the minimal extension of k_u^{ur} over which E acquires good reduction, and in turn to $\sigma_{E/k_u} = \psi \oplus \psi^{-1}$ for some character ψ of k_u^{∞} . This gives

$$W(E/k_u, \tau) = \mathfrak{c}(\tau) = \det \tau(-1).$$

Applying Proposition 3.5 then gives the result.

Proposition 3.10. If $v \mid 6$ then $\gamma_u \equiv 0$.

Proof. This is case 2(b) of [1]. De la Rochefoucauld proves this in terms of ϵ -factors as Rohrlich's formula (Theorem 2.1 above) do not apply when E is wildly ramified (see [6, §4]). We note that the dihedral setting is essential in his proof.

Arithmetic

Proposition 3.11. If $v \nmid p$ and E has additive reduction over K_v then $\delta_v \equiv 0$.

Proof. If E has additive reduction, then

$$E_0(K_v)/E_1(K_v) \cong \tilde{E}_{ns}(\kappa) \cong \kappa^+,$$
 (3.1)

with κ , the residue field of K_v , a finite field of characteristic $\ell \neq p$. We recall two facts (see §VII.3 and §VII.6 of [17]),

- (1) $E_1(K_v) \cong \mathbb{Z}_{\ell}^r \oplus T$ for some finite ℓ -group T.
- (2) $|E(K_v)/E_0(K_v)| \leq 4$.

Since $p \nmid 6\ell$ these two facts yield

$$E(K_v)/pE(K_v) \cong E_0(K_v)/pE_0(K_v) \cong E_1(K_v)/pE_1(K_v) = 0,$$

showing that $E(K_v)$ has no p-subgroups and so $\delta_v \equiv 0$.

For K a finite extension of k_u , denote \tilde{E} for the reduction of E at the prime of K. If κ is the residue field of K and E has good ordinary reduction over K then we say that E has anomalous reduction over K if $\tilde{E}(\kappa)[p] \neq 0$, and we say E has non-anomalous reduction otherwise (see [9, App. B], also [8, §1.b]).

Proposition 3.12. If $v \mid p$, E has additive reduction over K_v , and E attains good, ordinary, non-anomalous reduction over a Galois extension M/K_v , then $\delta_v \equiv 0$.

Proof. Since E has potential good reduction, M can be chosen so that $[M:K_v]$ is prime to p (see [15, §2] and [16, p.2]). Let E^k denote a model for E defined over k_u , and let E^M denote a model of E defined over M for which E has good, ordinary, non-anomalous reduction. We have an isomorphism $E^k \to E^M$ defined over M, giving $E^k(\mathcal{M}) \cong E^M(\mathcal{M})$, where $\mathcal{M} = ML_w$, and similarly for $\mathcal{M}' = ML'_w$. We denote $\Gamma = \operatorname{Gal}(M/K_v)$ and $H = \operatorname{Gal}(L_w/L'_w)$, and note that

$$\operatorname{Gal}(M/K_v) \cong \operatorname{Gal}(\mathcal{M}'/L_w') \cong \operatorname{Gal}(\mathcal{M}/L_w), \qquad \operatorname{Gal}(L_w/L_w') \cong \operatorname{Gal}(\mathcal{M}/\mathcal{M}').$$

By Propositions B.2 and B.3 of [9], we have that $N_H: E^M(\mathcal{M}) \to E^M(\mathcal{M}')$ is surjective, and hence $N_H: E^k(\mathcal{M}) \to E^k(\mathcal{M}')$ is surjective also. From this and $N_{\Gamma} \circ N_H = N_H \circ N_{\Gamma}$ we have

$$[E^{k}(L'_{w}): N_{\Gamma}(E^{k}(\mathcal{M}'))] = [E^{k}(L'_{w}): N_{\Gamma} \circ N_{H}(E^{k}(\mathcal{M}))]$$

$$= [E^{k}(L'_{w}): N_{H} \circ N_{\Gamma}(E^{k}(\mathcal{M}))].$$
(3.2)

Since Γ has order prime to p and

$$|\Gamma| \cdot E^k(L'_w) \subset N_{\Gamma}(E^k(\mathcal{M}')) \subset E^k(L'_w),$$

the first term in (3.2) is prime to p. Since H has order p and

$$N_H \circ N_\Gamma(E^k(\mathcal{M})) \subset N_H(E^k(L_w)) \subset E^k(L_w'),$$

the last term in (3.2) is divisible by some power of p when $N_H(E^k(L_w)) \neq E^k(L'_w)$. Since this is impossible, we must have $N_H(E^k(L_w)) \supset E^k(K_v)$ and $\delta_v \equiv 0$.

4. Main result

Recall E/k is an elliptic curve ordinary at p. Also recall that γ_u is defined by

$$(-1)^{\gamma_u} = W(E/k_u, \tau_{\rho,u})/W(E/k_u, \tau_{1,u}).$$

Define $\mathfrak{S} = \{ \text{primes } v \text{ of } K : v^c = v, v \text{ ramifies in } L/K, \text{ and } v \mid 6p \}.$

Theorem 4.1. Fix primes u of k and v of K with $v \mid u$. If $v \in \mathfrak{S}$ suppose that one of the following holds:

- (a) E has good reduction at v.
- (b) E has potential multiplicative reduction at v,
- (c) E has additive, potential good reduction at v, and acquires good, non-anomalous reduction over an abelian extension of k_u when $v \mid p$.

Then $\gamma_u \equiv \sum_{v|u} \delta_v \mod 2$.

Corollary 4.2. If E/k satisfies the hypothesis of Theorem 4.1, then mod 2

$$\dim_{\overline{\mathbb{Q}}_p} \mathcal{S}_p(E/L)^{\rho} - \dim_{\overline{\mathbb{Q}}_p} \mathcal{S}_p(E/L)^1 \equiv \operatorname{ord}_{s=1} \Lambda(E/k, \rho, s) - \operatorname{ord}_{s=1} \Lambda(E/k, 1, s).$$

Proof of 4.1. Let v, v^c the primes of K above u. If $v \notin \mathfrak{S}$ then $v^c \neq v$, v is unramified in L/K, or $v \nmid 6p$. If $v^c \neq v$ then we use Proposition 3.1, and if $v^c = v$ is unramified in L/K, Proposition 3.2 gives the claim. For the remainder we may assume $v^c = v$.

In the case $v \nmid 6p$, we have $v \nmid 6$ and $v \nmid p$. If E has good reduction at v then Theorem 3.3 shows $\delta_v \equiv 0$, and Proposition 3.5 gives $\gamma_u \equiv 0$. If E has potential multiplicative reduction then Proposition 3.7 and Proposition 3.6, for δ_v and γ_u , respectively, give the result. Lastly, if E has potential good reduction, then we apply Proposition 3.11 and Proposition 3.8.

For $v \in \mathfrak{S}$, case (a) follows from Theorem 3.4 for δ_v and Proposition 3.5 for γ_u . Case (b) is covered by Proposition 3.7 for δ_v and Proposition 3.6 for γ_u .

For case (c), first consider $v \mid 6$. We apply Proposition 3.10 for γ_u , and since $v \nmid p$, we can apply Proposition 3.11 for δ_v . When $v \mid p$ the condition that E acquries ordinary, non-anomalous reduction allows us to apply Proposition 3.12 for δ_v . In this case, $v \nmid 6$ and so for γ_u we use Proposition 3.8 when K_v/k_u is unramified or the 'abelian' condition and Proposition 3.9 when K_v/k_u is ramified.

References

- [1] T. De la Rochefoucauld, Invariance of the parity conjecture for p-Selmer groups of elliptic curves in a D_{2p^n} -extension, arXiv:1002.0554v1 [math.NT], preprint.
- [2] T. Dokchitser and V. Dokchitser, Regulator constants and the parity conjecture, Invent. Math. 178(1) (2009), 23–71.
- [3] T. Dokchitser and V. Dokchitser, On the Birch-Swinnerton-Dyer quotients modulo squares, Annals of Mathematics 172(1) (2010), 567–596.
- [4] R. Greenberg, *Introduction to Iwasawa theory*, in B. Conrad and K. Rubin, editors, Arithmetic Algebraic Geometry, volume 9 of Park City Mathematics Series, American Mathematical Society, 2001.
- [5] R. Greenberg, Iwasawa theory, projective modules, and modular representations, http://www.math.washington.edu/greenber/personal.html, preprint.
- [6] S. Kobayashi, The local root number of elliptic curves with wild ramification, Mathematische Annalen **323** (2002), 609–623.
- [7] B. Mazur, An Arithmetic Theory of Local Constants, http://www.cirm.univ-mrs.fr/videos/2006/exposes/17w2/Mazur.pdf.
- [8] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Inventiones Math. 18 (1972), 183–266.
- [9] B. Mazur and K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Annals of Mathematics 166(2) (2007), 581–614.
- [10] B. Mazur, K. Rubin, and A. Silverberg, *Twisting commutative algebraic groups*, Journal of Algebra **314**(1) (2007), 419–438.
- [11] D. Rohrlich, Variation of the root number in families of elliptic curves, Composito Mathematica 87 (1993), 119–151.
- [12] D. Rohrlich, *Elliptic Curves and the Weil-Deligne Group*, in Elliptic Curves and Related Topics, volume 4 of CRM Proceedings and Lecture Notes, pages 125–157, Amer. Math. Soc. 1994.

- [13] D. Rohrlich, Galois theory, elliptic curves, and root numbers, Composito Mathematica **100** (1996), 311–349.
- [14] J-P. Serre, *Linear Representations of Finite Groups*, volume 67 of Graduate Texts in Mathematics, Springer, 1979.
- [15] J-P. Serre and J. Tate, *Good Reduction of Abelian Varieties*, Annals of Mathematics 88(3) (1968), 492–517.
- [16] J. Silverman, The Néron fiber of abelian varieties with potential good reduction, Math. Ann. **264** (1983), 1–3.
- [17] J. Silverman, *Arithmetic of Elliptic Curves*, volume 106 of Graduate Texts in Mathematics, Springer, 1986.

Address: Sunil Chetty: Mathematics Department, College of St. Benedict and St. John's University.

E-mail: schetty@csbsju.edu

Received: 10 October 2010; revised: 4 January 2016