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THE AMPLIFICATION METHOD IN THE CONTEXT OF GL(n)
AUTOMORPHIC FORMS

Guillaume Ricotta

Abstract: In [SV] and [BMb], the authors proved the existence of a so-called higher rank
amplifier and in [HRRa], the authors described an explicit version of a GL(3) amplifier. This
article provides, for n > 4, a totally explicit GL(n) amplifier and gives all the results required to
use it effectively.
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1. Introduction and statement of the results

1.1. Motivation

The general philosophy of the amplification method

The amplification method was set up by W. Duke, J. Friedlander and H. Iwaniec
(see [FI92], [Iwa92] and [DFI94] for example).

When bounding say a complex number z, which satisfies for obvious reasons
depending on the context

|z| 6M (1.1)

for some positive real number M but, which is expected to satisfy

|z| 6M1−δ (1.2)

for some 0 < δ < 1, it is sometimes profitable to include z in a finite family1 of
complex numbers of the same nature, say

z = zj0 ∈ {zj , j ∈ J} := ZJ

2010 Mathematics Subject Classification: primary: 11F99, 20C08; secondary: 15A21
1Note that choosing a family containing z may be highly non-trivial. In particular, it should

be large enough in order to be able to use the powerful tools of harmonic analysis but not too
large such that bounding a moment of small order, like the second one, has a chance to be
successful.
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where J is a finite set of cardinality � M , j0 ∈ J is the index of our favourite
complex number z and to estimate all the quantities occuring in this family on
average.

For instance, one can try to bound the second moment of this family given by

M2 (ZJ) :=
∑
j∈J
|zj |2.

By (1.1), the second moment satisfies

M2 (ZJ) 6 |J |M2,

which does not help us to prove (1.2) by positivity.
One can try to bound instead an amplified second moment given by

M2 (ZJ ,−→α ) :=
∑
j∈J
|Mj(

−→α )|2 |zj |2

where Mj (−→α ) is a short Dirichlet polynomial given by

Mj (−→α ) :=
∑
i∈I

αiaj(i)

for j ∈ J and where I is a small finite set. Here, −→α = (αi)i∈I is a finite sequence
of complex numbers, which will be specified later on, and (aj(i))i∈I are some
complex numbers naturally related to zj for j ∈ J . In practice, the currently
known techniques enable us to prove

M2 (ZJ ,−→α ) 6Mε
(
M2||−→α ||22 + |I|β ||−→α ||1

)
(1.3)

for some possibly large β > 0 and for all ε > 0, where as usual ||−→α ||1 and ||−→α ||2
stand for the L1 and L2 norms of −→α , respectively.

The whole point of the amplification method is to choose a sequence −→α , which
amplifies the contribution of the complex number z in the amplified second moment
M2 (ZJ ,−→α ). More explicitely, one has to construct a sequence −→α satisfying2

||−→α ||2 6 |I|
ε
, |Mj0 (−→α )|2 > |I|γ

for some possibly small γ > 0 and for all ε > 0. In general, cooking such sequence
−→α is based on the fact that some of the complex numbers aj0(i), i ∈ I, cannot be
small simultaneously. For such sequence, (1.3) entails by positivity

|z|2 = |zj0 |
2 6 (M |I|)ε

(
M2

|I|γ
+ |I|β+1/2−γ

)
(1.4)

for all ε > 0, which implies (1.2) by an optimal choice of |I|.
2Obviously one should also expect that

∣∣Mj

(−→α )∣∣2 is not too large when j 6= j0 in J for
the amplification method to be successful. This generally follows in concrete cases, at least
conditionally, from a suitable version of the Riemann Hypothesis. Hopefully, one does not this
in practice.
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The very natural first step towards the proof of (1.3) is to open the square and
to switch the order of summation, which leads us to bounding∑

(i1,i2)∈I2
αi1αi2

∑
j∈J

aj(i1)aj(i2)|zj |2. (1.5)

The diagonal term, namely the contribution from i1 = i2 in (1.5), is generally
bounded by the first term in the right-hand side of (1.4), whereas the non-diagonal
term, namely the contribution from i1 6= i2 in (1.5), is generally bounded by the
second term in the right-hand side of (1.4).

Getting these bounds heavily relies in practice on linearising the products
aj(i1)aj(i2) for i1 and i2 in I, namely these products can be often written in
relevant cases as a linear combination of the aj(i)’s. Such linearisations in the
context of GL(n) automorphic forms are the core of this article.

In practice, the complex numbers aj(i) and aj(i), (i, j) ∈ I × J , are the
eigenfunctions of some specific endomorphisms. Thus, linearising the products
aj(i1)aj(i2) boils down to linearising the composition of the relevant endomor-
phisms.

The amplification method in GL(n)

Let p and q be two prime numbers.
In the context of GL(n) automorphic forms defined in Section 2, our favourite

complex number z is related to a GL(n) Hecke-Maaß cusp form f , say z = z(f).
For instance, z = f(g) for g in the generalised upper-half plane or z = L(f, s),
the value of the Godement-Jacquet L-function attached to f on the critical line
Re (s) = 1/2.

Hence z can be included, with a slight abuse of notations, in a finite subset
of an orthonormal basis (fj)j>1 of GL(n) Hecke-Maaß cusp forms, namely those
whose analytic conductors, the Laplace eigenvalue or the level or the imaginary
part of s for instance, is bounded by some parameter Q > 0, which is devoted to
tend to infinity, say

z(f) = z(fj0) ∈ {z(fj), j > 1, Q(fj) 6 Q} .

In [SV], the authors proved the existence of an abstract higher rank amplifier
and in [BMb], the authors proved that there exists, at least asymptotically (p
large), a non-trivial linear combination of GL(n) Hecke operators equal to the
identity operator (see [BMb, Lemma 4.2]). The whole point of this work is to give
a totally explicit and ready to use version of a GL(n) amplifier.

The choice of our amplifier −→α relies on the fundamental identity

aj0(p, 1, . . . , 1︸ ︷︷ ︸
n−2 terms

)aj0( 1, . . . , 1︸ ︷︷ ︸
n−2 terms

, p) = aj0(p, 1, . . . , 1︸ ︷︷ ︸
n−3 terms

, p) + 1,

where aj(m1, . . . ,mn−1) stands for the (m1, . . . ,mn−1)’th Fourier coefficient of fj
(see (2.1) and [Gol06, Theorem 9.3.11, p. 271]). This identity essentially says that
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aj0(p, 1, . . . , 1︸ ︷︷ ︸
n−2 terms

)aj0( 1, . . . , 1︸ ︷︷ ︸
n−2 terms

, p) and aj0(p, 1, . . . , 1︸ ︷︷ ︸
n−2 terms

, p) cannot be simultaneously

small . At the level of Hecke operators, this identity reflects the fact that

Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−1 terms

) ◦ Tdiag(1, . . . , 1︸ ︷︷ ︸
n−1 terms

,p) = Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−2 terms

,p2) +
pn − 1

p− 1
Id, (1.6)

itself a consequence of the identity

Λndiag

 1, . . . , 1︸ ︷︷ ︸
n−1 terms

, p

Λn ∗ Λndiag

1, p, . . . , p︸ ︷︷ ︸
n−1 terms

Λn

= Λndiag

1, p, . . . , p︸ ︷︷ ︸
n−2 terms

, p2

Λn +
pn − 1

p− 1
Λndiag

p, . . . , p︸ ︷︷ ︸
n terms

Λn

at the level of Λn double cosets, where Λn := GLn(Z) (see [AZ95, Lemma 2.18,
p. 114]).

The coefficients aj(i)’th will be some Hecke eigenvalues of fj . More precisely,
being inspired by [HRRa] and by (1.6), we set

aj(p) := aj(p, 1, . . . , 1︸ ︷︷ ︸
n−1 terms

) = the eigenvalue of Tp = p−(n−1)/2Tdiag(1, . . . , 1︸ ︷︷ ︸
n−1 terms

,p),

aj
(
p2
)

:= the eigenvalue of p−(n−1)Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−2 terms

,p2) ∈ R

when acting on fj and we recall that

aj(p) = the eigenvalue of T ∗p = p−(n−1)/2Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−1 terms

)

still when acting on fj (see (2.4)). Thus, I is a subset of the prime numbers and
of the squares of the prime numbers.

A very natural candidate for a GL(n) amplifier is

Mj (−→α ) :=
∑
i∈I

αiaj(i)

where

αi :=


aj0(p) if i = p 6

√
L is a prime number,

−1 if i = p2 6 L is the square of a prime number
0 otherwise.

This amplifier satisfies, as in the GL(2) and GL(3) case, |Mj0 (−→α ) |2 �ε L
1−ε

since |I| �ε L
1−ε for all ε > 0.
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Glancing at (1.5) and applying the inequality3

|Mj0 (−→α )|2 6 2

∣∣∣∣∣∣
∑
p6
√
L

αpaj(p)

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
∑
p6
√
L

αp2aj(p
2)

∣∣∣∣∣∣
2

,

it becomes crucial to linearise the products

Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−1 terms

) ◦ Tdiag(1, . . . , 1︸ ︷︷ ︸
n−1 terms

,q) and Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−2 terms

,p2) ◦ Tdiag(1,q, . . . , q︸ ︷︷ ︸
n−2 terms

,q2)

where p and q are two prime numbers. The results are given in the next section and
reveal that the relevant Hecke operators when applying the amplification method
in GL(n) are

Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−2 terms

,pq), Tdiag(1,pq, . . . , pq︸ ︷︷ ︸
n−2 terms

,(pq)2), Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−2 terms

,p2)

and

T
diag(1,p2, . . . , p2︸ ︷︷ ︸

n−3 terms

,p3,p3)
, Tdiag(1,1,p, . . . , p︸ ︷︷ ︸

n−3 terms

,p3), Tdiag(1,1,p, . . . , p︸ ︷︷ ︸
n−4 terms

,p2,p2).

1.2. Statement of the results

Theorem A. Let n > 4, Λn = GLn(Z) and p be a prime number.
1. The finite set R(n)(p) of cardinality

deg

diag

1, p, . . . , p︸ ︷︷ ︸
n−2 terms

, p2

 = p

(
pn−1 − 1

)
(pn − 1)

(p− 1)2

defined in Proposition 3.1 is a complete system of representatives of the dis-
tinct Λn right cosets of

Λndiag

1, p, . . . , p︸ ︷︷ ︸
n−2 terms

, p2

Λn

modulo Λn.
2. The following formulas for the degrees4 hold:

deg

diag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

 = p

(
pn−1 − 1

)
(pn − 1)

(p− 1)2
, (1.7)

3Such inequality, used for the first time in the amplification method in [BHM], enabled the
authors to avoid mixing squares of prime numbers and prime numbers in their diophantine
analysis.

4The degree of a matrix is defined in (1.16). See also Section 2 for more details.
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deg

diag

1, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3

 = pn+1

(
pn−2 − 1

) (
pn−1 − 1

)
(pn − 1)

(p− 1)2(p2 − 1)
,

(1.8)

deg

diag

1, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

 = p2n−1

(
pn−1 − 1

)
(pn − 1)

(p− 1)2
, (1.9)

deg

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p4

 = pn+1

(
pn−2 − 1

) (
pn−1 − 1

)
(pn − 1)

(p− 1)2(p2 − 1)
,

(1.10)

and

deg

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3


= p4

(
pn−3 − 1

) (
pn−2 − 1

) (
pn−1 − 1

)
(pn − 1)

(p− 1)2 (p2 − 1)
2 . (1.11)

3. Finally,

Λndiag

1, p, . . . , p︸ ︷︷ ︸
n−2 terms

, p2

Λn ∗ Λndiag

1, p, . . . , p︸ ︷︷ ︸
n−2 terms

, p2

Λn

=
2pn − p2 − 2p+ 1

p− 1
Λndiag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

Λn

+ p

(
pn−1 − 1

)
(pn − 1)

(p− 1)2
Λndiag

p2, . . . , p2︸ ︷︷ ︸
n terms

Λn

+ Λndiag

1, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

Λn

+ (p+ 1)Λndiag

1, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3

Λn

+ (p+ 1)Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p4

Λn

+ (p+ 1)2Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

Λn.

(1.12)
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Corollary B. Let n > 4. If p and q are two prime numbers then

Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−1 terms

) ◦ Tdiag(1, . . . , 1︸ ︷︷ ︸
n−1 terms

,q) = Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−2 terms

,pq) + δp=q
pn − 1

p− 1
Id (1.13)

and

Tdiag(1,p, . . . , p︸ ︷︷ ︸
n−2 terms

,p2) ◦ Tdiag(1,q, . . . , q︸ ︷︷ ︸
n−2 terms

,q2) (1.14)

= Tdiag(1,pq, . . . , pq︸ ︷︷ ︸
n−2 terms

,(pq)2) + δp=q
2pn − p2 − 2p+ 1

p− 1
Tdiag(1,p, . . . , p︸ ︷︷ ︸

n−2 terms

,p2)

+ δp=qp

(
pn−1 − 1

)
(pn − 1)

(p− 1)2
Id + δp=q(p+ 1)T

diag(1,p2, . . . , p2︸ ︷︷ ︸
n−3 terms

,p3,p3)

+ δp=q(p+ 1)Tdiag(1,1,p, . . . , p︸ ︷︷ ︸
n−3 terms

,p3) + δp=q(p+ 1)2Tdiag(1,1,p, . . . , p︸ ︷︷ ︸
n−4 terms

,p2,p2).

When p 6= q, the previous corollary follows from (2.13) whereas when p = q,
it comes from Theorem A, [AZ95, Lemma 2.18, p. 114] and (2.9). This corollary
generalizes the case n = 2, well-known for a long time, and the case n = 3 done in
[HRRa].

1.3. On the possible applications of this higher rank amplifier

Subconvexity bounds for L-functions

Let f be a GL(n) Hecke Maaß cusp form. A very classical problem considered by
analytic number theorists is the size of the Godement-Jacquet L-function associ-
ated to f , say L(f, s) with s on the critical line Re (s) = 1/2 when the analytic
conductor C(f) of f tends to infinity. The bound

L(f, s)� C(f)1/4+ε,

for any ε > 0 is named the convexity or trivial bound, even if this is not a trivial
result in general. Improving this bound, namely proving a subconvexity bound,
was proved in the past to be useful to solve many arithmetical questions, such as
equidistribution results.

The GL(2) case was intensively investigated in the last decades, culminating
in the work of P. Michel and A. Venkatesh in [MV10], who used the amplification
method in GL(2). It seems that the best subconvexity bounds in the GL(2) case
intrinsic to the amplification method are the Weyl exponent 1/4(1−1/3) ([Wey21])
and the Burgess exponent 1/4(1− 1/4) ([Bur62]).
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Very few examples of subconvexity bounds for L-functions of GL(n) automor-
phic forms, which are not lifts of GL(2) ones, are known. One can quote [Li11],
[Blo12], [Muna], [BB] in the rank 2 case, and an extremely recent and elabo-
rate subconvexity bound for twisted L-functions of GL(3) automorphic forms by
R. Munshi in [Munb]. As far as we know, the Weyl and Burgess exponents have
never appeared in this higher rank case.

We hope that the completely explicit GL(n) amplifier built in this paper will
sheld some new lights on these questions in the close future.

Subconvexity bounds for sup-norms of automorphic forms

Let f be a L2-normalized GL(n) Hecke-Maaß cusp form.
The spectral aspect. Let K be a fixed compact subset of SLn(R)/SOn(R). The

convexity bound for the sup-norm of f restricted to K is given by

||f |K ||∞ � λ
n(n−1)/8
f

where λf is the Laplace eigenvalue of f . More details can be found in [Sar]. It is
important to mention that F. Brumley and N. Templier discovered in [BT] that
this convexity bound does not hold when n > 6 if f is not restricted to a compact.

The convexity bound is not expected to be sharp, essentially because there
are some additional symmetries on SLn(R)/SOn(R): the Hecke correspondences.
More precisely, one should be able to prove a subconvexity bound, namely finding
an absolute positive constant δn > 0 such that

||f |K ||∞ � λ
n(n−1)/8−δn
f (1.15)

The pioneering work done by H. Iwaniec and P. Sarnak in [IS95] is the bound
given in (1.15) when n = 2 for δ2 = 1/24. This constant δ2 seems to be intrinsic to
the amplification method in GL(2). The case n = 3 was completed in [HRRb]. The
general case was done in a series of impressive works by V. Blomer and P. Maga
in [BMb] and in [BMa]. One could also quote [Marb].

All these achievements were done thanks to the amplification method. Deter-
mining what should be the best subconvexity exponent intrinsic to the amplifica-
tion method is an interesting question, which should reveal new types of analytic
problems. Needless to say that the explicit GL(n) amplifier could be useful to
do so.

The level aspect. Let us say that f is of level q and let us speak about the
growth of the sup-norm of f as q gets large.

For GL(2) and when the level q is squarefree, the convexity bound is

||f ||∞ � qε

for all ε > 0 but one expects that the correct order of magnitude is

||f ||∞ � q−1/2+ε
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This rank 1 case in prime level was intensively studied during the last years after
the foundational work of V. Blomer and R. Holowinsky in [BH10], particularly in
[Tem10], [HT12] and [HR]. In [HT13], the authors proved the bound

||f ||∞ � q−1/6+ε

which seems to be the best possible subconvexity exponent intrinsic to the am-
plification method. Note that the authors really used the shape of the explicit
GL(2) amplifier in order to get this bound. When the level q is not squarefree, the
situation is more delicate since the Atkin-Lehner group has more than one orbit
when acting on the cusps. See [Sah] and [Mara] for more details.

For GL(n), as far as we know, these questions remain completely open. We
hope that the explicit GL(n) amplifier constructed in this work will make possible
an investigation of these questions in a higher rank setting.

1.4. Organization of the paper

The general background on GL(n) Maaß cusp forms and on the GL(n) Hecke
algebra is given in Section 2. The proof of part (1) in Theorem A is done in
Section 3 (see Proposition 3.1). The proofs of parts (2) and (3) in Theorem A are
detailed in Section 4.

Notations. n > 2 is an integer and p, q are prime numbers. Λn stands for the
group GLn(Z) of n×n invertible matrices with integer entries, whose unity element
is the identity matrix In. For g a n×n matrix with rational coefficients, the degree
of g is defined by

deg(g) = card (Λn \ ΛngΛn) . (1.16)

If a1, . . . , an are real numbers then diag(a1, . . . , an) denotes the n × n diagonal
matrix with a1, . . . , an as diagonal entries. The following double Λn cosets will
occur throughout this article:

π
(n)
i (p) := ΛnD

(n)
i (p)Λn, D

(n)
i (p) = diag

1, . . . , 1, p, . . . , p︸ ︷︷ ︸
iterms

 ,

π(n)(p) := ΛnD
(n)(p)Λn, D(n)(p) = diag

1, p, . . . , p︸ ︷︷ ︸
n−2 terms

, p2

 ,

π
(n)
i,j (p) := ΛnD

(n)
i,j (p)Λn, D

(n)
i,j (p) = diag

1, . . . , 1, p, . . . , p︸ ︷︷ ︸
iterms

, p2, . . . , p2︸ ︷︷ ︸
j terms


for 0 6 i, j 6 n with i + j 6 n. The following polynomials in x will occur when
computing the degrees of some relevant Λn double cosets for this work:

ϕr(x) :=

r∏
k=1

(
xk − 1

)
, ϕ0(x) = 1
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for r > 1. Let us define the n-tuple

dn(p) :=

1, p, p2, . . . , pk−1︸︷︷︸
k’th term

, . . . , pn−2, pn

 .

Finally, if P is a property then δP is the Kronecker symbol, namely 1 if P is
satisfied and 0 otherwise.
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2. Background on the GL(n) Hecke algebra

In this section, n > 2. The convenient references for this section are [AZ95],
[Gol06], [Kri90], [New72] and [Shi94].

Let f be a GL(n) Maaß cusp form of level 1. Such f admits a Fourier expansion

f(g) =
∑

γ∈Un−1(Z)\SLn−1(Z)

∑
m1,...,mn−2>1
mn−1∈Z∗

af (m1, . . . ,mn−1)∏
16k6n−1|mk|k(n−k)/2

(2.1)

×WJa

diag (m1 . . .mn−2|mn−1|, . . . ,m1m2,m1, 1)

(
γ

1

)
g, νf , ψ1, . . . , 1︸ ︷︷ ︸

n−2 terms

,
mn−1
|mn−1|


for g ∈ GLn(R) (see [Gol06, Equation (9.1.2)]. Here Un−1(Z) stands for the
Z-points of the group of (n − 1) × (n − 1) upper-triangular unipotent matrices.
νf ∈ Cn−1 is the type of f , whose components are complex numbers characterized
by the property that, for every invariant differential operator D in the center of
the universal enveloping algebra of GLn(R), the cusp form f is an eigenfunction
of D with the same eigenvalue as the power function Iνf , which is defined in
[Gol06, Equation (5.1.1)]. ψ1, . . . , 1︸ ︷︷ ︸

n−2 terms

,±1 is the character of the group of n × n
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upper-triangular unipotent real matrices defined by

ψ1, . . . , 1︸ ︷︷ ︸
n−2 terms

,±1(u) = e2iπ(u1,2+···+un−2,n−1±un−1,n).

for u = [ui,j ]16i,j6n. WJa

∗, νf , ψ1, . . . , 1︸ ︷︷ ︸
n−2 terms

,±1

 stands for the GL(n) Jacquet

Whittaker function of type νf and character ψ1, . . . , 1︸ ︷︷ ︸
n−2 terms

,±1 defined in [Gol06, Equa-

tion 6.1.2]. The complex number af (m1, . . . ,mn−1) is the (m1, . . . ,mn−1)’th
Fourier coefficient of f for m1, . . . ,mn−2 some positive integers and mn−1 a non-
vanishing integer.

For g ∈ GLn(Q), one knows (see [AZ95, Lemma 1.2, p. 94 and Lemma 2.1,
p. 105]) that the Λn double coset ΛngΛn is a finite union of Λn right cosets such
that it makes sense to define the Hecke operator Tg by

Tg(f)(h) =
∑

δ∈Λn\ΛngΛn

f(δh)

for h ∈ GLn(R) (see [AZ95, Chapter 3, Sections 1.1 and 1.5]. The degree of g or
Tg is defined by

deg(g) = deg(Tg) = card (Λn \ ΛngΛn) .

Obviously,
deg(rg) = deg(g). (2.2)

for r ∈ Q×. By [AZ95, Lemma 2.18 Equation (2.32), p. 114],

deg
(
D

(n)
i,j (p)

)
= pj(n−i−j)

ϕn(p)

ϕn−i−j(p)ϕi(p)ϕj(p)
(2.3)

for 0 6 i, j 6 n with i+ j 6 n.

Remark 2.1. The equations (2.2) and (2.3) prove (1.7) and (1.11) in Theorem A.

The adjoint of Tg for the Peterson inner product is Tg−1 . The algebra of Hecke
operators T is the ring of endomorphisms generated by all the Tg’s with g ∈
GLn(Q), a commutative algebra of normal endomorphisms (see [Gol06, Theorem
9.3.6]), which contains the m’th normalised Hecke operator

Tm =
1

m(n−1)/2

∑
g=diag(y1,...,yn)
y1|y2|···|yn
y1y2...yn=m

Tg

for all positive integer m. A Hecke-Maaß cusp form f of level 1 is a Maaß cusp
form of level 1, which is an eigenfunction of T. In particular, it satisfies

Tm(f) = af (m, 1, . . . , 1︸ ︷︷ ︸
n−2 terms

)f and T ∗m(f) = af ( 1, . . . , 1︸ ︷︷ ︸
n−2 terms

,m)f (2.4)

according to [Gol06, Theorem 9.3.11].
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The algebra T is isomorphic to the absolute Hecke algebra, the free Z-module
generated by the double cosets ΛngΛn where g ranges over Λn \GLn(Q)/Λn and
endowed with the following multiplication law. If g1 and g2 belong to GLn(Q) and

Λng1Λn =

deg(g1)⋃
i=1

Λnαi and Λng2Λn =

deg(g2)⋃
j=1

Λnβj

then
Λng1Λn ∗ Λng2Λn =

∑
ΛnhΛn⊂Λng1Λng2Λn

m(g1, g2;h)ΛnhΛn (2.5)

where h ∈ GLn(Q) ranges over a system of representatives of the Λn-double cosets
contained in the set Λng1Λng2Λn and

m(g1, g2;h)

= card ({(i, j) ∈ {1, . . . ,deg(g1)} × {1, . . . ,deg(g2)}, αiβj ∈ Λnh}) , (2.6)

=
1

deg(h)
card ({(i, j) ∈ {1, . . . ,deg(g1)} × {1, . . . ,deg(g2)}, αiβj ∈ ΛnhΛn}) ,

(2.7)

=
deg(g2)

deg(h)
card ({i ∈ {1, . . . ,deg(g1)}, αig2 ∈ ΛnhΛn}) (2.8)

by [AZ95, Lemma 1.5, p. 96]. In particular,

ΛnrInΛn ∗ ΛngΛn = ΛnrgΛn (2.9)

for g ∈ GLn(Q) and r ∈ Q× ([AZ95, Lemma 2.4, p. 107]).
For g ∈ GLn(Q) with integer entries, the Λn right coset Λng contains a unique

upper-triangular column reduced matrix, namely

Λng = ΛnC (2.10)

where C = [ci,j ]16i,j6n is an upper-triangular matrix with integer entries satisfying

∀j ∈ {2, . . . , n},∀i ∈ {1, j − 1}, 0 6 ci,j < cj,j

by [AZ95, Lemma 2.7].
Let g be a n×n matrix with integer entries. Let 1 6 k 6 n. Let In,k be the set

of all k-tuples {i1, . . . , in} satisfying 1 6 i1 < i2 < · · · < ik 6 n. Obviously, In,k
is of cardinal

(
n
k

)
. If ω and τ are two elements of In,k then g(ω, τ) will denote the

k×k determinantal minor of g whose row indices are the elements of ω and whose
column indices are the elements of τ . Obviously, there are

(
n
k

)2 such minors. The
k’th determinantal divisor of g, say dk(g), is the non-negative integer defined by

dk(g) =

{
0 if ∀(ω, τ) ∈ I2

n,k, g(ω, τ) = 0,
gcd(ω,τ)∈I2n,kg(ω, τ) otherwise

(2.11)
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and the determinantal vector of g is dn(g) = (d1(g), . . . , dn(g)). The determinantal
divisors turn out to be useful since if h is another n×n matrix with integer entries
then

h ∈ ΛngΛn if and only if d(h) = d(g) (2.12)

according to [New72].
By [AZ95, Proposition 2.5, p. 107], if g1, g2 belong to GLn(Q) with integer

entries then
Λng1Λn ∗ Λng2Λn = Λng1g2Λn (2.13)

provided d1(g1) = d1(g2) = 1 and (dn(g1), dn(g2)) = 1.
Finally, we will use the following result on the local integral Hecke algebra at

the prime p, say Hn
p , defined as the Λn double cosets ΛngΛn, where g ranges over

the matrices in GLn (Z[1/p]) with integer entries. By [AZ95, Lemma 2.16, p. 112],
the Q-linear map Ψ : Hn

p → Hn−1
p defined by

Ψ
(
Λndiag

(
pδ1 , . . . , pδn

)
Λn
)

=

{
Λndiag

(
pδ2 , . . . , pδn

)
Λn if 0 = δ1 6 δ2 6 . . . 6 δn,

0 otherwise
(2.14)

is a morphism of rings.

3. Decomposition of π(n)(p) into Λn right cosets

In this section, n > 2. The main purpose of this section is to prove part (1) in
Therorem A, namely to find a convenient complete system of representatives for
the distinct Λn right cosets of π(n)(p) modulo Λn. Let us denote by R

(n)
0 (p) the set

of n× n upper-triangular matrices C = [ci,j ]16i,j6n with integer entries satisfying

dn(C) = dn(p), (3.1)

∀i ∈ {1, . . . , n} , ci,i = p, (3.2)

and
∀j ∈ {2, . . . , n} ,∀i ∈ {1, . . . , j − 1} , 0 6 ci,j < p. (3.3)

Let us also denote by R
(n)
1 (p) the set of n × n upper-triangular matrices C =

[ci,j ]16i,j6n with integer entries satisfying

∀i ∈ {1, . . . , n} , ci,i ∈
{

1, p, p2
}
, (3.4)

∃!i ∈ {1, . . . , n} , ci,i = 1 and ∃!i ∈ {1, . . . , n} , ci,i = p2, (3.5)

∀j ∈ {2, . . . , n} ,∀i ∈ {1, . . . , j − 1} , 0 6 ci,j < cj,j (3.6)

and
∀i ∈ {1, . . . , n− 1} , p | ci,i ⇒ ∀j ∈ {i+ 1, . . . , n} , p | ci,j . (3.7)
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Proposition 3.1. Let n > 2. The set R(n)(p) = R
(n)
0 (p) t R(n)

1 (p) is a complete
system of representatives of the distinct Λn right cosets of π(n)(p) modulo Λn. In
other words,

π(n)(p) =

 ⊔
C0∈R(n)

0 (p)

ΛnC0

⊔
 ⊔
C1∈R(n)

1 (p)

ΛnC1

 .

In addition,

card
(
R

(n)
0 (p)

)
=

(n− 1)pn − npn−1 + 1

p− 1
,

card
(
R

(n)
1 (p)

)
=
p2n − npn+1 + 2(n− 1)pn − npn−1 + 1

(p− 1)2
.

Remark 3.2. Proposition 3.1 proves part (1) in Theorem A.

Proof of Proposition 3.1. By (3.7), all the matrices C1 in R(n)
1 (p) can be de-

composed as
C1 = diag (pα1 , . . . , pαn)C ′1

for some non negative integers α1, . . . , αn and with C ′1 ∈ Λn, hence

C1 ∈ Λdiag (pα1 , . . . , pαn) Λ = π(n)(p)

by (3.4) and (3.5).
All the matrices C0 in R

(n)
0 (p) belong to π(n)(p) since their determinantal

vectors match the determinantal vector of D(n)(p) by (3.1).
All the matrices in R(n)(p) are upper-triangular column reduced matrices by

(3.3), (3.6) and belong to different Λn right cosets according to the unicity state-
ment given in (2.10).

Let C = [ci,j ]16i,j6n be any upper-triangular column reduced matrix that lies
in π(n)(p) and let us prove that C belongs to R(n)(p). First of all, the determinant
of C is pn, hence

∀i ∈ {1, . . . , n} ,∃αi ∈ N, ci,i = pαi .

Then, C = λ1D
(n)(p)λ2 with λ1, λ2 in Λn, which entails that C−1 =

λ−1
2 D(n)(p)−1λ−1

1 . As a consequence, p2C−1 has integer entries and

∀i ∈ {1, . . . , n} , αi ∈ {0, 1, 2}.

If all the diagonal entries of C are equal to p then C belongs to R(n)
0 (p) since its

determinantal vector must be equal to the determinantal vector of D(n)(p), namely
dn(p). Assume that one of its diagonal coefficient is not equal to p. The condition
d2(C) = p implies that there must be at most one diagonal coefficient of C equal
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to 1. Let us prove that C has a single diagonal coefficient equal to 1 and a single
coefficient equal to p2. Let σ be the permutation of {1, . . . , n} satisfying

0 6 ασ(1) 6 . . . 6 ασ(n) 6 2.

The determinant condition is

ασ(1) + · · ·+ ασ(n) = n.

If ασ(1) = 0 then one easily gets ασ(2) = · · · = ασ(n−1) = 1 and ασ(n) = 2. If
ασ(1) > 1 then all the diagonal entries of C are equal to p, which is a contradiction.
Thus, (3.5) is satisfied. Let us prove (3.7). Assume on the contrary that there
exist i0 in {1, . . . , n− 1} and j0 in {i0 + 1, . . . , n} such that p | ci0,i0 and p - ci0,j0 .
The fact that p - ci0,j0 implies that cj0,j0 6= 1. Let j1 6= j0 be the index of the
column of C, for which cj1,j1 = 1. Let us prove that the columns C[j1] of C of
index j1 and C[j0] of C of index j0 are linearly independent modulo p. If

0 = λ0C[j0] + λ1C[j1] (mod p)

then the i0’th component implies that

0 = λ0ci0,j0 + λ1ci0,j1 = λ0ci0,j0 (mod p)

such that λ0 = 0 (mod p) since ci0,j0 is invertible modulo p and λ1 = 0 (mod p).
This is a contradiction since C is of rank 1 modulo p. Thus, C belongs to R(n)

1 (p).
Let us compute the cardinality of R(n)

1 (p). Obviously,

card
(
R

(n)
1 (p)

)
= pn−1

∑
16α1 6=α26n

pα2−α1

=

 ∑
06α6n−1

pα

2

− npn−1

=
p2n − npn+1 + 2(n− 1)pn − npn−1 + 1

(p− 1)2
.

Let us compute the cardinality of R(n)
0 (p). Obviously,

card
(
R

(n)
0 (p)

)
= card

(
R(n)(p)

)
− card

(
R

(n)
1 (p)

)
= deg

(
D(n)(p)

)
− card

(
R

(n)
1 (p)

)
= p

ϕn(p)

ϕ1(p)2ϕn−2(p)
− p2n − npn+1 + 2(n− 1)pn − npn−1 + 1

(p− 1)2

= p

(
pn−1 − 1

)
(pn − 1)

(p− 1)2
− p2n − npn+1 + 2(n− 1)pn − npn−1 + 1

(p− 1)2

by (2.3), which is the expected result. �
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We will need more details, stated in the following proposition, on the matrices
in R(n)

0 (p).

Proposition 3.3. Let n > 4 and C0 = [ci,j ]16i,j6n ∈ R
(n)
0 (p). On the one hand,

C0 6= pIn. On the other hand, for all positive integers i, j, k, `, one has

1 6 i < k < j < ` 6 n⇒ ci,jck,` ≡ ci,`ck,j (mod p)

1 6 i < j 6 k < ` 6 n⇒ ci,jck,` = 0.

Remark 3.4. One can check that

R
(2)
0 (p) =

⊔
0<c1,2<p

{(
p c1,2

p

)}
,

R
(3)
0 (p) =

⊔
06c1,2,c1,3,c2,3<p

c1,2c2,3=0
(c1,2,c1,3,c2,3)6=(0,0,0)


p c1,2 c1,3

p c2,3
p

 .

Proof of Proposition 3.3. The fact that C0 6= pIn is obvious since the first
determinantal divisor of C0, whose value is 1, is nothing else than the greatest
common divisor of the entries of C0, which are non-negative integers strictly less
than p.

Recall that d2(C0) = p. As a consequence, p divides the determinantal minors
of C0 of size 2 given by

ci,jck,` − ci,`ck,j (3.8)

for all 1 6 i < k < j < ` 6 n. It also divides the determinantal divisors of C0 of
size 2 given by

ci,jcj,` − ci,`cj,j = ci,jcj,` − pci,` (3.9)

for 1 6 i < j < ` 6 n. The fact that the prime number p divides ci,jcj,`implies that
ci,jcj,` = 0 because the non-diagonal entries of C0 are non-negative and strictly
less than p. Similarly, p divides the determinantal divisors of C0 of size 2 given by

ci,jck,` − ci,`ck,j = ci,jck,` (3.10)

for 1 6 i < j < k < ` 6 n, such that ci,jck,` = 0 too. �

4. End of the proof of Theorem A

In this section, n > 4. The following lemma, whose proof can be skipped in a first
reading, will be used in Proposition 4.2.

Lemma 4.1. Let n > 4 and 2 6 k 6 n − 2. Let C = [ci,j ]16i,j6n be an upper-
triangular matrix with integer entries satisfying

∀i ∈ {1, . . . , n}, ci,i = p (4.1)
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and
1 6 i < j 6 k < ` 6 n⇒ ci,jck,` = 0 (4.2)

for all positive integer i, j, k, `. Let

2 6 i0 < j0 6 n− 1. (4.3)

Then, there exists ωi0,j0 , τi0,j0 in In,k and εi0,j0 = ±1 such that(
CD(n)(p)

)
(ωi0,j0 , τi0,j0) = εi0,j0p

2k−2ci0,j0 . (4.4)

Proof of Lemma 4.1. Let a2 < a3 < · · · < ak−1 be an ordered sequence of
indices in {2, . . . , n− 1} not containing i0 and j0 and let

ω0 = {1, a2, . . . , ak−1, ak := i0},
τ0 = {1, a2, . . . , ak−1, j0}.

Such a choice is possible by (4.3). Note that ω0 and τ0 do not belong a priori to
In,k since they are not necessarily ordered (see (2.11)) but on the one hand, this
will only change the determinant occuring in the left-hand side of (4.4) by ±1 and
on the other hand, this abuse of notations has the advantage of minimizing a lot
the notations involved.

By the Cauchy-Binet formula,(
CD(n)(p)

)
(ω0, τ0) =

∑
α∈In,k

C0 (ω, α)D(n)(p) (α, τ) (4.5)

= C0 (ω, τ)D(n)(p) (τ, τ) (4.6)

= pk−1C0 (ω, τ) (4.7)

= pk
∑

σ∈σk−1

ε(σ)caσ(2),a2 . . . caσ(k−1),ak−1
caσ(k),j0 (4.8)

where σk−1 stands for the group of permutations of {2, . . . , k}.
Obviously, the contribution to the previous sum of the permutation Id in σk−1

equals
p2k−2ci0,j0

by (4.1). This is exactly the right-hand side of (4.4), up to the abuse of notations
recalled above.

Let us show that all the other terms vanish. Let σ 6= Id in σk−1. One can
assume that aσ(k) 6 j0 and

aσ(`) 6 a` (4.9)

for ` ∈ {2, . . . , k − 1} since otherwise, the contribution of σ trivially vanishes, C
being upper-triangular. Let us say that

2 6 a2 < · · · < au0−1 < ak = i0 < au0

< · · · < av0 < j0 < av0+1 < · · · < ak−1 6 n− 1 (4.10)
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where 2 6 u0 − 1 < v0 6 k − 1. (4.9) immediately implies that

σ(`) = `

for 2 6 ` 6 u0 − 1.
The fact that σ is different from the identity permutation Id entails that there

exists at least two integers ` > u0 satisfying σ(`) 6= `. Let u0 6 `0 < `1 be the two
consecutive smallest of them. One has

σ(`) = `

if u0 6 ` 6 `0 − 1 or `0 + 1 6 ` 6 `1 − 1 by (4.9), hence

σ(`0) = k and σ(`1) = `0

by (4.10). Consequently, the contribution of σ equals

pkε(σ)ci0,a`0 ca`0 ,a`1 × · · · = 0

by (4.2) since
1 6 i0 < a`0 6 a`0 < a`1 . �

Then, we need the following intermediate result.

Proposition 4.2. Let n > 4. Let C0 = [ci,j ]16i,j6n in R(n)
0 (p). If

∀(i, j) ∈ {1, . . . , n}2, 2 6 i < j 6 n− 1⇒ ci,j = 0 (4.11)

then

C0D
(n)(p) ∈ Λndiag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

Λn.

Otherwise,

C0D
(n)(p) ∈ Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

Λn.

In addition,

card

C0 ∈ R(n)
0 (p), C0D

(n)(p) ∈ Λndiag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

Λn




= 2pn−1 − p− 1

and

card

C0 ∈ R(n)
0 (p), C0D

(n)(p) ∈ Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

Λn




=
p2
(
(n− 3)pn−2 − (n− 2)pn−3 + 1

)
p− 1

.
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Remark 4.3. One can easily check that when n = 3

C0D
(3)(p) ∈ Λ3diag

(
p, p2, p3

)
Λ3

for all matrix C0 ∈ R(3)
0 (p) whereas when n = 2

C0D
(2)(p) ∈ Λ2diag

(
p, p3

)
Λ2

for all matrix C0 ∈ R(2)
0 (p).

Proof of Proposition 4.2. Recall that

dn

diag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

 =

p, p3, . . . , p2k−1︸ ︷︷ ︸
k’th term

, . . . , p2n−5, p2n−3, p2n

,
dn

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

 =

p, p2, . . . , p2k−2︸ ︷︷ ︸
k’th term

, . . . , p2n−6, p2n−3, p2n

,
dn(C0) = dn(p) =

1, p, . . . , p`−1︸︷︷︸
`’th term

, . . . , pn−2, pn


for 2 6 k 6 n− 2 and 2 6 ` 6 n− 1.

Obviously, d1(C0D
(n)(p)) = p and dn(C0D

(n)(p)) = p2n.
Let us show that dn−1(C0D

(n)(p)) = p2n−3. Of course, p2n−3 is a determinantal
minor of C0D

(n)(p) of size n − 1 such that it remains to show that the other
determinantal minors of C0D

(n)(p) of size n − 1 are all divisible by p2n−3. Let
ω = {1, . . . , n} \ {i0} and τ = {1, . . . , n} \ {j0} two elements in In,n−1 (see (2.11)
for the notations used). By the Cauchy-Binet formula,(

C0D
(n)(p)

)
(ω, τ) =

∑
α∈In,n−1

C0 (ω, α)D(n)(p) (α, τ)

= C0 (ω, τ)D(n)(p) (τ, τ)

since D(n)(p) is a diagonal matrix. If j0 = 1 then C0 (ω, τ) is divisible by pn−2,
since dn−1(C0) = pn−2, and D(n)(p) (τ, τ) = pn. If 2 6 j0 6 n − 1 then C0 (ω, τ)
is divisible by pn−2 and D(n)(p) (τ, τ) = pn−1. The only remaining case is when
j0 = n. The minor obtained when erasing the i0’th row and the n’th column of
C0D

(n)(p) has its last row equal to 0 but when i0 = n, in which case(
C0D

(n)(p)
)

(ω, τ) = p2n−3.

Let 2 6 k 6 n− 2. Of course, p2k−1 is a determinantal minor of C0D
(n)(p) of

size k. Then, by Lemma 4.1, all the integers

p2k−2ci,j
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for 2 6 i < j 6 n− 1 also belong to the list of determinantal minors of C0D
(n)(p)

of size k. Let ω = {i1, . . . , ik} with 1 6 i1 < · · · < ik 6 n and τ = {j1, . . . , jk}
with 1 6 j1 < · · · < jk 6 n two elements in In,k. Once again, by the Cauchy-Binet
formula,(

C0D
(n)(p)

)
(ω, τ) =

∑
α∈In,k

C0 (ω, α)D(n)(p) (α, τ)

= C0 (ω, τ)D(n)(p) (τ, τ)

= C0 (ω, τ)×


pk+1 if 2 6 j1 < · · · < jk−1 < jk = n,
pk if 2 6 j1 < · · · < jk 6 n− 1,
pk if 1 = j1 < j2 · · · < jk−1 < jk = n,
pk−1 if 1 = j1 < j2 · · · < jk 6 n− 1.

C0 (ω, τ) being divisible by pk−1, since dk(C0) = pk−1, all these determinantal
minors are divisible by p2k−1 except a priori when 1 = j1 < j2 · · · < jk 6 n − 1.
Let us investigate this last case. First of all,

C0 (ω, τ) =
∑
σ∈σk

ε(σ)ciσ(1),1ciσ(2),j2 . . . ciσ(k),jk

=
∑
σ∈σk
iσ(1)=1

ε(σ)ciσ(1),1ciσ(2),j2 . . . ciσ(k),jk

=

p
∑

σ∈σk
σ(1)=1

ε(σ)ciσ(2),j2 . . . ciσ(k),jk if i1 = 1,

0 otherwise

where σk stands for the permutation group on k letters and since the condition
iσ(1) = 1 is equivalent to i1 = σ(1) = 1. We can focus on the case i1 = 1, in which
case

C0(ω, τ) =

k−1∑
L=0

p1+L
∑
σ∈σk
σ(1)=1

∀`∈{2,...,k},iσ(`)6j`
card({`∈{2,...,k},iσ(l)=j`})=L

ε(σ)
∏

26`6k
iσ(`) 6=j`

ciσ(`),j`

is a polynomial in a subset of

ci,j , 2 6 i < j 6 n− 1

divisible by pk−1, since dk(C0) = pk−1, whose constant term is divisible by pk. One
can now conclude as follows. If (4.11) holds then dk

(
C0D

(n)(p)
)
is the greatest

common divisor of 0, p2k−1 and of a finite list of integers divisible by p2k−1, hence

dk

(
C0D

(n)(p)
)

= p2k−1.
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If (4.11) does not hold then dk
(
C0D

(n)(p)
)
is the greatest common divisors of

p2k−1, of the integers p2k−2ci,j , 2 6 i < j 6 n − 1, and of a finite list of integers
divisible by p2k−2, hence

dk

(
C0D

(n)(p)
)

= p2k−2.

Let us compute the first cardinality, say c(n)
0 (p) , given in the previous propo-

sition. The set{
C0 ∈ R(n)

0 (p),∀(i, j) ∈ {1, . . . , n}2, 2 6 i < j 6 n− 1⇒ ci,j = 0
}

can be decomposed into the disjoint union of the three following sets.

• The set of matrices C0 in R(n)
0 (p) satisfying (4.11) and c1,2 6= 0, cn−1,n = 0,

which implies that
c2,n = · · · = cn−2,n = 0.

There are (p− 1)pn−2 such matrices.
• The set of matrices C0 in R(n)

0 (p) satisfying (4.11) and c1,2 = 0, cn−1,n 6= 0,
which implies that

c1,3 = · · · = c1,n−1 = 0.

There are (p− 1)pn−2 such matrices.
• The set of matrices C0 in R

(n)
0 (p) satisfying (4.11) and c1,2 = cn−1,n = 0,

which can be identified to the set of matrices C0 in R
(n−1)
0 (p) satisfying

(4.11), by erasing the diagonal of zeros above the main diagonal. There are
c
(n−1)
0 (p) such matrices.

In total,
c
(n)
0 (p) = 2(p− 1)pn−2 + c

(n−1)
0 (p).

One can conclude by induction on n > 4. If the formula holds for n > 4 then

c
(n+1)
0 (p) = 2(p− 1)pn−1 + 2pn−1 − p− 1 = 2pn − p− 1.

Let us briefly check that c(4)
0 (p) = 2p3−p−1. If C0 in R(4)

0 (p) satisfies (4.11) then
five cases can occur.

• c1,2 = c1,3 = c1,4 = c2,4 = 0 and c3,4 6= 0. There are p− 1 such matrices.
• c1,2 = c1,3 = c1,4 = 0 and c2,4 6= 0. There are p(p− 1) such matrices.
• c1,2 = c1,3 = 0 and c1,4 6= 0. There are p2(p− 1) such matrices.
• c1,2 = c2,4 = c3,4 = 0 and c1,3 6= 0. There are p(p− 1) such matrices.
• c2,4 = c3,4 = 0 and c1,2 6= 0. There are p2(p− 1) such matrices.

The computation of the second cardinality is a consequence of Proposition 3.1,
which gives the cardinal of R(n)

0 (p). �
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Let us now complete the proof of Theorem A.

Proof of Theorem A. By (2.5),

π(n)(p) ∗ π(n)(p) =
∑

ΛnhΛn⊂π(n)(p)π(n)(p)

mn(h; p)ΛnhΛn

where h ∈ GLn(Q) ranges over a system of representatives of the Λn right cosets
contained in the set

π(n)(p)π(n)(p)

and

mn(h; p) :=
deg

(
D(n)(p)

)
deg(h)

cn(h; p),

cn(h; p) := card
({
C ∈ R(n)(p), CD(n)(p) ∈ π(n)(p)

})
.

Recall that

deg
(
D(n)(p)

)
= p

ϕn(p)

ϕ1(p)2ϕn−2(p)
= p

(
pn−1 − 1

)
(pn − 1)

(p− 1)2
(4.12)

by (2.3).
Let us determine the different matrices h occuring in this decomposition.
If C1 in R(n)

1 (p) then we have already seen that

C1 = diag
(
pδ1 , . . . , pδn

)
C ′1

with C ′1 an upper-triangular matrix in Λn and 0 6 δ1, . . . , δn 6 2 with

card ({i ∈ {1, . . . , n}, δi = 0}) = card ({i ∈ {1, . . . , n}, δi = 2}) = 1.

As a consequence,

C1D
(n)(p) = diag

pδ1 , p1+δ2 , . . . , p1+δn−1︸ ︷︷ ︸
n−2 terms

, p2+δn

D(n)(p)−1C ′1D
(n)(p)

∈ Λndiag

pδ1 , p1+δ2 , . . . , p1+δn−1︸ ︷︷ ︸
n−2 terms

, p2+δn

Λn

since D(n)(p)−1C ′1D
(n)(p) belongs to Λn. Let 1 6 α1 6= α2 6 n the integers

satisfying
δα1

= 0 and δα2
= 2.

Let us list the different cases that can occur.
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First case: α1 = 1 and 2 6 α2 6 n− 1. In this case, one has

C1D
(n)(p) ∈ Λndiag

1, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3

Λn.

The number of such matrices C1 is∑
26α26n−1

pn+α2−2 = pn
pn−2 − 1

p− 1
. (4.13)

Second case: α1 = 1 and α2 = n. In this case, one has

C1D
(n)(p) ∈ Λndiag

1, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

Λn.

The number of such matrices C1 is

p2n−2. (4.14)

Third case: 2 6 α1 6 n− 1 and α2 = 1. In this case, one has

C1D
(n)(p) ∈ Λndiag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

Λn.

The number of such matrices C1 is∑
26α16n−1

pn−α1 = p
pn−2 − 1

p− 1
. (4.15)

Fourth case:5 2 6 α1 6= α2 6 n− 1. In this case, one has

C1D
(n)(p) ∈ Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

Λn.

The number of such matrices C1 is

∑
26α1 6=α26n−1

pn−1+α2−α1 =

 ∑
16α6n−2

pα

2

− (n− 2)pn−1

=
p2
(
p2(n−2) − (n− 2)pn−1 + 2(n− 3)pn−2 − (n− 2)pn−3 + 1

)
(p− 1)2

. (4.16)

5Note that this case does not occur if n < 4.
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Fifth case: 2 6 α1 6 n− 1 and α2 = n. In this case, one has

C1D
(n)(p) ∈ Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p4

Λn.

The number of such matrices C1 is∑
26α16n−1

p2n−1−α1 = pn
pn−2 − 1

p− 1
. (4.17)

Sixth case: α1 = n and α2 = 1. In this case, one has

C1D
(n)(p) ∈ Λndiag

p2, . . . , p2︸ ︷︷ ︸
n terms

Λn = Λnp
2InΛn.

The number of such matrices C1 is
1. (4.18)

Seventh case: α1 = n and 2 6 α2 6 n− 1. In this case, one has

C1D
(n)(p) ∈ Λndiag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

Λn.

The number of such matrices C1 is∑
26α26n−1

pα2−1 = p
pn−2 − 1

p− 1
. (4.19)

If C0 in R(n)
0 (p) then two cases can occur by Proposition 4.2.

Eighth case: ∀(i, j) ∈ {1, . . . , n}2, 2 6 i < j 6 n⇒ ci,j = 0. In this case,

C0D
(n)(p) ∈ Λndiag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

Λn

and the number of such matrices is

2pn−1 − p− 1. (4.20)

Nineth case: ∃(i, j) ∈ {1, . . . , n}2, 2 6 i < j 6 n and ci,j 6= 0. In this case,

C0D
(n)(p) ∈ Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

Λn
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and the number of such matrices is

p2
(
(n− 3)pn−2 − (n− 2)pn−3 + 1

)
p− 1

. (4.21)

In particular, we have just proved that

π(n)(p) ∗ π(n)(p) = mn(1; p)Λnp
2InΛn

+mn(2; p)Λndiag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

Λn

+mn(3; p)Λndiag

1, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3

Λn

+mn(4; p)Λndiag

1, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

Λn

+mn(5; p)Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p4

Λn

+mn(6; p)Λndiag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

Λn.

(4.22)

where

mn(1; p) := mn

(
p2In; p

)
,

mn(2; p) := mn

diag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

 ; p

 ,

mn(3; p) := mn

diag

1, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3

 ; p


and

mn(4; p) := mn

diag

1, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

 ; p

 ,

mn(5; p) := mn

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p4

 ; p

 ,

mn(6; p) := mn

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

 ; p

 .
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One has,

mn(1; p) =
deg

(
D(n)(p)

)
deg(p2In)

cn
(
p2In; p

)
= p

(
pn−1 − 1

)
(pn − 1)

(p− 1)2

by (4.12) and (4.18) since deg(p2In) = 1.
Then,

mn(2; p) =
deg

(
D(n)(p)

)
deg

diag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

cn
diag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

 ; p



= cn

diag

p, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p3

 ; p


= 2p

pn−2 − 1

p− 1
+ 2pn−1 − p− 1

=
2pn − p2 − 2p+ 1

p− 1

by (2.2), (4.15), (4.19), (4.20).
Let us compute simultaneously the values of mn(3; p) and mn(4; p). On the

one hand, applying the map Ψ (see (2.14)) to (4.22), one gets

π
(n−1)
n−2,1(p) ∗ π(n−1)

n−2,1(p) = mn(3; p)Λndiag

p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3

Λn

+mn(4; p)Λndiag

p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

Λn.

On the other hand, by [AZ95, Lemma 2.18 Equation (2.30), p. 115], one gets

π
(n−1)
n−2,1(p) ∗ π(n−1)

n−2,1(p) = Λnp
2InΛn ∗ π(n−1)

1 (p) ∗ π(n−1)
1 (p)

= Λnp
2InΛn ∗

(
π

(n−1)
0,1 (p) + (p+ 1)π

(n−1)
2,0 (p)

)
= Λndiag

p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

Λn

+ (p+ 1)Λndiag

p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3

Λn
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by (2.9). Distinct Λn double cosets being linearly independent by [AZ95,
Lemma 1.5, p. 96], we get

mn(3; p) = p+ 1, mn(4; p) = 1.

Then,

deg

diag

1, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3


=

deg
(
D(n)(p)

)
mn(3; p)

cn

diag

1, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p3, p3

 ; p


= pn+1

(
pn−2 − 1

) (
pn−1 − 1

)
(pn − 1)

(p− 1)2 (p2 − 1)

by (4.12) and (4.13). This proves (1.8) in Theorem A. Similarly,

deg

diag

1, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

 =
deg

(
D(n)(p)

)
mn(4; p)

cn

diag

1, p2, . . . , p2︸ ︷︷ ︸
n−2 terms

, p4

 ; p


= p2n−1

(
pn−1 − 1

)
(pn − 1)

(p− 1)2

by (4.12) and (4.14). This proves (1.9) in Theorem A.
Let us consider mn(5; p). First, let us compute the value of

deg

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p4

 = deg

diag

1, 1, p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3


by (2.2). This is done by a semi-explicit computation of

π
(n)
n−2(p) ∗ π(n)

0,1 (p) =
∑

ΛnhΛn⊂π(n)
n−2(p)π

(n)
0,1 (p)

m
(
D

(n)
n−2(p), D

(n)
0,1 (p);h

)
ΛnhΛn

where h ∈ GLn(Q) ranges over a system of representatives of the Λn right cosets
contained in the set

π
(n)
n−2(p)π

(n)
0,1 (p)

and

m
(
D

(n)
n−2(p), D

(n)
0,1 (p);h

)
=

deg
(
D

(n)
0,1 (p)

)
deg(h)

card

C ∈ R1,1,p, . . . , p︸ ︷︷ ︸
n−2

, CD
(n)
0,1 (p) ∈ ΛnhΛn



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where R1,1,p, . . . , p︸ ︷︷ ︸
n−2

is the complete system of representatives for the distinct Λn

right cosets of π(n)
n−2(p) modulo Λn given by the set of upper-triangular column

reduced matrices C satisfying

∀i ∈ {1, . . . , n} , ci,i ∈ {1, p}, (4.23)

card ({i ∈ {1, . . . , n}, ci,i = 1}) = 2 (4.24)

and

∀i ∈ {1, . . . , n− 1} , p | ci,i ⇒ ∀j ∈ {i+ 1, . . . , n} , ci,j = 0 (4.25)

according to [AZ95, Lemma 2.18, p. 115]. Let C be an element of R1,1,p, . . . , p︸ ︷︷ ︸
n−2

and let 1 6 α1 < α2 6 n be the indices of the diagonal elements of C equal to 1
by (4.24). By (4.23) and (4.25), C can be decomposed into

C = diag
(
pδ1 , . . . , pδn

)
C ′

for some upper-triangular matrix C ′ in Λn and integers 0 6 δ1, . . . , δn 6 1 such
that

CD
(n)
0,1 (p) ∈


Λndiag

1, 1, p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3

Λn if 1 6 α1 < α2 6 n− 1

π
(n)
n−2,1(p) if 1 6 α1 < α2 = n.

Thus,

π
(n)
n−2(p) ∗ π(n)

0,1 (p) = m
(
D

(n)
n−2(p), D

(n)
0,1 (p);D

(n)
n−2,1(p)

)
π

(n)
n−2,1(p)

+m

D(n)
n−2(p), D

(n)
0,1 (p);diag

1, 1, p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3


× Λndiag

1, 1, p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3

Λn.

Applying the map Ψ◦2 (see (2.14)) to the previous equality, one gets

Λndiag

 p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3

Λn

= m

D(n)
n−2(p), D

(n)
0,1 (p);diag

 p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3

Λndiag

 p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3

Λn,
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hence

m

D(n)
n−2(p), D

(n)
0,1 (p);diag

 p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3

 = 1

by the linear independence of distinct Λn double cosets ([AZ95, Lemma 1.5 Equa-
tion (2.32), p. 96]). As a consequence,

deg

diag

1, 1, p, . . . , p︸ ︷︷ ︸
n−3 terms

, p3

 = deg
(
D

(n)
0,1 (p)

) ∑
16α1<α26n−1

p2n−1−α1−α2

= pn−1 ϕn(p)

ϕn−1(p)ϕ1(p)
p2n−1

∑
16α1<α26n−1

(
1

p

)α1+α2

= pn−1 ϕn(p)

ϕn−1(p)ϕ1(p)
p2n−4 ϕn−1(1/p)

ϕ2(1/p)ϕn−3(1/p)

= pn−1 ϕn(p)

ϕn−1(p)ϕ1(p)
p2 ϕn−1(p)

ϕ2(p)ϕn−3(p)

= pn+1 ϕn(p)

ϕ1(p)ϕ2(p)ϕn−3(p)

by (4.12), [AZ95, Equation (2.33), p. 115] and since

ϕr(1/x) = (−1)rx−r(r+1)/2ϕr(x)

for r > 1 and x 6= 0 a real number. This proves (1.10) in Theorem A. As a con-
sequence,

mn(5; p) =
deg

(
D(n)(p)

)
deg

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p4

cn
diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−3 terms

, p4

 ; p



=
ϕ2(p)

ϕ1(p)2

= p+ 1

by (4.17).
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Finally, let us compute the value of mn(6; p). One has

mn(6; p) =
deg

(
D(n)(p)

)
deg

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3


× cn

diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

 ; p


=

deg
(
D(n)(p)

)
deg

(
D

(n)
n−4,2(p)

)cn
diag

p, p, p2, . . . , p2︸ ︷︷ ︸
n−4 terms

, p3, p3

 ; p


=

(p+ 1)
2

(p− 1)2

p3 (pn−2 − 1) (pn−3 − 1)

p3
(
p2n−5 − pn−2 − pn−3 + 1

)
(p− 1)2

= (p+ 1)2

by (2.2), (2.3), (4.16) and (4.21).
Equation (4.22) and the explicit values of the constants mn(i; p) (1 6 i 6 6)

prove (1.12) in Theorem A. �
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