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CALCULATING POWER INTEGRAL BASES BY USING
RELATIVE POWER INTEGRAL BASES

István Gaál, László Remete, Tímea Szabó

Abstract: Let M ⊂ K be number fields. We consider the relation of relative power integral
bases of K over M with absolute power integral bases of K over Q. We show how generators of
absolute power integral bases can be calculated from generators of relative ones. We apply our
ideas in infinite families of octic fields with quadratic subfields.

Keywords: octic fields, relative quartic extension, power integral basis, relative power integral
basis.

1. Introduction: monogenity in the absolute and relative case

Monogenity of number fields and the calculation of generators of power integral
bases is a classical topic of algebraic number theory c.f. [17], [6]. We have general
algorithms for calculating generators of power integral bases in lower degree num-
ber fields, [15], [13], [8], [1]. We only have partial results for higher degree fields
[3], [10], [9], [11], [4].

Let K be an algebraic number field of degree n with ring of integers ZK . This
field is monogene if ZK is a simple ring extension of Z, that is there exist ϑ ∈ ZK
such that ZK = Z[ϑ]. In this case {1, ϑ, . . . , ϑn−1} is an integral basis of K, called
power integral basis. If α1, α2 ∈ ZK are related by α1 ± α2 ∈ Z then the elements
α1, α2 are called equivalent. These elements have the same indices (see below) and
α1 generates a power integral basis of K if and only if α2 does. Up to equivalence
there are only finitely many generators of power integral bases of K.

We also considered monogenity and power integral bases in the relative case
[5], [12], [16]. The element ϑ generates a relative power integral basis of K over the
subfield M if ZK = ZM [ϑ] (ZM denotes the ring of integers of M). In the relative
case we call α1, α2 ∈ ZK equivalent if α1 + εα2 ∈ ZM for some unit ε in M . These
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elements have the same relative indices (see below) and α1 generates a relative
power integral basis of K over M if and only if α2 does. Up to equivalence there
are only finitely many generators of relative power integral bases of K over M .

In the present paper we describe the relation of the generators of relative power
integral bases with the generators of absolute ones. We show how the generators
of relative power integral bases can be used to calculate generators of absolute
power integral bases.

The algorithm is especially simple if M is a quadratic field. We apply our
method to three infinite families of octic fields with imaginary quadratic subfields.

2. From relative power integral bases to absolute ones

Let M be an algebraic number field of degree m and K an extension of M with
[K : M ] = k. Then we have [K : Q] = k · m. Let O be either the ring of
integers ZK of K or an order in ZK . Denote by ZM the ring of integers of M . We
assume that there exist a relative integral basis of O over M . (As we shall see in
the following the existence of a power integral basis of O implies the existence of
a relative power integral basis.)

Denote byDO andDM the discriminants of O and the subfieldM , respectively.
(In case O = ZK we have DO = DK where DK is the discriminant of the field K.)
The index of a primitive element α of O with respect to the order O is

IO(α) =

√
|D(α)|√
|DO|

. (1)

We also have

IO(α) = (O+ : Z[α]+) = (O+ : ZM [α]+) · (ZM [α]+ : Z[α]+), (2)

where the indices of the additive groups of the corresponding rings are calculated.
The first factor is just the relative index of α:

IO/M (α) = (O+ : ZM [α]+).

Denote by DO/M the relative discriminant of O over M . As it is well known

DO = NM/Q(DO/M ) ·D[K:M ]
M . (3)

Denote by γ(i) the conjugates of any γ ∈ M (i = 1, . . . ,m). Let δ(i,j) be the
images of δ ∈ K under the automorphisms of K leaving the conjugate field M (i)

elementwise fixed (j = 1, . . . , k). Then for any primitive element α ∈ O we have

IO/M (α) =

√
|NM/Q(DO/M (α))|√
|NM/Q(DO/M )|

=
1√

|NM/Q(DO/M )|
·
m∏
i=1

∏
16j1<j26k

∣∣∣α(i,j1) − α(i,j2)
∣∣∣ . (4)
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Further, by (1), (2), (3) and (4) we have

J(α) = (ZM [α]+ : Z[α]+)

=
1√

|DM |
[K:M ]

·
∏

16i1<i26m

k∏
j1=1

k∏
j2=1

∣∣∣α(i1,j1) − α(i2,j2)
∣∣∣ . (5)

The element α generates a power integral basis of O if and only if IO(α) = 1.
Here we formulate the straightforward consequences of it, which will be very useful
in our calculations in the following sections.

By (2), IO(α) = 1 can only be satisfied if both factors of (2) are equal to 1.
Therefore,

Proposition 1. A primitive element α ∈ O generates a power integral basis of O,
if and only if

IO/M (α) = 1

and
J(α) = (ZM [α]+ : Z[α]+) = 1. (6)

Hence we have

Corollary 2. If α generates a power integral basis of O, then it generates a relative
power integral basis of O over M .

It is well known that generators or relative power integral bases are determined
up equivalence, that is up to multiplication by a unit in M and up to translation
by element of ZM . Hence

Proposition 3. If α generates a power integral basis of O, then

α = A+ ε · α0, (7)

where α0 is a generator of a relative power integral basis of O over M , ε is a unit
in M and A ∈ ZM .

Summarizing, in order to determine all generators of power integral bases of O
we have to perform the following steps:

Step 1: Determine up to equivalence all generators α0 ∈ O of relative power
integral bases of O over M .

In other words, determine all elements α0 ∈ O with relative index 1:

IO/M (α0) = 1.

Note that if α0 has relative index 1, then by means of equivalence any α of the
form (7) also has relative index 1.

Step 2: Given α0 determine ε and A so that α of (7) has J(α) = 1.
Let µ1 = 1, µ2, . . . , µm be an integral basis of M . Then the above A can be

represented in the form

A = a1 + a2µ2 + . . .+ akµk. (8)
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Since the (absolute) index is invariant under translation by an element of Z, we
have to calculate a2, . . . , am of (8) up to sign. Step 2 means to determine ε and
a2, . . . , ak satisfying (6). In view of (5) this yields to solve an equation of degree
k2m(m− 1)/2 depending on ε and a2, . . . , ak.

This later task can became very complicated. However if M is an imaginary
quadratic field, then there are only finitely many units ε in M and we get a poly-
nomial equation in one variable a2. We shall apply our method in this case in the
following examples of infinite parametric families of octic number fields.

3. Simplest D4 octics

Recently B.K.Spearman and K.S.Williams [18] studied the family of simplest D4

octics. Let t > 0 be an integer parameter and ϑ a root of the polynomial x8 +
(t2 + 2)x4 + 1. They showed that these polynomials are irreducible, and the field
K = Q(ϑ) has Galois group D4. Assuming that t2+4 is square free they calculated
the discriminant of K and gave an integral basis of K. By

x8 + (t2 + 2)x4 + 1 = (x4 + itx2 + 1)(x4 − itx2 + 1)

M = Q(i) is a subfield of K.
Here we restrict ourselves to parameters of the form t = 2T 2. We explicitely

describe all generators of relative power integral bases of the order O = ZM [ϑ]
over ZM . Moreover we show that the order O admits no power integral bases.

3.1. Relative power integral bases in the family of D4 octics

Let T be a nonzero integer parameter and K the algebraic number field generated
by a root ϑ of the polynomial f(x) = x8 + (4T 4 + 2)x4 + 1. Let M = Q(i).
Denote by ZK (resp. ZM ) the ring of integers of K (resp. M). Consider the order
O = ZM [ϑ] of K.

Our purpose is to explicitely determine all generators of relative power integral
bases of O over M . Obviously, any α ∈ O can be written in the form

α = A+Xϑ+ Y ϑ2 + Zϑ3 (9)

with A,X, Y, Z ∈ ZM .

Theorem 4. Assume T > 11. Up to equivalence all generators of relative power
integral bases of O over ZM are given by

α = ϑ,

α = −2iT 2ϑ+ ϑ3,

α = (1 + 4T 4)ϑ± (1 + i)Tϑ2 + 2iT 2ϑ3,

α = ±(1 + i)Tϑ2 + ϑ3.
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Proof of Theorem 4. The octic polynomial f(x) can be written as

f(x) = (x4 + 2iT 2x2 + 1)(x4 − 2iT 2x2 + 1)

hence the relative defining polynomial of ϑ overM is x4−2iT 2x2 +1. In our proof
we use the result of I.Gaál and M.Pohst [12] on power integral bases in relative
quartic extensions (cf. also [6]).

According to [12] the coefficients X,Y, Z ∈ ZM of α in (9) must satisfy

F (U, V ) = (U − 2iT 2V )(U − 2V )(U + 2V ) = ε,

Q1(X,Y, Z) = X2 − 2iT 2Y 2 + 4iT 2XZ + (1− 4T 4)Z2 = U,

Q2(X,Y, Z) = Y 2 −XZ − 2iT 2Z2 = V,

with a unit ε of M and with U, V ∈ ZM . We have to determine the solutions
U, V ∈ ZM of the first equation and for all pairs U, V to calculate the corresponding
solutions X,Y, Z of the second and third equations. By the first equation we have
U − 2V = ε1 and U + 2V = ε2 with units ε1, ε2 ∈ M . Therefore 4V = ε2 − ε1.
Since all units inM are ±1,±i, the only V ∈ ZM satisfying this equation is V = 0.
Hence U is again a unit in M . Following the method of [12] we set

Q0(X,Y, Z) = UQ2(X,Y, Z)− V Q1(X,Y, Z) = 0.

Using standard arguments described in [12] we can parametrize X,Y, Z with pa-
rameters P,Q ∈ ZM so that up to a unit factor we get

X = P 2 − 2iT 2Q2, Y = PQ, Z = Q2. (10)

Substituting the formulas (10) into Q1(X,Y, Z) = U we obtain a quartic relative
Thue equation over M :

P 4 − 2iT 2P 2Q2 +Q4 = ε, (11)

with a unit ε in M . This equation can be written in the form

P 4 − ((1 + i)T )2P 2Q2 +Q4 = ε, (12)

therefore we may apply the results of V.Zielger [19] on the solution of this equation
by taking t = (1 + i)T as parameter. Theorem 2 of [19] implies that, assuming
|t2| > 245, that is |T | > 11, up to unit factors of M all solutions of (11) are

(P,Q) = (1, 0), (0, 1), (1,±(1 + i)T ), ((1 + i)T,±1). (13)

Substituting these vales of (P,Q) into (10) we obtain the possible triplets:

x y z
Case 1 1 0 0
Case 2 −2iT 2 0 1
Case 3 1 + 4T 4 ±(1 + i)T 2iT 2

Case 4 0 ±(1 + i)T 1

(14)

This proves Theorem 4. �
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3.2. Power integral bases in the family of D4 octics

Despite of the promising result on relative power integral bases we have

Theorem 5. For |T | > 11 the order O admits no power integral bases.

Proof of Theorem 5. In view of (7) a generator α of a power integral basis of
O must be of the form α = a1 + a2i + εα0 where a1, a2 ∈ Z, ε = ±1,±i and the
possibe values of α0 are listed in Theorem 4. Any α of the above form has relative
index IO/M (α) = 1. The index of α is independent of a1 and it is sufficient to
determine α up to sign. Therefore we have to consider the possible values of α0

and for ε = 1, ε = i and we have to calculate J(α). We have DM = −4 hence

J(α) =
1

24

4∏
j1=1

4∏
j2=1

∣∣∣α(1,j1) − α(2,j2)
∣∣∣ .

In Case 1 we get

J(α) = 24 · |(4T 2a2
2 − 1 + 4a2

2)(4T 2a2
2 + 1− 4a2

2)(T 8 + 8a4
2T

4 + 16a8
2 + 16a4

2)|.

Hence J(α) is divisible by 24, yielding that α can not be a generator of a power
integral basis.

In the other cases we got much more complicated formulas, but in each case
J(α) is divisible by 24. �

3.3. Remarks on the numerical calculations

All calculations involved in the proof of Theorem 5 were performed in Maple [2]
under Linux. J(α) is a polynomial with integer coefficients of degree 16 in a2,
depending also heavily on the parameter T . We used symmetric polynomials
several times to simplify the formulas. Without being very careful the formulas
became extremely complicated and Maple broke down in lack of memory space.
Using careful approach all calculations took less than 2 minutes.

4. Composites of imaginary quadratic fields and pure quartic fields

In a recent paper [14] we considered number fields of type K = Q( 4
√
m, i
√
d)

for d = 3, 7, 11, 19, 43, 67, 163 and for 1 < m 6 5000, m ≡ 2, 3 (mod 4) with
(d,m) = 1. Set ξ = 4

√
m,ω = (1 + i

√
d)/2, then

{1, ξ, ξ2, ξ3, ω, ωξ, ωξ2, ωξ3}

is an integral basis of K and {1, ξ, ξ2, ξ3} is a relative integral basis of K over
M = Q(i

√
d). In [14] we described all generators

α = A+Xξ + Y ξ2 + Zξ3
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of relative power integral bases of K over M with A,X, Y, Z ∈ ZM and
max(|X|, |Y |, |Z|) < 10500 (here |X| denotes the size of X that is the maximum
absolute value of its conjugates). The problem lead us to a quartic relative bino-
mial Thue equation. Using the algorithm of [7] we calculated the "small" solutions
of this equation which resulted Theorem 3 of [14]. Note that according to our ex-
perience these equations never have "large" solutions hence our list contains all
solutions with high probability. Further, calculating the "small" solutions was the
only way to deal with thousands of relative Thue equations.

Using the ideas of Section 2 we tested if there exist generators of power integral
bases of K over Q corresponding to the relative power integral bases found in
Theorem 3 of [14]. We have

Theorem 6. Let d = 3, 7, 11, 19, 43, 67, 163 and 1 < m 6 5000 with m ≡ 2, 3
(mod 4) and (d,m) = 1. Then the number field K = Q( 4

√
m, i
√
d) does not admit

any generators of power integral bases of the form

α = A+ ε(Xξ + Y ξ2 + Zξ3)

where A ∈ ZM , ε a unit in M and X,Y, Z ∈ ZM with

max(|X|, |Y |, |Z|) < 10500.

Proof of Theorem 6. For all possible values of X,Y, Z listed in Theorem 3 of
[14] and for all possible unit ε in M we set A = a1 + a2ω. We calculated J(α)
which is a polynomial in a2 with integral coefficients of degree 16. In each case
we found that J(α) = ±1 is not solvable for a2 in integers. Calculation with
polynomials with integer coefficients was very fast, the whole calculation took
a few seconds. �

5. Parametric families of quartic extensions of imaginary quadratic fields

In [16] we calculated generators of relative power integral bases in infinite para-
metric families of orders of certain octic fields. Here in two of these families we
check if there exist corresponding generators of (absolute) power integral bases.
The challenge of these examples is that J(α) depends not only on a2 but also on
the quadratic field and the parameter of the family.

I. Let d > 0 be an integer, −d ≡ 2, 3 (mod4) and set M = Q(i
√
d). Let

t ∈ ZM be a parameter and let ξ be a root of the polynomial

f(x) = x4 − t2x2 + 1.

Consider O = ZM [ξ]. In [16] we showed that for |t| > 245 up to equivalence there
are five generators of relative power integral bases of O over ZM , namely

α0 = ξ,−t2ξ + ξ3, (1− t4)ξ + tξ2 + t2ξ3, (1− t4)ξ − tξ2 + t2ξ3, tξ2 + ξ3,−tξ2 + ξ3.
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We have

Theorem 7. Under the above conditions for |t| > 245 the order O admits no
power integral bases.

Proof of Theorem 7. Denote by α0 a possible generator of a relative power
integral basis of O over ZM , say

α0 = (1− t4)ξ + tξ2 + t2ξ3

where t = t1 + t2i
√
d is the parameter (t1, t2 ∈ Z). Note that since the minimal

polynomial of ξ over ZM depends on the parameter t ∈ ZM , hence ξ depends on
t and also on d. We let ε = ±1 and represent α in the form

α = a1 + a2i
√
d+ εα0

with a1, a2 ∈ Z. Then we calculate J(α). This is a very complicated polynomial
of degree 16 depending not only on a2 but also on t1, t2, d. Using symmetric
polynomials and simplifying the formulas very carefully, we obtain that J(α) is
disvisible by 16. Therefore there are no generators of power integral bases of O
corresponding to α0. The proof runs the same way for the other four candidates
of α0, as well. The Maple calculation took 10-60 seconds per case. �

II. Let again d > 0 be an integer, −d ≡ 2, 3 (mod4), M = Q(i
√
d). Let

t ∈ ZM be a parameter and let ξ be a root of the polynomial

f(x) = x4 − 4tx3 + (6t+ 2)x2 + 4tx+ 1.

Let O = ZM [ξ]. According to [16] for |t| > 1544803 up to equivalence there are
two generators of power integral bases of O over ZM , namely

α0 = ξ, (6t+ 2)ξ − 4tξ2 + ξ3.

We have

Theorem 8. Under the above conditions for |t| > 1544803 the order O admits no
power integral bases.

The proof of this statement is similar to the proof of Theorem 7.
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