Functiones et Approximatio 54.1 (2016), 95-113 doi: 10.7169/facm/2016.54.1.8

APPROXIMATION AND GENERALIZED GROWTH OF SOLUTIONS TO A CLASS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

SUSHEEL KUMAR, GIRJA S. SRIVASTAVA

Abstract: In the present paper, we study the approximation and growth of solutions to a class of elliptic partial differential equations. The characterizations of generalized order and generalized type of solutions to a class of elliptic partial differential equations have been obtained in terms of approximation errors.

Keywords: Helmholtz type equation, regular solution, analytic function, approximation errors, generalized order, generalized type.

1. Introduction

Following McCoy [4] , we first give some definitions. A Helmholtz type equation is given by

$$\pounds[H] := [\partial_{rr} + r^{-1}\partial_r + r^{-2}\partial_{\theta\theta} + F(r^2)]H(r,\theta) = 0.$$
(1.1)

Here (r, θ) are polar coordinates and F is an entire function. Let $H(r, \theta) = H(r, e^{i\theta})$ be a regular solution of (1.1) in some sufficiently small star-shaped neighborhood Ω about origin. Let R be the radius of convergence of this regular solution. Following Bergman [1], we have

$$H(r,\theta) = \mathbb{B}[f(z)] = \int_{-1}^{+1} E(r^2,t) f(\sigma) \, d\mu(t)$$

where $z=re^{i\theta}\in\Omega, \sigma=z(1-t^2)/2$, $d\mu(t)=(1-t^2)^{-1/2}dt,$ and the associated function f is analytic for $2z\in\Omega$. The Taylor series expansion of the kernel $E(r^2,t)$ is given as

$$E(r^2, t) = 1 + \sum_{n=1}^{\infty} t^{2n} Q^{(2n)}(r^2).$$

²⁰¹⁰ Mathematics Subject Classification: primary: 30B10; secondary: 30D20, 32K05

For a fixed $r \ge 0$, the kernel $E(r^2, t)$ is analytic for $t \in [-1, +1]$ and for every fixed $t \in [-1, +1]$, it is entire for $r \ge 0$. The Taylor coefficients $Q^{(2n)}(r^2)$ are entire function solutions of the system

$$\frac{\partial \left(Q^{(2)}(r^2)\right)}{\partial r^2} + 2F(r^2) = 0, \qquad Q^{(0)}(r^2) = 1,$$

$$\begin{aligned} (2n+1) \, \frac{\partial \left(Q^{(2n+2)}(r^2)\right)}{\partial r^2} + 2 \frac{\partial \left(r^2 Q^{(2n)}(r^2)\right)}{\partial r^2} \\ + F(r^2) Q^{(2n)}(r^2) - n \, \frac{\partial \left(Q^{(2n)}(r^2)\right)}{\partial r^2} = 0, \end{aligned}$$

 $Q^{(2n+2)}(r^2)|_{r=0} = 0, \qquad n = 1, 2, 3...$

McCoy [4] defined the basic set of particular solutions

$$\Phi_n(r, e^{i\theta}) = [r^n G_n(r^2)/R^n G_n(R^2)]e^{in\theta}$$

normalized by the conditions

$$\Phi_n(r, e^{i\theta}) = e^{in\theta}, \qquad n = 0, 1, 2, 3..$$

Here

$$G_n(r^2) = \int_{-1}^{+1} E(r^2, t) \left(1 - t^2\right)^n d\mu(t).$$

This set is complete relative to compact convergence on a disk $D_R = \{z : |z| < R\}$. Let $\text{Im}(D_R)$ be the space of regular solutions of (1.1) on D_R . Then $H \in \text{Im}(D_R)$ has the expansion in a uniformly convergent series

$$H(r, e^{i\theta}) = \sum_{n=0}^{\infty} a_n \Phi_n(r, e^{i\theta}),$$

where $\{a_n\}$ is a sequence of real numbers. If $A(D_R)$ is the space of analytic functions on D_R , then $f \in A(D_R)$ has the Taylor series expansion

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \qquad z \in D_R.$$

McCoy [4] associated H with the analytic function f by defining an integral operator as given below:

$$H(r, e^{i\theta}) = T_{\varepsilon}[f(z)] = \frac{1}{2\pi i} \int_{|\zeta|=1-\varepsilon} K_R(\zeta) f(z/\zeta) d\zeta/\zeta, \qquad z = re^{i\theta}/R,$$

where $\varepsilon > 0$ is arbitrarily small. The kernel for this integral operator defined over the basis $\{\Phi_n\}$ is given by

$$K_R(\zeta) = \sum_{n=0}^{\infty} \zeta^n [G_n(r^2)/G_n(R^2)].$$

For $\varepsilon > 0$, there exists an integer $N(\varepsilon)$ such that for all $n \ge N(\varepsilon)$, we have

$$(1-\varepsilon) \leq |G_n(r^2)/G_n(R^2)| \leq (1+\varepsilon).$$

Thus we can say that the kernel of this operator has uniformly convergent expansion. The above integral operator maps the function $f \in A(D_{R(1-\varepsilon)})$ onto regular solution $H \in \text{Im}(D_{R(1-\varepsilon)})$ and the disk of regularity of H coincides with the disk of analyticity of f. The maximum modulus of H on D_r is given by

$$M(r, H) = \max\{|H(s, e^{i\theta})| : s \leqslant r\}.$$

Let H be regular on the closure Δ^* of the unit disk $\Delta = \{z : |z| < 1\}$ and define the norm of H as

$$||H|| = \begin{cases} ||H||_p = \left[\iint_{\Delta^*} |H|^p r dr d\theta \right]^{1/p}, & 1 \le p < \infty, \\ ||H||_{\infty} = \lim_{r \to 1^-} M(r, H). \end{cases}$$

The spaces of polynomial solutions of fixed degree n = 0, 1, 2, ... are given by

$$\Pi_n = \left\{ P : P(r, e^{i\theta}) = \sum_{k=0}^n c_k \Phi_k(r, e^{i\theta}), \ c_k \in \mathbb{R} \right\}.$$

We define the approximation errors $E_n(H)$ (see [4]) by

$$E_n(H) = \inf_P \{ ||H - P|| : P \in \Pi_n \}, \qquad n = 0, 1, 2...$$

The definition of order and type for regular solution H are the same as those for the associated analytic function f (see [4], pp. 209). Hence the order ρ of regular solution H on D_R is given by

$$\rho = \lim_{r \to R^{-}} \sup \frac{\ln^{+} \ln^{+} M(r, H)}{\ln[R/(R-r)]},$$

where

$$\ln^{+} x = \begin{cases} \ln x, & x > 1; \\ 0, & 0 < x \leq 1 \end{cases}$$

Further, for $0 < \rho < \infty$ the type σ of regular solution H on D_R is given by

$$\sigma = \lim_{r \to R^-} \sup \frac{\ln^+ M(r, H)}{[R/(R-r)]^{\rho}}$$

McCoy [4] obtained the characterizations of order and type of function H in terms of approximation errors. Later, in [5], using the concept of index, McCoy studied the growth of entire solutions of the Helmoltz equation. Using the concept of (p,q) growth, Kumar [3] studied the relation between the growth and Chebyshev approximation of entire function solutions of Helmoltz equation. Srivastava and Kumar [7] obtained the characterizations of generalized growth of function H in terms of approximation errors and Taylor series coefficients It is clear from the above that the definition of σ is not valid if the order $\rho = \infty$. For such cases, following Janik [2] and Seremeta [6] we define the generalized order and generalized type of function H. Hence, let L^0 denote the class of functions h satisfying the following conditions:

- (i) h is defined on [a, ∞) and is positive, strictly increasing, differentiable and h(x) tends to ∞ as x → ∞,
- (ii) $\lim_{x\to\infty} \frac{h\{(1+1/\psi(x))x\}}{h(x)} = 1$, for every function ψ such that $\psi(x) \to \infty$ as x tends to ∞ .
- (iii) let Λ denote the class of functions h satisfying condition (i) and

$$\lim_{x \to \infty} \frac{h(cx)}{h(x)} = 1, \qquad c > 0,$$

i.e., h is slowly increasing.

For $\alpha \in \Lambda$ and $\beta \in L^0$ we define the generalized order of H as

$$\rho(\alpha, \beta, H) = \lim_{r \to R^-} \sup \frac{\alpha [\ln^+ M(r, H)]}{\beta [R/(R-r)]}.$$
(1.2)

Further, for $\alpha, \beta, \gamma \in \Lambda$ and $0 < \rho < \infty$, we define the generalized type of H as

$$\sigma(\alpha, \beta, \gamma, H) = \lim_{r \to R^-} \sup \frac{\alpha [\ln^+ M(r, H)]}{\beta \{ [\gamma \{ R/(R-r) \}]^{\rho} \}}.$$
(1.3)

If $\rho(\alpha, \beta, H)$ defined as above is zero then the analytic function is of generalized order zero and $\sigma(\alpha, \beta, \gamma, H)$ is no longer defined. For such functions we give the modified definition of generalized order. Hence for $\alpha(x) \in \Lambda$, we define the generalized order $\rho(\alpha, H), (0 \leq \rho(\alpha, H) < \infty)$ of H on D_R as

$$\rho(\alpha, H) = \lim_{r \to R^-} \sup \frac{\alpha \left[\ln^+ M(r, H) \right]}{\alpha \left[\ln \left\{ R/(R-r) \right\} \right]}.$$
(1.4)

Also for $\beta(x) \in L^0$ and $1 < \rho(\alpha, H) < \infty$, we define the generalized type $\sigma(\beta, \rho, H)$ of H on D_R as

$$\sigma(\beta,\rho,H) = \lim_{r \to R^-} \sup \frac{\beta \left[\ln^+ M(r,H)\right]}{\left(\beta \left[\ln \left\{R/(R-r)\right\}\right]\right)^{\rho}}.$$
(1.5)

In the present paper we have obtained the characterizations of generalized order and type defined by (1.2) and (1.3). We have also obtained the characterizations of generalized slow growth of function H in terms of approximation errors.

2. Generalized (α, β) -growth

We now prove

Theorem 1. Let *H* be a regular solution of (1.1) having the series expansion $H(r, e^{i\theta}) = \sum_{n=0}^{\infty} a_n \Phi_n(r, e^{i\theta})$. For $\alpha \in \Lambda, \beta \in L^0$ and positive numbers *x* and μ_1 , set $U(x, \mu_1) = \beta^{-1} \{\mu_1 \alpha(x)\}$. Assume that $\alpha (x/U(x, \mu_1)) \cong [1 + o(x)]\alpha(x)$ as $x \to \infty$. Then *H* is the restriction of a solution H_1 whose disk of regularity is $D_R(R > 1)$ and having generalized order $\rho(0 < \rho < \infty)$ if and only if

$$\rho = \rho(\alpha, \beta, H) = \lim_{n \to \infty} \sup \frac{\alpha(n)}{\beta \left\{ n / \ln^+ \left(E_n(H) R^n \right) \right\}}.$$
(2.1)

Proof. Write

$$\eta_1 = \lim_{n \to \infty} \sup \frac{\alpha(n)}{\beta \left\{ n / \ln^+ \left(E_n(H) R^n \right) \right\}}.$$
(2.2)

Now first we prove that $\eta_1 \leq \rho$. From (1.2), for $\mu_1 > \rho$ and r sufficiently close to R, we have

$$\log^{+} M(r, H_1) \leqslant \alpha^{-1} [\mu_1 \beta \{ R/(R-r) \}].$$

Let $\varepsilon > 0$ be arbitrary such that $\upsilon = (R^{-1} + \varepsilon) < 1$. Following McCoy ([4], pp.208), we have

$$E_k(H) \leqslant \frac{\pi K(\varepsilon)v^k}{1-v}; \qquad k=n, n+1, ...,$$

where $K(\varepsilon)$ is a finite positive number. Let us put $r = v^{-1}$. Then 1 < r < R. For sufficiently small ε, r is close to R and $\pi K(\varepsilon) \leq M(r, H)$. Hence we have

$$E_k(H) \leqslant \frac{M(r,H)}{(r-1)r^{k-1}} \leqslant \frac{M(r,H_1)}{(r-1)r^{k-1}}, \qquad 1 < r < R, \ k \ge n.$$
(2.3)

Hence for every r sufficiently close to R and large n, we get

$$\ln^{+} (E_{n}(H)R^{n}) \leq O(1) - n \ln(r/R) + \alpha^{-1} [\mu_{1}\beta \{R/(R-r)\}].$$

Putting

$$r = r_n = R \left[1 - 1/U \left(n/U(n, \mu_1^{-1}), \mu_1^{-1} \right) \right],$$

we get

$$\ln^{+} (E_{n}(H)R^{n}) \leq O(1) - n \ln \left[1 - 1/U\left(n/U(n,\mu_{1}^{-1}),\mu_{1}^{-1}\right)\right] + n/U(n,\mu_{1}^{-1}).$$

Now using the properties of logarithm and assumptions of the theorem for $\alpha(x)$ and $\beta(x)$, we get for sufficiently large values of n,

$$\ln^{+} (E_{n}(H)R^{n}) \leq C_{1} \frac{n}{\beta^{-1} \{\mu_{1}^{-1}\alpha(n)\}},$$

where C_1 is a positive constant. Hence by using the properties of β , we get

$$\frac{\alpha(n)}{\beta\left\{n/\ln^+\left(E_n(H)R^n\right)\right\}} \le \mu_1.$$

Now proceeding to limits as $n \to \infty$, we get $\eta_1 \leq \mu_1$. Since $\mu_1 > \rho$ is arbitrary, therefore we get $\eta_1 \leq \rho$.

Now we will prove that $\rho \leq \eta_1$. Let us assume that $0 \leq \eta_1 < \infty$ otherwise for $\eta_1 = \infty$, the inequality obviously holds. Therefore for a given $\varepsilon > 0$ there exists a positive integer n_0 such that for all $n > n_0$, we have

$$0 \leqslant \frac{\alpha(n)}{\beta \left\{ n/\ln^+ \left(E_n(H)R^n \right) \right\}} \leqslant \eta_1 + \varepsilon = \eta_1^*$$

or

$$E_n(H)r^n \leqslant r^n R^{-n} \exp\left[n/\beta^{-1}\left\{\left(\eta_1^*\right)^{-1}\alpha(n)\right\}\right].$$
 (2.4)

Now from the property of maximum modulus, we have

$$M(r,H) \leqslant \sum_{n=0}^{\infty} E_n(H)r^n$$

or

$$M(r,H) \leqslant \sum_{n=0}^{n_0} E_n(H)r^n + \sum_{n=n_0+1}^{\infty} r^n R^{-n} \exp\left[n/\beta^{-1} \left\{ (\eta_1^*)^{-1} \alpha(n) \right\} \right]$$

or

$$M(r,H) \leqslant A_1 r^{n_0} + \sum_{n=n_0+1}^{\infty} r^n R^{-n} \exp\left[n/\beta^{-1} \left\{ \left(\eta_1^*\right)^{-1} \alpha(n) \right\} \right],$$
(2.5)

where A_1 is a positive real constant. We take

$$N(r) = \left[\alpha^{-1} \left(\eta_1^* \beta \left\{ \left[\ln\{R/(N+1)r\} \right]^{-1} \right\} \right) \right],$$

where [x] denotes the integer part of $x \ge 0$. Since $\alpha \in \Lambda$ and $\beta \in L^0$, the integer N(r) is well defined. Now if r is sufficiently large, then from (2.4) we have

$$M(r,H) \leq A_1 r^{n_0} + r^{N(r)} \sum_{\substack{n_0+1 \leq n \leq N(r)}} R^{-n} \exp\left[n/\beta^{-1} \left\{ (\eta_1^*)^{-1} \alpha(n) \right\} \right]$$
$$+ \sum_{n>N(r)} r^n R^{-n} \exp\left[n/\beta^{-1} \left\{ (\eta_1^*)^{-1} \alpha(n) \right\} \right]$$

 \mathbf{or}

$$M(r,H) \leq A_1 r^{n_0} + r^{N(r)} \sum_{n=1}^{\infty} R^{-n} \exp\left[n/\beta^{-1} \left\{ (\eta_1^*)^{-1} \alpha(n) \right\} \right] + \sum_{n>N(r)} r^n R^{-n} \exp\left[n/\beta^{-1} \left\{ (\eta_1^*)^{-1} \alpha(n) \right\} \right].$$
(2.6)

Now we have

$$\lim_{n \to \infty} \sup \left(R^{-n} \exp \left[n/\beta^{-1} \left\{ (\eta_1^*)^{-1} \alpha(n) \right\} \right] \right)^{1/n} = \frac{1}{R} < 1.$$

Hence the first series on right hand side of (2.6) converges to a positive real constant A_2 . So from (2.6) we get

$$M(r,H) \leq A_1 r^{n_0} + A_2 r^{N(r)} + \sum_{n > N(r)} r^n R^{-n} \exp\left[n/\beta^{-1} \left\{ \left(\eta_1^*\right)^{-1} \alpha(n) \right\} \right]$$

or

$$M(r,H) \leqslant A_1 r^{n_0} + A_2 r^{N(r)} + \sum_{n > N(r)} r^n R^{-n} \exp[n \ln\{R/(N+1)r\}]$$

or

$$M(r,H) \leq A_1 r^{n_0} + A_2 r^{N(r)} + \sum_{n>N(r)} \left(\frac{1}{N+1}\right)^n$$

or

$$M(r,H) \leqslant A_1 r^{n_0} + A_2 r^{N(r)} + \sum_{n=1}^{\infty} \left(\frac{1}{N+1}\right)^n.$$
(2.7)

It can be easily seen that the series in (2.7) converges to a positive real constant A_3 . Therefore from (2.7), we get

$$M(r, H) \leq A_2 r^{N(r)} [1 + o(1)]$$

or

$$\ln^{+} M(r, H) \leq [1 + o(1)] \left[\alpha^{-1} \left(\overline{\eta_{1}} \beta \left\{ \left[\ln \{ R/(N+1)r \} \right]^{-1} \right\} \right) \right] \ln r$$

or

$$\ln^+ M(r, H) \leq [1 + o(1)]\alpha^{-1} \left[\{\eta_1^* + \delta_1\} \beta \left\{ \left[\ln\{R/(N+1)r\} \right]^{-1} \right\} \right],$$

where $\delta_1 > 0$ is suitably small. Hence

$$\alpha[\ln^+ M(r,H)] \leqslant \{\eta_1^* + \delta_1\} \beta \{[1+o(1)]^{-1}[\ln(R/r)]^{-1}\}.$$

Thus for r sufficiently close to R, we get

$$\frac{\alpha[\ln^+ M(r,H)]}{\beta\left\{[1+o(1)]^{-1}[R/(R-r)]\right\}} \leqslant \eta_1^* + \delta_1.$$

Proceeding to limits as $r \to R$ and using the property of β , we get

$$\lim_{r \to R^-} \sup \frac{\alpha [\ln^+ M(r, H)]}{\beta \{R/(R-r)\}} \leqslant \eta_1^* + \delta_1.$$

Since ε and δ_1 are arbitrarily small, therefore finally we get $\rho \leq \eta_1$. Combining this with the earlier inequality obtained, we get $\rho = \eta_1$.

Now from (2.2), for every $\lambda_1 > \eta_1$ and for sufficiently large n, we have

$$\frac{\alpha(n)}{\beta\left\{n/\ln^+\left(E_n(H)R^n\right)\right\}} \leqslant \lambda_1$$

or

$$E_n(H)R^n \leq \exp\left[n/\beta^{-1}\left\{\lambda_1^{-1}\alpha(n)\right\}\right].$$

Hence proceeding to limits as $n \to \infty$, we get

$$\lim_{n \to \infty} \sup (E_n(H)R^n)^{1/n} \leq 1.$$

Since $\eta_1 > 0$, the sequence $(E_n(H)R^n)_{n \in \mathbb{N}}$ is unbounded, whence

$$\lim_{n \to \infty} \sup(E_n(H)R^n)^{1/n} \ge 1.$$

Hence finally we get

$$\lim_{n \to \infty} \sup(E_n(H)R^n)^{1/n} = 1.$$

Thus following McCoy ([4], Theorem 1) we claim that the regular solution H can be continuously extended to a regular solution whose disk of regularity is $D_R(R > 1)$.

Let us put

$$H_1(r, e^{i\theta}) = \sum_{n=0}^{\infty} E_n(H)\Phi_n(r, e^{i\theta}).$$

Now we show that H_1 is the required continuation of H and $\rho(\alpha, \beta, H_1) = \eta_1$. For every $\lambda_1 > \eta_1$ and for sufficiently large n, we have

$$E_n(H)R^n \leqslant \exp\left[n/\beta^{-1}\left\{\lambda_1^{-1}\alpha(n)\right\}\right]$$

Now as in the proof of this theorem (see (2.4) to (2.7) above), we claim that

$$\rho(\alpha, \beta, H_1) \leqslant \lambda_1.$$

Since $\lambda_1 > \eta_1$ is arbitrary, so we get

$$\rho(\alpha, \beta, H_1) \leqslant \eta_1.$$

Also following the proof of first part given above, we get

$$\eta_1 \leqslant \rho(\alpha, \beta, H_1).$$

Hence finally we get $\rho(\alpha, \beta, H_1) = \eta_1$. This completes the proof of Theorem 1.

Next we prove

Theorem 2. Let *H* be a regular solution of (1.1) and have the series expansion $H(r, e^{i\theta}) = \sum_{n=0}^{\infty} a_n \Phi_n(r, e^{i\theta})$. For positive x, μ_2 and ρ , we set

$$V(x,\mu_2,\rho) = \gamma^{-1} \{ [\beta^{-1} (\mu_2 \alpha(x))]^{1/\rho} \}.$$

Assume that for $\alpha(x)$, $\beta(x)$, $\gamma(x) \in \Lambda$,

$$V\left(\frac{n(\rho+1)}{\rho V(n/\rho, 1/\mu_2, \rho+1)}, \frac{1}{\mu_2}, \rho\right) \cong [1+o(n)]V(n/\rho, 1/\mu_2, \rho+1) \qquad \text{as } x \to \infty.$$

Then H is the restriction of a solution H_1 whose disk of regularity is $D_R(R > 1)$ and having generalized type $\sigma(0 < \sigma < \infty)$ if and only if

$$\sigma = \sigma(\alpha, \beta, \gamma, H_1) = \lim_{n \to \infty} \sup \frac{\alpha(n/\rho)}{\beta \left\{ \left[\gamma \left\{ (\rho+1) \left[\rho \ln^+ \left(E_n(H) R^n \right)^{1/n} \right]^{-1} \right\} \right]^{(\rho+1)} \right\}}.$$

Proof. Write

$$\eta_2 = \lim_{n \to \infty} \sup \frac{\alpha(n/\rho)}{\beta \left\{ \left[\gamma \left\{ (\rho+1) \left[\rho \ln^+ (E_n(H)R^n)^{1/n} \right]^{-1} \right\} \right]^{(\rho+1)} \right\}}.$$
 (2.8)

Now first we prove that $\eta_2 \leq \sigma$. From (1.3), for $\mu_2 > \sigma$ and r sufficiently close to R, we have

$$\ln^{+} M(r, H_{1}) \leq \alpha^{-1} [\mu_{2}\beta\{[\gamma\{R/(R-r)\}]^{\rho}\}].$$

Thus as in the proof of Theorem 1, here we have

$$\ln^{+} (E_n(H)R^n) \leq O(1) - n \ln(r/R) + \alpha^{-1} [\mu_2 \beta \{ [\gamma \{R/(R-r)\}]^{\rho} \}].$$

Putting

$$r = r_n = R \left[1 - \left\{ V \left(\frac{n(\rho+1)}{\rho V(n/\rho, 1/\mu_2, \rho+1)}, \frac{1}{\mu_2}, \rho \right) \right\}^{-1} \right],$$

we get

$$\ln^{+} (E_{n}(H)R^{n}) \leq O(1) - n \ln \left[1 - \left\{ V \left(\frac{n(\rho+1)}{\rho V(n/\rho, 1/\mu_{2}, \rho+1)}, \frac{1}{\mu_{2}}, \rho \right) \right\}^{-1} \right] + n \frac{\rho+1}{\rho} \left[\gamma^{-1} \left\{ \left[\beta^{-1} \left\{ \mu_{2}^{-1} \alpha(n/\rho) \right\} \right]^{1/(\rho+1)} \right\} \right]^{-1}.$$

Now using the properties of logarithm and assumptions of theorem, we get for sufficiently large values of n

$$\ln^{+}(E_{n}(H)R^{n}) \leq C_{2}n\frac{\rho+1}{\rho} \left[\gamma^{-1}\left\{\left[\beta^{-1}\left\{\mu_{2}^{-1}\alpha(n/\rho)\right\}\right]^{1/(\rho+1)}\right\}\right]^{-1},$$

where C_2 is a positive constant. Hence by using the properties of α, β and γ , we get $\alpha(n/\alpha)$

$$\frac{\alpha(n/\rho)}{\beta\left\{\left[\gamma\left\{\left(\rho+1\right)\left[\rho\ln^{+}\left(E_{n}(H)R^{n}\right)^{1/n}\right]^{-1}\right\}\right]^{(\rho+1)}\right\}} \leqslant \mu_{2}.$$

Now proceeding to limits as $n \to \infty$ we get $\eta_2 \leq \mu_2$. Since $\mu_2 > \sigma$ is arbitrary, therefore finally we get $\eta_2 \leq \sigma$. Now we will prove that $\sigma \leq \eta_2$. If $\eta_2 = \infty$, then there is nothing to prove. So let us assume that $0 \leq \eta_2 < \infty$. Therefore for a given $\varepsilon > 0$ there exists $n_0 \in N$ such that for all $n > n_0$, we have

$$0 \leqslant \frac{\alpha(n/\rho)}{\beta \left\{ \left[\gamma \left\{ \left(\rho+1\right) \left[\rho \log^+ \left(E_n(H)R^n\right)^{1/n} \right]^{-1} \right\} \right]^{(\rho+1)} \right\}} \leqslant \eta_2 + \varepsilon = \eta_2^*$$

or

$$E_n(H)R^n \leqslant \exp\left\{n\frac{\rho+1}{\rho} \left[\gamma^{-1}\left\{\left[\beta^{-1}\left\{(\eta_2^*)^{-1}\alpha(n/\rho)\right\}\right]^{1/(\rho+1)}\right\}\right]^{-1}\right\}$$
(2.9)

or

$$E_n(H)r^n \leqslant r^n R^{-n} \exp\left\{n\frac{\rho+1}{\rho} \left[\gamma^{-1} \left\{ \left[\beta^{-1} \left\{(\eta_2^*)^{-1} \alpha(n/\rho)\right\}\right]^{1/(\rho+1)} \right\} \right]^{-1} \right\}$$

Now from the property of maximum modulus, we have

$$\begin{split} M(r,H) &\leqslant \sum_{n=0}^{\infty} E_n(H) r^n \\ &\leqslant \sum_{n=0}^{n_0} E_n(H) r^n \\ &+ \sum_{n=n_0+1}^{\infty} r^n R^{-n} \exp\left\{ n \frac{\rho+1}{\rho} \left[\gamma^{-1} \left\{ \left[\beta^{-1} \left\{ (\eta_2^*)^{-1} \alpha(n/\rho) \right\} \right]^{1/(\rho+1)} \right\} \right]^{-1} \right\} \end{split}$$

or

$$M(r,H) \leq B_1 r^{n_0} + \sum_{n=n_0+1}^{\infty} r^n R^{-n} \times \exp\left\{n\frac{\rho+1}{\rho} \left[\gamma^{-1}\left\{\left[\beta^{-1}\left\{(\eta_2^*)^{-1}\alpha(n/\rho)\right\}\right]^{1/(\rho+1)}\right\}\right]^{-1}\right\},$$
(2.10)

where B_1 is a positive real constant. We take

$$N(r) = \left[\rho \alpha^{-1} \left\{ \eta_2^* \beta \left(\left[\gamma \{ (\rho+1) [\rho \ln \{ R/(N+1)r \}]^{-1} \} \right]^{(\rho+1)} \right) \right\} \right],$$

where [x] denotes the integer part of $x \ge 0$. Since $\alpha(x)$, $\beta(x)$, $\gamma(x) \in \Lambda$, the integer N(r) is well defined. Now if r is sufficiently close to R, then from (2.10) we have

$$\begin{split} M(r,H) &\leqslant B_1 r^{n_0} \\ &+ r^{N(r)} \sum_{n_0+1 \leqslant n \leqslant N(r)} R^{-n} \exp\left\{ n \frac{\rho+1}{\rho} \left[\gamma^{-1} \left\{ \left[\beta^{-1} \left\{ (\eta_2^*)^{-1} \alpha(n/\rho) \right\} \right]^{1/(\rho+1)} \right\} \right]^{-1} \right\} \\ &+ \sum_{n > N(r)} r^n R^{-n} \exp\left\{ n \frac{\rho+1}{\rho} \left[\gamma^{-1} \left\{ \left[\beta^{-1} \left\{ (\eta_2^*)^{-1} \alpha(n/\rho) \right\} \right]^{1/(\rho+1)} \right\} \right]^{-1} \right\} \end{split}$$

or

$$M(r,H) \leq B_1 r^{n_0} + r^{N(r)} \sum_{n=1}^{\infty} R^{-n} \exp\left\{n\frac{\rho+1}{\rho} \left[\gamma^{-1}\left\{\left[\beta^{-1}\left\{(\eta_2^*)^{-1}\alpha(n/\rho)\right\}\right]^{1/(\rho+1)}\right\}\right]^{-1}\right\} + \sum_{n>N(r)} r^n R^{-n} \exp\left\{n\frac{\rho+1}{\rho} \left[\gamma^{-1}\left\{\left[\beta^{-1}\left\{(\eta_2^*)^{-1}\alpha(n/\rho)\right\}\right]^{1/(\rho+1)}\right\}\right]^{-1}\right\}.$$
(2.11)

Now we have

$$\lim_{n \to \infty} \sup \left(R^{-n} \exp \left\{ n \frac{\rho + 1}{\rho} \left[\gamma^{-1} \left\{ \left[\beta^{-1} \left\{ (\eta_2^*)^{-1} \alpha(n/\rho) \right\} \right]^{1/(\rho+1)} \right\} \right]^{-1} \right\} \right)^{1/n} = \frac{1}{R} < 1.$$

Hence the first series in (2.11) converges to a positive real constant B_2 . Hence from (2.11), we get

$$M(r,H) \leq B_1 r^{n_0} + B_2 r^{N(r)} + \sum_{n>N(r)} r^n R^{-n} \exp\left\{n\frac{\rho+1}{\rho} \left[\gamma^{-1}\left\{\left[\beta^{-1}\left\{(\eta_2^*)^{-1}\alpha(n/\rho)\right\}\right]^{1/(\rho+1)}\right\}\right]^{-1}\right\}\right\}$$

or

$$M(r,H) \leqslant B_1 r^{n_0} + B_2 r^{N(r)} + \sum_{n > N(r)} r^n R^{-n} \exp[n \ln\{R/(N+1)r\}]$$

or

$$M(r, H) \leq B_1 r^{n_0} + B_2 r^{N(r)} + \sum_{n > N(r)} \left(\frac{1}{N+1}\right)^n$$

or

$$M(r,H) \leqslant B_1 r^{n_0} + B_2 r^{N(r)} + \sum_{n=1}^{\infty} \left(\frac{1}{N+1}\right)^n.$$
 (2.12)

It can be easily seen that the series in (2.12) converges to a positive real constant B_3 . Therefore from (2.12), we get

$$M(r,H) \leq B_1 r^{n_0} + B_2 r^{N(r)} + B_3 \leq B_2 r^{N(r)} [1 + o(1)]$$

or

$$\ln^{+} M(r, H) \leq [1 + o(1)] \\ \times \left[\rho \alpha^{-1} \left\{ \eta_{2}^{*} \beta \left([\gamma \{ (\rho + 1) [\rho \ln \{ R/(N+1)r \}]^{-1} \}]^{(\rho+1)} \right) \right\} \right] \ln r,$$

or

$$\ln^{+} M(r, H) \leq [1 + o(1)] \\ \times \left[\alpha^{-1} \left\{ (\eta_{2}^{*} + \delta_{2}) \beta \left([\gamma\{(\rho + 1)[\rho \ln\{R/(N+1)r\}]^{-1}\}]^{(\rho+1)} \right) \right\} \right],$$

where $\delta_2 > 0$ is suitably small. Hence

$$\alpha[\ln^+ M(r,H)] \leqslant (\eta_2^* + \delta_2) \beta \left([\gamma\{(\rho+1)[\rho \ln\{R/(N+1)r\}]^{-1}\}]^{(\rho+1)} \right).$$

When r is sufficiently close to R, then by using properties of β and γ , we get

$$\frac{\alpha[\ln^+ M(r,H)]}{\beta\{[\gamma\{R/(R-r)\}]^{\rho}\}} \leqslant \eta_2^* + \delta_2.$$

Since ε and δ_2 are arbitrarily small, proceeding to limits as $r \to R^-$, we get

$$\sigma \leqslant \eta_2. \tag{2.13}$$

Now as in Theorem 1 we can similarly prove that the regular solution H can be continuously extended to a regular solution whose disk of regularity is $D_R(R > 1)$. Let us put

$$H_1(r, e^{i\theta}) = \sum_{n=0}^{\infty} E_n(H)\Phi_n(r, e^{i\theta}).$$

Now we claim that H_1 is the required continuation of H and $\sigma(\alpha, \beta, \gamma, H_1) = \eta_2$. From (2.8), for every $\lambda_2 > \eta_2$ and for sufficiently large n, we have

$$E_n(H)R^n \leqslant \exp\left\{n\frac{\rho+1}{\rho} \left[\gamma^{-1}\left\{ \left[\beta^{-1}\left\{(\lambda_2)^{-1}\alpha(n/\rho)\right\}\right]^{1/(\rho+1)}\right\} \right]^{-1} \right\}$$

Now as in the proof of this theorem (see (2.9) to (2.13)), we claim that

$$\sigma(\alpha,\beta,\gamma,H_1) \leqslant \lambda_2$$

Since $\lambda_2 > \eta_2$ is arbitrary, so finally we get

$$\sigma(\alpha,\beta,\gamma,H_1) \leqslant \eta_2.$$

Also following the proof of first part given above, we get

$$\eta_2 \leqslant \sigma(\alpha, \beta, \gamma, H_1).$$

Hence finally we get $\sigma(\alpha, \beta, \gamma, H_1) = \eta_2$. This completes the proof of Theorem 2.

3. Functions of generalized slow growth

In this section we give the characterizations of generalized order and type for functions of slow growth. We have

Theorem 3. Let *H* be a regular solution of (1.1) and have the series expansion $H(r, e^{i\theta}) = \sum_{n=0}^{\infty} a_n \Phi_n(r, e^{i\theta})$. Then for $\alpha(x) \in \Lambda$, *H* is a restriction of a solution H_1 whose disk of regularity is $D_R(R > 1)$ and having generalized order $\rho(\alpha, H_1)$ if and only if

$$\rho(\alpha, H_1) = \lim_{n \to \infty} \sup \frac{\alpha(n)}{\alpha \left[\log^+ \left\{ n / \ln^+ \left(E_n(H) R^n \right) \right\} \right]}$$

Proof. First we assume that H has an extension H_1 whose disk of regularity is $D_R(R > 1)$ and is of generalized order $\rho(\alpha, H_1)$. We write $\rho(\alpha, H_1) = \rho$ and

$$\zeta_1 = \lim_{n \to \infty} \sup \frac{\alpha(n)}{\alpha \left[\log^+ \left\{ n / \ln^+ \left(E_n(H) R^n \right) \right\} \right]}.$$
(3.1)

First we prove that $\zeta_1 \leq \rho$. As shown above, from (2.3) we have

$$E_k(H) \leqslant \frac{M(r,H)}{(r-1)r^{k-1}}, \qquad 1 < r < R, \ k \ge n$$

$$(3.2)$$

Also using (1.4), for arbitrarily small $\varepsilon > 0$ and $r > r_0(\varepsilon)$, we have

$$M(r,H) \leq \exp\left(\alpha^{-1}\left\{\rho^*\alpha\left[\ln\left\{R/\left(R-r\right)\right\}\right]\right\}\right),\tag{3.3}$$

where $\rho^* = \rho + \varepsilon$. From (3.2) and (3.3), we get

$$\ln^{+} (E_{n}(H)R^{n}) \leq -\ln^{+}(r-1) - n \ln^{+}(r/R) + \alpha^{-1} \{\rho^{*} \alpha \left[\ln \{R/(R-r)\} \right] \}.$$

Write $F(x, c_1) = \alpha^{-1} \{c_1 \alpha(x)\}$, where x and c_1 are positive real numbers. Now putting $r = r_n$, where

$$r_{n} = R\left(1 - \left[\exp\left\{F\left(n/\exp\left\{F\left(n,(\rho^{*})^{-1}\right)\right\},(\rho^{*})^{-1}\right)\right\}\right]^{-1}\right),$$

we get

$$\ln^{+} (E_{n}(H)R^{n}) \leq -\ln^{+}(r_{n}-1) - n \ln^{+} \left(1 - \left[\exp\left\{F\left(n/\exp\left\{F\left(n,(\rho^{*})^{-1}\right)\right\},(\rho^{*})^{-1}\right)\right\}\right]^{-1}\right) + n/\exp\left\{F\left(n,(\rho^{*})^{-1}\right)\right\}.$$

Now using the properties of logarithm, we get for sufficiently large value of n

$$\ln^{+} (E_{n}(H)R^{n}) \leq \{1 + o(1)\} \left[n / \exp\left\{ F\left(n, (\rho^{*})^{-1}\right) \right\} \right].$$

From the above inequality, we get

$$\alpha^{-1}\left\{\left(\rho^{*}\right)^{-1}\alpha(n)\right\} \leqslant \left\{1+o(1)\right\}\ln^{+}\left\{n/\ln^{+}\left(E_{n}(H)R^{n}\right)\right\}$$

or

$$\alpha(n) \leq \rho^* \alpha \left[\{1 + o(1)\} \ln^+ \left\{ n / \ln^+ \left(E_n(H) R^n \right) \right\} \right]$$

or

$$\frac{\alpha(n)}{\alpha \left[\ln^{+}\left\{n/\ln^{+}(E_{n}(H)R^{n})\right\}\right]} \leqslant \rho^{*} \frac{\alpha \left[\left\{1+o(1)\right\}\ln^{+}\left\{n/\ln^{+}(E_{n}(H)R^{n})\right\}\right]}{\alpha \left[\ln^{+}\left\{n/\ln^{+}(E_{n}(H)R^{n})\right\}\right]}.$$

Proceeding to limits as $n \to \infty$ and using the properties of $\alpha(x)$, we get $\zeta_1 \leq \rho^*$. Since $\varepsilon > 0$ is arbitrarily small, we finally get $\zeta_1 \leq \rho$.

Now we will prove that $\rho \leq \zeta_1$. If $\zeta_1 = \infty$, then there is nothing to prove. So let us assume that $0 \leq \zeta_1 < \infty$. Therefore for a given $\varepsilon > 0$ there exists $n_0 \in N$ such that for all $n > n_0$, we have

$$0 \leqslant \frac{\alpha(n)}{\alpha \left[\log^+ \left\{ n/\log^+ \left(E_n(H)R^n \right) \right\} \right]} \leqslant \zeta_1 + \varepsilon = \zeta_1^*$$

or

$$E_n(H)R^n \leqslant \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\zeta_1^*\right)^{-1}\alpha(n)\right\}\right]\right\}$$
(3.4)

or

$$E_n(H)r^n \leqslant r^n R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\zeta_1^*\right)^{-1}\alpha(n)\right\}\right]\right\}.$$

Now from the property of maximum modulus, we have

$$M(r, H_1) \leqslant \sum_{n=0}^{\infty} E_n(H) r^n \leqslant \sum_{n=0}^{n_0} E_n(H) r^n + \sum_{n=n_0+1}^{\infty} r^n R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{(\zeta_1^*)^{-1}\alpha(n)\right\}\right]\right\}$$

or

$$M(r, H_1) \leqslant A_1 r^{n_0} + \sum_{n=n_0+1}^{\infty} r^n R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\zeta_1^*\right)^{-1}\alpha(n)\right\}\right]\right\}, \quad (3.5)$$

where A_1 is a positive real constant. We take

$$W_1(r) = \left[\alpha^{-1} \left\{ \zeta_1^* \alpha \left[\ln \left\{ \ln \left[R / (\delta_1 + 1) r \right] \right\}^{-1} \right] \right\} \right],$$

where $\delta_1 > 0$ is arbitrarily small and [x] denotes the integer part of $x \ge 0$. Since $\alpha(x) \in \Lambda$, the integer $W_1(r)$ is well defined. Now if r is sufficiently large, then from (3.5), we have

$$M(r, H_1) \leq A_1 r^{n_0} + r^{W_1(r)} \\ \times \sum_{n_0+1 \leq n \leq W_1(r)} R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{(\zeta_1^*)^{-1}\alpha(n)\right\}\right]\right\} \\ + \sum_{n>W_1(r)} r^n R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{(\zeta_1^*)^{-1}\alpha(n)\right\}\right]\right\}$$

or

$$M(r, H_1) \leqslant A_1 r^{n_0} + r^{W_1(r)} \sum_{n=1}^{\infty} R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\zeta_1^*\right)^{-1}\alpha(n)\right\}\right]\right\} + \sum_{n>W_1(r)} r^n R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\zeta_1^*\right)^{-1}\alpha(n)\right\}\right]\right\}.$$
(3.6)

Now we have

$$\lim_{n \to \infty} \sup\left(R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\zeta_1^*\right)^{-1}\alpha(n)\right\}\right]\right\}\right)^{1/n} = \frac{1}{R} < 1.$$

Hence the first series in (3.6) converges to a positive real constant A_2 . So from (3.6), we get

$$\begin{split} M(r,H_1) &\leqslant A_1 r^{n_0} + A_2 r^{W_1(r)} \\ &+ \sum_{n > W_1(r)} r^n R^{-n} \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\zeta_1^*\right)^{-1} \alpha(n)\right\}\right]\right\} \\ &\leqslant A_1 r^{n_0} + A_2 r^{W_1(r)} + \sum_{n > W_1(r)} r^n R^{-n} \exp[n \ln\{R/(\delta_1 + 1)r\}] \\ &\leqslant A_1 r^{n_0} + A_2 r^{W_1(r)} + \sum_{n > W_1(r)} [1/(\delta_1 + 1)]^n \end{split}$$

or

$$M(r, H_1) \leqslant A_1 r^{n_0} + A_2 r^{W_1(r)} + \sum_{n=1}^{\infty} \left[1/(\delta_1 + 1) \right]^n.$$
(3.7)

It can be easily seen that the series in (3.7) converges to a positive real constant A_3 . Therefore from (3.7), we get

$$M(r, H_1) \leqslant A_1 r^{n_0} + A_2 r^{W_1(r)} + A_3 \leqslant A_2 r^{W_1(r)} [1 + o(1)]$$

or

$$\ln^{+} M(r, H_{1}) \leq [1 + o(1)] W_{1}(r) \ln r$$

$$\leq [1 + o(1)] \left[\alpha^{-1} \left\{ \zeta_{1}^{*} \alpha \left[\ln \left\{ \ln \left[R / \left(\delta_{1} + 1 \right) r \right] \right\}^{-1} \right] \right\} \right] \ln r$$

$$\leq O(1) \left[\alpha^{-1} \left\{ \zeta_{1}^{*} \alpha \left[\ln \left\{ \ln \left[R / \left(\delta_{1} + 1 \right) r \right] \right\}^{-1} \right] \right\} \right].$$

Since $\delta_1 > 0$ is arbitrarily small, for r sufficiently close to R, we get

$$\ln^{+} M(r, H_{1}) \leq O(1) \left[\alpha^{-1} \left\{ \zeta_{1}^{*} \alpha \left[\ln \left\{ R/(R-r) \right\} \right] \right\} \right]$$

or

$$\alpha \left[\ln^+ M(r, H_1) \right] \le \zeta_1^* \alpha \left[\ln \left\{ R/(R-r) \right\} \right] + O(1)$$

Thus for r sufficiently close to R, we get

$$\frac{\alpha \left[\ln^+ M(r, H_1)\right]}{\alpha \left[\ln \left\{R/(R-r)\right\}\right]} \leqslant \zeta_1^* + o(1).$$

Proceeding to limits as $r \to R^-$, we get

$$\rho \leqslant \zeta_1^*.$$

Since $\varepsilon > 0$ is arbitrarily small, therefore finally we get

$$\rho \leqslant \zeta_1. \tag{3.8}$$

Now from (3.1), for every $\lambda_1 > \zeta_1$ and for sufficiently large value of n, we have

$$\frac{\alpha(n)}{\alpha \left[\log^{+}\left\{n/\log^{+}\left(E_{n}(H)R^{n}\right)\right\}\right]} \leqslant \lambda_{1}$$

or

$$E_n(H)R^n \leq \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\lambda_1\right)^{-1}\alpha(n)\right\}\right]\right\}$$

Now for sufficiently large value of n, we get

$$\left[E_n(H)R^n\right]^{1/n} \leqslant 1.$$

Proceeding to limits as $n \to \infty$, we get

$$\lim_{n \to \infty} \sup \left[E_n(H) R^n \right]^{1/n} \leqslant 1.$$

Since $\eta_1 > 0$, the sequence $(E_n(H)R^n)_{n \in \mathbb{N}}$ is unbounded, whence

$$\lim_{n \to \infty} \sup \left[E_n(H) R^n \right]^{1/n} \ge 1.$$

Hence finally we get

$$\lim_{n \to \infty} \sup \left[E_n(H) R^n \right]^{1/n} = 1.$$

Thus following McCoy ([4], Theorem 1) we claim that the regular solution H can be continuously extended to a regular solution whose disk of regularity is $D_R(R > 1)$. Let us put

$$H_1(r, e^{i\theta}) = \sum_{n=0}^{\infty} E_n(H) \Phi_n(r, e^{i\theta}).$$

Now we claim that H_1 is the required continuation of H and $\rho(\alpha, H_1) = \zeta_1$. For every $\lambda_1 > \zeta_1$ and for sufficiently large value of n, we have

$$E_n(H)R^n \leqslant \exp\left\{n/\exp\left[\alpha^{-1}\left\{\left(\lambda_1\right)^{-1}\alpha(n)\right\}\right]\right\}.$$

Now as in the proof of this theorem [(3.4) to (3.8)], we claim that

 $\rho(\alpha, H_1) \leqslant \lambda_1.$

Since $\lambda_1 > \zeta_1$ is arbitrary, so we get

$$\rho(\alpha, H_1) \leqslant \zeta_1.$$

Also following the proof of first part given above, we get

$$\zeta_1 \leqslant \rho(\alpha, H_1).$$

So finally we get

$$\rho(\alpha, H_1) = \zeta_1.$$

This completes the proof of Theorem 3.

Next we have

Theorem 4. Let *H* be a regular solution of (1.1) and have the series expansion $H(r, e^{i\theta}) = \sum_{n=0}^{\infty} a_n \Phi_n(r, e^{i\theta})$. Then for $1 < \rho < \infty$ and $\beta(x) \in L^0$, *H* is a restriction of a solution H_1 whose disk of regularity is $D_R(R > 1)$ and having generalized type $\sigma(\beta, \rho, H_1)$ if and only if

$$\sigma(\beta, \rho, H_1) = \lim_{n \to \infty} \sup \frac{\beta(n)}{\left(\beta \left[\log^+\left\{n/\ln^+\left(E_n(H)R^n\right)\right\}\right]\right)^{\rho}}$$

Proof. The proof of the above theorem follows on the lines of proof of Theorem 2 and Theorem 3. Hence we omit the proof.

Next we have

Theorem 5. Let H be a regular solution of (1.1) and have the series expansion $H(r, e^{i\theta}) = \sum_{n=0}^{\infty} a_n \Phi_n(r, e^{i\theta})$. Then for $\alpha(x) \in \Lambda$ the generalized order $\rho(\alpha, H) (0 \leq \rho(\alpha, H) < \infty)$ of H is given by

$$\rho(\alpha, H) = \lim_{n \to \infty} \sup \frac{\alpha(n)}{\alpha \left[\ln^+ \left\{ n / \ln^+ \left(|a_n| R^n \right) \right\} \right]}.$$

Proof. The proof is similar to Theorem 3 above and ([7], Theorem 2.1). Hence the proof is omitted.

Lastly we have

Theorem 6. Let *H* be a regular solution of (1.1) and have the series expansion $H(r, e^{i\theta}) = \sum_{n=0}^{\infty} a_n \Phi_n(r, e^{i\theta})$. Then for $1 < \rho < \infty$ and $\beta(x) \in L^0$ the generalized type $\sigma(\beta, \rho, H)$ of *H* is given by

$$\sigma(\beta, \rho, H) = \lim_{n \to \infty} \sup \frac{\beta(n)}{\left(\beta \left[\ln^+ \left\{n/\ln^+ \left(|a_n|R^n\right)\right\}\right]\right)^{\rho}}$$

Proof. The proof is similar to Theorem 2 above and ([7], Theorem 2.2). Hence the proof is omitted.

Acknowledgement. The authors are very much indebted to the referee for his valuable comments which helped in improving the paper.

References

- S. Bergman, Integral operators in the theory of linear partial differential equations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 23, Springer-Verlag, New York, 1969.
- [2] A. Janik, On approximation of analytic functions and generalized order, Ann. Polon. Math. 55 (1991), 163–167.
- [3] D. Kumar, Growth and Chebyshev approximation of entire function solutions of Helmoltz equation in ℝ², Eur. J. Pure Appl. Math. 3 (2010), no. 6, 1062– 1069.
- [4] P.A. McCoy, Optimal approximation and growth of solutions to a class of elliptic partial differential equations, J. Math. Anal. Appl. 154 (1991), 203– 211.
- [5] P.A. McCoy, Solutions of the Helmoltz equation having rapid growth, Complex Var. Elliptic Equ. 18 (1992), no. 1, 91–101.
- [6] M.N. Seremeta, On the connection between the growth of a function analytic in a disc and moduli of the coefficients of its Taylor series, Visnik L'viv. Derzh. Univ. Ser. Mekh. Mat. 2 (1965), 101–110.

- [7] G.S. Srivastava and S. Kumar, Generalized growth of solutions to a class of elliptic partial differential equations, Acta Math. Vietnam. 37 (2012), no. 1, 11–21.
- Addresses: Susheel Kumar: Department of Mathematics, Jaypee University of Engineering and Technology, Guna - 473226 (M. P.), India; Girja S. Srivastava: Department of Mathematics, Jaypee Institute of Information Technology, Noida-201309 (U. P.), India.

E-mail: sus83dma@gmail.com, gs91490@gmail.com

Received: 25 June 2015; revised: 16 November 2015