ON THE IWASAWA λ-INVARIANT OF THE CYCLOTOMIC \mathbb{Z}_{2}-EXTENSION OF $\mathbb{Q}(\sqrt{p})$, III

Takashi Fukuda, Keifchi Komatsu, Manabu Ozaki, Takae Tsuji

Abstract

In the preceding papers, two of authors developed criteria for Greenberg conjecture of the cyclotomic \mathbb{Z}_{2}-extension of $k=\mathbb{Q}(\sqrt{p})$ with prime number p. Criteria and numerical algorithm in [5], [3] and [6] enable us to show $\lambda_{2}(k)=0$ for all p less than 10^{5} except $p=$ 13841, 67073. All the known criteria at present can not handle $p=13841,67073$. In this paper, we develop another criterion for $\lambda_{2}(k)=0$ using cyclotomic units and Iwasawa polynomials, which is considered a slight modification of the method of Ichimura and Sumida. Our new criterion fits the numerical examination and quickly shows that $\lambda_{2}(\mathbb{Q}(\sqrt{p}))=0$ for $p=13841,67073$. So we announce here that $\lambda_{2}(\mathbb{Q}(\sqrt{p}))=0$ for all prime numbers p less that 10^{5}.

Keywords: Iwasawa invariant, cyclotomic unit, real quadratic field.

1. Introduction

Let $k=\mathbb{Q}(\sqrt{p})$ be a real quadratic field with prime number p and k_{∞} the cyclotomic \mathbb{Z}_{2}-extension of k. It is very important to study Greenberg conjecture for k_{∞} / k, namely to consider whether the Iwasawa λ-invariant $\lambda_{2}(k)=\lambda\left(k_{\infty} / k\right)$ is zero or not. First approach on this problem was made by Ozaki and Taya [14] in which they proved that $\lambda_{2}(k)=0$ if p satisfies $p \not \equiv 1(\bmod 16)$ or $2^{(p-1) / 4} \not \equiv 1$ $(\bmod p)$. After Ozaki and Taya, the authors developed criteria for $\lambda_{2}(k)=0$ when p satisfies $p \equiv 1(\bmod 16)$ and $2^{(p-1) / 4} \equiv 1(\bmod p)(c f$. [5], [3], [6]). Our criteria are described by units in k_{n}, which is the intermediate field of k_{∞} / k with [$\left.k_{n}: k\right]=2^{n}$, and numerical calculations in $k_{n}(0 \leqslant n \leqslant 8)$ show that $\lambda_{2}(k)=0$ for all prime number p less than 10^{5} except $p=13841,67073$. All the known criteria accompanied with calculation in k_{8} failed to show $\lambda_{2}(k)=0$ for $p=13841,67073$. It seems necessary to calculate at least in k_{13} in order to show $\lambda_{2}(k)=0$ using those criteria. Such a calculation is far beyond the ability of current computer.

In this paper, we develop one more criterion using cyclotomic units, which is considered a slight modification of the method of Ichimura and Sumida [10], and verify that $\lambda_{2}(k)=0$ for $p=13841,67073$ by using cyclotomic units and Iwasawa polynomials in k_{8}. Namely, we prove the following theorem:
Theorem 1.1. We have $\lambda_{2}(\mathbb{Q}(\sqrt{p}))=0$ for all prime number p less than 10^{5}.

2. Preliminaries

From now on, we assume that p is a prime number satisfying $p \equiv 1(\bmod 16)$ and $2^{(p-1) / 4} \equiv 1(\bmod p)$. Let k_{n} be the n-th layer of the cyclotomic \mathbb{Z}_{2}-extension k_{∞} of k as above, $\mathcal{O}_{k_{n}}$ the integer ring of $k_{n}, E_{n}=\mathcal{O}_{k_{n}}^{\times}$the unit group of k_{n}, A_{n} the 2-part of the ideal class group of k_{n}, \mathfrak{l}_{n} a prime ideal of k_{n} lying above 2 . We put $\mathbb{B}_{n}=\mathbb{Q}\left(\cos \frac{2 \pi}{2^{n+2}}\right)$ and $\mathbb{B}_{\infty}=\cup_{n=0}^{\infty} \mathbb{B}_{n}$. Then $k_{n}=k \mathbb{B}_{n}$ and $k_{\infty}=k \mathbb{B}_{\infty}$. Moreover, let $\Delta=G\left(k_{\infty} / \mathbb{B}_{\infty}\right)$ the Galois group of k_{∞} over \mathbb{B}_{∞} with a generator τ and $\Gamma=G\left(k_{\infty} / k\right)$ the Galois group of k_{∞} over k with a topological generator γ.

Then we have $2 \mathcal{O}_{k_{n}}=\left(\mathfrak{l}_{n} \mathfrak{l}_{n}^{\tau}\right)^{2^{n}}$. Let $k_{n \mathfrak{l}_{n}}$ be the completion of k_{n} at \mathfrak{l}_{n} and put $c_{n}=1+2 \cos \frac{2 \pi}{2^{n+2}}$. Then we have $k_{n \mathfrak{I}_{n}}=\mathbb{Q}_{2}\left(c_{n}\right)$, where \mathbb{Q}_{2} is the 2-adic field. Let I_{n}^{\prime} be the group of fractional ideals in k_{n} generated by ideals which are prime to 2 . We put $E_{n}^{\prime}=\left\{\alpha \in k_{n} \mid(\alpha) \in I_{n}^{\prime}\right\}$ and $U_{n}=\mathcal{O}_{k_{n} \mathfrak{l}_{n}}^{\times} \times \mathcal{O}_{k_{n} \mathfrak{r}_{n}}^{\times}$.

We embed E_{n}^{\prime} in U_{n} by the injective homomorphism $\varphi: E_{n}^{\prime} \ni \alpha \mapsto\left(\alpha, \alpha^{\tau}\right) \in$ U_{n}. We put $\left(\alpha, \alpha^{\tau}\right)^{\tau^{*}}=\left(\alpha^{\tau}, \alpha\right)$ for $\left(\alpha, \alpha^{\tau}\right) \in \varphi\left(E_{n}^{\prime}\right)$. Since the topological closure $\overline{\varphi\left(E_{n}^{\prime}\right)}$ of $\varphi\left(E_{n}^{\prime}\right)$ is U_{n}, we can extend the mapping τ^{*} to U_{n} continuously.

Now we develop a quadratic version of [15, Theorem 3.3] by following the arguments in $[9, \S 2]$. We put $\mathbb{U}=\varliminf_{\longleftarrow} U_{n}$, where the projective limit is taken with respect to the relative norms. Let $u=\left(u_{n}\right)_{n=1}^{\infty}$ be an element in $\varliminf_{\varliminf} \mathcal{O}_{k_{n} \iota_{n}}^{\times}$. Then there exists a unique power series $f_{u}(X) \in \mathbb{Z}_{2}[[X]]$ satisfying

$$
f_{u}\left(1-\zeta_{2^{n+2}}\right)=u_{n},
$$

where ζ_{m} means $\exp (2 \pi \sqrt{-1} / m)$. Let $D=(1-X) \frac{d}{d X}$ be a derivative operator on $\mathbb{Z}_{2}[[X]]$. We put $\Lambda=\mathbb{Z}_{2}[[T]]$ and let $1+T$ act on \mathbb{U} as $\gamma \in \Gamma$. Let s be a primitive root modulo p and put $\xi=\sum_{i=1}^{(p-1) / 2}\left(\zeta_{p}^{2^{2 i}}-\zeta_{p}^{s^{2 i+1}}\right)$, which we regard as the image of the embedding $\mathcal{O}_{k} \hookrightarrow \mathcal{O}_{k_{\mathfrak{l}}}=\mathbb{Z}_{2}$. Then there exists a unique element $G_{u}(T)$ of Λ such that

$$
\left.D^{\nu}\left(\log f_{u}(X)-\frac{1}{2} \log f_{u}\left(1-(1-X)^{2}\right)\right)\right|_{X=0}=G_{u}\left((1+4 p)^{\nu}-1\right) \xi
$$

We note that the correspondence $\mathbb{U}^{1-\tau^{*}} \ni\left(u, u^{-1}\right) \mapsto \frac{1}{2} G_{u}(T) \in \Lambda$ defines a Λ-isomorphism $\Psi: \mathbb{U}^{1-\tau^{*}} \longrightarrow \Lambda$. Now, we put

$$
\eta_{n}=\zeta_{2^{n+2}}^{(p-1) / 4} \prod_{i=1}^{(p-1) / 2}\left(\zeta_{2^{n+2}}^{-1}-\zeta_{p}^{s^{2 i}}\right)
$$

and $\eta=\left(\eta_{n}\right)_{n=1}^{\infty}$. A straightforward calculation, which was presented in [6] for instance, shows that

$$
\eta_{n}^{2}=N_{\mathbb{Q}\left(\zeta_{2^{n+2_{p}}}\right) / k_{n}}\left(1-\zeta_{2^{n+2}} \zeta_{p}\right) .
$$

From now on, we specify the topological generator γ of Γ by the relation

$$
\left(\zeta_{2^{n+2}}+\zeta_{2^{n+2}}^{-1}\right)^{\gamma}=\zeta_{2^{n+2}}^{1+4 p}+\zeta_{2^{n+2}}^{-1-4 p} \quad(n \geqslant 0) .
$$

Then Iwasawa's construction of 2-adic L-function associated to k varies now into the following form.

Theorem 2.1. Let χ be the non-trivial character modulo p associated to k and $\frac{1}{2} G(T)$ the image of the element $\left(\eta^{1-\tau}, \eta^{\tau-1}\right)$ in $\mathbb{U}^{1-\tau^{*}}$ by the above isomorphism $\mathbb{U}^{1-\tau^{*}} \cong \Lambda$. Then we have

$$
G\left((1+4 p)^{\nu}-1\right)=-\left(1-2^{\nu-1}\right) \frac{B_{\nu, \chi}}{\nu} \quad \text { for } \quad \nu \equiv 0(\bmod 2)
$$

Here $B_{\nu, \chi}$ is a generalized Bernoulli number.
Since the Iwasawa μ-invariant $\mu_{2}(k)=\mu\left(k_{\infty} / k\right)$ is known to be zero by Ferrero-Washington [2], there exist a unique unit element $u(T) \in \Lambda^{\times}$and a unique distinguished polynomial $g(T) \in \mathbb{Z}_{2}[[T]]$ such that

$$
\begin{equation*}
G(T)=2 u(T) g(T) \tag{2.1}
\end{equation*}
$$

The distinguished polynomial $g(T)$, which is called Iwasawa polynomial, plays essential role in our arguments. We fix the notation $g(T)$ throughout the paper.

3. Criterion

In this section, we work in abelian extensions of \mathbb{Q}. So Leopoldt conjecture is valid in our situation (cf. [1]). Let L_{∞} is the maximal unramified abelian 2-extension of k_{∞} and M_{∞} the maximal abelian 2-extension of k_{∞} unramified outside 2. Then the Galois groups $I_{\infty}=G\left(M_{\infty} / L_{\infty}\right), \mathfrak{X}_{\infty}=G\left(M_{\infty} / k_{\infty}\right)$ and $X_{\infty}=G\left(L_{\infty} / k_{\infty}\right)$ are finitely generated Λ-modules (cf. [12]). For a finitely generated Λ-module X, $\operatorname{ch}(X)$ denotes the characteristic polynomial of X. Then we have the following:

Lemma 3.1. The tensor product $\mathfrak{X}_{\infty} \otimes_{\mathbb{Z}_{2}[\Delta]} \mathbb{Z}_{2}$ is pseudo-isomorphic to $\mathfrak{X}_{\infty}^{1-\tau}$, where τ acts on \mathbb{Z}_{2} by $\tau a=-a$ for $a \in \mathbb{Z}_{2}$.

Proof. Let ψ be a Δ-homomorphism of $\mathfrak{X}_{\infty} \otimes_{\mathbb{Z}_{2}[\Delta]} \mathbb{Z}_{2}$ to $\mathfrak{X}_{\infty}^{1-\tau}$ defined by $\psi(x \otimes a)=\left(x^{a}\right)^{1-\tau}$. Then ψ is surjective. Now, we assume $\psi(x \otimes a)=1$. Then we have $\left(x^{a}\right)^{1-\tau}=1$, which means $\left(x^{a}\right)^{\tau}=x^{a}$. Hence $x \otimes a=x^{a} \otimes 1=\left(x^{a}\right)^{\tau} \otimes 1=$ $x^{a} \otimes(-1)=\left(x^{a} \otimes 1\right)^{-1}$, which shows $(x \otimes a)^{2}=1$. Since $\mathfrak{X}_{\infty} \otimes_{\mathbb{Z}_{2}[\Delta]} \mathbb{Z}_{2}$ is finitely generated \mathbb{Z}_{2}-module, the kernel of ψ is finite.

Hence we have the following (cf. [18, Theorem 6.2]):
Lemma 3.2. We have $\operatorname{ch}\left(\mathfrak{X}_{\infty}^{1-\tau}\right)=g(T)$.

Moreover, we have the following:
Lemma 3.3. Λ-modules $\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$ and $I_{\infty}^{1-\tau}$ are pseudo-isomorphic. Namely, $\operatorname{ch}\left(\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}\right)=\operatorname{ch}\left(I_{\infty}^{1-\tau}\right)$.

Proof. Let x be an element in $\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$. Since $x^{\tau}=x^{-1}$, we have $x^{2}=x^{1-\tau}$, which means $x^{2} \in I_{\infty}^{1-\tau}$. Since $I_{\infty}^{1-\tau} \subset \mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$ and since $\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$ is a finitely generated \mathbb{Z}_{2}-module, the index $\left(\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}: I_{\infty}^{1-\tau}\right)$ is finite.

Since $X_{\infty}^{1-\tau}=\mathfrak{X}_{\infty}^{1-\tau} I_{\infty} / I_{\infty}$ is isomorphic to $\mathfrak{X}_{\infty}^{1-\tau} / \mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$, we have the following:

Lemma 3.4. We have

$$
g(T)=\operatorname{ch}\left(X_{\infty}^{1-\tau}\right) \operatorname{ch}\left(\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}\right)
$$

Now, we put $E_{n}=\mathcal{O}_{k_{n}}^{\times}$. Then $\varphi\left(E_{n}\right)=\left\{\left(\varepsilon, \varepsilon^{\tau}\right) \mid \varepsilon \in E_{n}\right\}$. Moreover, we
 field theory, which shows $I_{\infty}^{1-\tau}$ is isomorphic to $\mathbb{U}^{1-\tau} \mathcal{E} / \mathcal{E}$. Let $P(T)$ be a monic irreducible polynomial in Λ which divides $g(T)$ and put

$$
Q(T)=\frac{g(T)}{P(T)}
$$

Assume that $P(T)$ divides $\operatorname{ch}\left(X_{\infty}^{1-\tau}\right)$. Then $\operatorname{ch}\left(I_{\infty}^{1-\tau}\right)$ divides $Q(T)$, which shows $\left(\mathbb{U}^{1-\tau}\right)^{Q(T)} \subset \mathcal{E}$, because \mathfrak{X}_{∞} has no finite Λ-submodule (cf. [8, Theorem 1]). Since $P(T)$ and $\omega_{n}(T)=(1+T)^{2^{n}}-1$ are mutually prime in Λ, which is a consequence of Leopoldt conjecture, there exist elements $q_{n}(T), r_{n}(T) \in \Lambda$ with

$$
P(T) q_{n}(T)+r_{n}(T) \omega_{n}(T)=2^{a_{n}}
$$

where a_{n} is a non-negative integer. Hence we have

$$
\left(\eta_{n}^{1-\tau}, \eta_{n}^{\tau-1}\right)^{q_{n}(T)}=\Psi^{-1}(u(T))^{P(T) Q(T) q_{n}(T)} \in \mathcal{E}_{n}^{2_{n}}
$$

with $u(T)$ define by (2.1). Now we follow the arguments in [4] and [16] noting that Leopoldt conjecture is valid in our situation to establish the following theorem.

Theorem 3.5. Assume that for any monic irreducible polynomial $P(T)$ dividing $g(T)$, there exists $n \geqslant 1$ which satisfies

$$
\begin{equation*}
\eta_{n}^{(1-\tau) q(\gamma-1)} \notin E_{n}^{2^{a}} . \tag{3.1}
\end{equation*}
$$

Here $q(T)$ is a polynomial in Λ and a is a non-negative integer satisfying

$$
P(T) q(T) \equiv 2^{a} \quad\left(\bmod \omega_{n}(T)\right)
$$

Then we have $\lambda_{2}(k)=0$.

The condition (3.1) in Theorem 3.5 guarantees $P(T) \bigvee \operatorname{ch}\left(X_{\infty}^{1-\tau}\right)$, from which we deduce $\lambda_{2}(k)=0$. In the practical computations, we are often aware of an upper bound d of λ-invariant. If $P(T)$ satisfies $\operatorname{deg} P(T)>d$, then we immediately conclude $P(T) \wedge \operatorname{ch}\left(X_{\infty}^{1-\tau}\right)$ because $\operatorname{deg} \operatorname{ch}\left(X_{\infty}\right) \leqslant d$. Hence we are able to transform Theorem 3.5 to the following effective form.

Corollary 3.6. Assume that $\lambda_{2}(k) \leqslant d$ with positive integer d. Moreover, assume that for any monic irreducible polynomial $P(T)$ dividing $g(T)$ which satisfies $\operatorname{deg} P(T) \leqslant d$, there exists $n \geqslant 1$ which satisfies

$$
\begin{equation*}
\eta_{n}^{(1-\tau) q(\gamma-1)} \notin E_{n}^{2^{a}} . \tag{3.2}
\end{equation*}
$$

Here $q(T)$ is a polynomial in Λ and a is a non-negative integer satisfying

$$
\begin{equation*}
P(T) q(T) \equiv 2^{a} \quad\left(\bmod \omega_{n}(T)\right) . \tag{3.3}
\end{equation*}
$$

Then we have $\lambda_{2}(k)=0$.
We note here that we verify the condition (3.2) by a congruence relation. Namely, let α be an integer in k_{n} and ℓ a prime number which satisfies $\chi(\ell)=1$, $\ell \equiv 1\left(\bmod 2^{n+2}\right)$ and $\ell \equiv 1\left(\bmod 2^{a}\right)$. Then ℓ splits completely in k_{n} / \mathbb{Q} and we find $x=x_{\mathfrak{l}} \in \mathbb{Z}$ satisfying $\alpha \equiv x(\bmod \mathfrak{l})$ for each prime ideal \mathfrak{l} of k_{n} lying above ℓ. If we find ℓ and \mathfrak{l} such that

$$
x^{\frac{\ell-1}{2^{\alpha}}} \not \equiv 1(\bmod \ell),
$$

then we see that

$$
\alpha \notin k_{n}^{2^{a}} .
$$

4. Bound of Iwasawa invariants

In this section, we discuss an upper bound of Iwasawa invariants in a general situation. Let F be a finite algebraic extension of \mathbb{Q}, ℓ a prime number and K a \mathbb{Z}_{ℓ}-extension of F. Let F_{n} be the intermediate field of K / F with $\left[F_{n}: F\right]=\ell^{n}$ and denote by $\ell^{e_{n}}$ the ℓ-part of the class number of F_{n}. Then there exist integers $\lambda(K / F) \geqslant 0, \mu(K / F) \geqslant 0$ and $\nu(K / F)$ which satisfy

$$
e_{n}=\lambda(K / F) n+\mu(K / F) \ell^{n}+\nu(K / F)
$$

for all sufficiently large n (cf. [12]).
In some situations, a few practical values of e_{n} estimate explicitly upper bounds of $\lambda(K / F)$ and $\mu(K / F)$ and enables us to apply Corollary 3.6 to $k=\mathbb{Q}(\sqrt{p})$. A similar estimate is also given in [11, Lemma 5].

Theorem 4.1. Notations being as above, assume that all the ramified primes in K / F are totally ramified. Furthermore we assume that inequality $e_{n+1}-e_{n}<$ $\ell^{n+1}-\ell^{n}$ holds for some $n \geqslant 0$. Then we have $\lambda(K / F) \leqslant e_{n+1}-e_{n}$ and $\mu(K / F)=0$.

Proof. Let A_{n} be the ℓ-part of the ideal class group of F_{n}. Then $\left|A_{n}\right|=\ell^{e_{n}}$. Put $e_{n+1}-e_{n}=b$. Let $X=G\left(L_{\infty} / K\right)$ and $Y=G\left(L_{\infty} / K L_{0}\right) \subseteq X$, where L_{∞} and L_{0} are the maximal unramified abelian ℓ-extensions of K and F, respectively. Then $\Gamma=G(K / F)$ acts on X by inner automorphism. If we fix a topological generator γ of Γ and associate γ with $1+T$, then we are able to regard X as a $\Lambda=\mathbb{Z}_{\ell}[[T]]$-module. We put

$$
\nu_{n}=\frac{(1+T)^{\ell^{n}}-1}{T}, \nu_{n+1, n}=\nu_{n+1} / \nu_{n} .
$$

Then we have the isomorphism

$$
\begin{equation*}
A_{n} \simeq X / \nu_{n} Y \tag{4.1}
\end{equation*}
$$

from our assumption on the ramification in K / F and [12, Theorem 6]. It follows from (4.1) and our assumption on the class numbers that

$$
\left|\nu_{n} Y / \nu_{n+1} Y\right|=\ell^{b}
$$

Hence if we put $M=\nu_{n} Y$, then we have

$$
\begin{equation*}
\left|M / \nu_{n+1, n} M\right|=\ell^{b} \tag{4.2}
\end{equation*}
$$

Here we note that $\lambda(K / F)=\operatorname{rank}_{\mathbb{Z}_{\ell}} X=\operatorname{rank}_{\mathbb{Z}_{\ell}} M$ because $X / \nu_{n} Y \simeq A_{n}$ is finite. Also, the triviality of the μ-invariant of the Λ-module M implies that of $\mu(K / F)$ by the same reason. Therefore it is enough to show that $\operatorname{dim}_{\mathbb{F}_{\ell}} M / \ell M \leqslant b$, because $\operatorname{rank}_{\mathbb{Z}_{\ell}} M \leqslant \operatorname{dim}_{\mathbb{F}_{\ell}} M / \ell M$ holds in general and the finiteness of $M / \ell M$ implies the vanishing of the μ-invariant of M by Nakayama's lemma. Since $\mathbb{F}_{\ell}[[T]]$ is a discrete valuation ring and $M / \ell M$ is a finitely generated $\mathbb{F}_{\ell}[[T]]$-module, we have

$$
\begin{equation*}
M / \ell M \simeq \mathbb{F}_{\ell}[[T]]^{\oplus r} \oplus\left(\bigoplus_{i=1}^{s} \mathbb{F}_{\ell}[[T]] /\left(T^{a_{i}}\right)\right) \tag{4.3}
\end{equation*}
$$

for some integers $r \geqslant 0$ and $a_{1} \geqslant \ldots \geqslant a_{s} \geqslant 0$. Then we get

$$
\begin{align*}
M /\left(\ell, \nu_{n+1, n}\right) M= & M /\left(\ell, T^{\ell^{n+1}-\ell^{n}}\right) M \\
\simeq & \left(\mathbb{F}_{\ell}[[T]] /\left(T^{\ell^{n+1}-\ell^{n}}\right)\right)^{\oplus r} \tag{4.4}\\
& \oplus\left(\bigoplus_{i=1}^{s} \mathbb{F}_{\ell}[[T]] /\left(T^{\min \left\{a_{i}, \ell^{n+1}-\ell^{n}\right\}}\right)\right),
\end{align*}
$$

because $\nu_{n+1, n} \equiv T^{\ell^{n+1}-\ell^{n}}(\bmod \ell)$. By using our assumption, (4.2) and (4.4), we derive

$$
\begin{align*}
\ell^{n+1}-\ell^{n}>b & \geqslant \operatorname{dim}_{\mathbb{F}_{\ell}}\left(M /\left(\ell, \nu_{n+1, n}\right) M\right) \\
& =r\left(\ell^{n+1}-\ell^{n}\right)+\sum_{i=1}^{s} \min \left\{a_{i}, \ell^{n+1}-\ell^{n}\right\} \tag{4.5}
\end{align*}
$$

from which we find immediately $r=0$ and $a_{i}<\ell^{n+1}-\ell^{n}$ for all i. Therefore, we get inequality $\operatorname{dim}_{\mathbb{F}_{\ell}} M / \ell M=\sum_{i=1}^{s} a_{i} \leqslant b$ by (4.3) and (4.5), which implies the assertion of the theorem as mentioned above.

5. Calculation

In this section, we return to the case $\ell=2$ and recall $\Lambda=\mathbb{Z}_{2}[[T]]$. Let $k=\mathbb{Q}(\sqrt{p})$ with prime number p satisfying $p \equiv 1(\bmod 16)$ and $2^{(p-1) / 4} \equiv 1(\bmod p)$. Let k_{n} be the intermediate field of the cyclotomic \mathbb{Z}_{2}-extension of k with $\left[k_{n}: k\right]=2^{n}$ and A_{n} the 2-part of the ideal class group of k_{n}. We put $\left|A_{n}\right|=2^{e_{n}}$.

First of all, we explain how to compute e_{n}. Straightforward calculation using several software packages developed for number theory handles e_{1}, e_{2} and e_{3}. But it fails to compute e_{4} because the degree $\left[k_{n}: k\right]=2^{n}$ increases rapidly. So a custom algorithm specialized to k is needed. Thanks to [6, Proposition 3.5], the integer a_{r} in the table in [3], which is expected to be equal to e_{r}, is now actually equal to e_{r}. Hence we can calculate $e_{n}(1 \leqslant n \leqslant 8)$ by using the method in [5].

Let χ be the character of k and ω the Teichmüller character modulo 4. Then $\chi^{*}=\omega \chi^{-1}$ is the character of $\mathbb{Q}(\sqrt{-p})$. We define the integer s so that $p \equiv 1$ $\left(\bmod 2^{s}\right)$ and $p \not \equiv 1\left(\bmod 2^{s+1}\right)$. Then the Stickelberger element ξ_{n} is defined by

$$
\xi_{n}=\frac{1}{q_{n}} \sum_{\substack{a=1 \\\left(a, q_{n}\right)=1}}^{q_{n}} a \chi^{*}(a)^{-1}\left(\frac{\mathbb{B}_{n} / \mathbb{Q}}{a}\right)^{-1} \in \mathbb{Z}_{2}\left[G\left(\mathbb{B}_{n} / \mathbb{Q}\right)\right]
$$

where $q_{n}=p 2^{n+2}$ and $\left(\frac{\mathbb{B}_{n} / \mathbb{Q}}{a}\right)$ is the Artin symbol. It is known that $\frac{1}{2} \xi_{n}$ also has integral coefficients. So we associate $\left(\frac{\mathbb{B}_{n} / \mathbb{Q}}{1+q_{0}}\right)^{-1}$ with $\frac{1+T}{1+q_{0}}$ and construct the polynomial $G_{n}(T) \in \Lambda$ from $\frac{1}{2} \xi_{n}$. Weierstrass preparation theorem guarantees the decomposition

$$
G_{n}(T)=u_{n}(T) g_{n}(T)
$$

with the unit element $u_{n}(T) \in \Lambda$ and the distinguished polynomial $g_{n}(T) \in \Lambda$, where $g_{n}(T)$ is constructed explicitly by an algorithm in [17, Proposition 7.2]. Then we know the congruence relation

$$
g(T) \equiv g_{n}(T) \quad\left(\bmod 2^{n-s+2}\right)
$$

where $g(T)$ is the distinguished polynomial defined by (2.1).

Now we see

$$
\begin{aligned}
\frac{1}{2} \xi_{n}= & \frac{1}{2^{n+3} p} \sum_{\substack{a=1 \\
(a, 2 p)=1}}^{2^{n+2} p} a \chi^{*}(a)^{-1}\left(\frac{\mathbb{B}_{n} / \mathbb{Q}}{a}\right)^{-1} \\
= & \frac{1}{2^{n+3} p} \sum_{\substack{j=0 \\
(j, 2)=1}}^{2^{n+2}-1} \sum_{i=0}^{p-1}\left(2^{n+2} i+j\right) \chi^{*}\left(2^{n+2} i+j\right)\left(\frac{\mathbb{B}_{n} / \mathbb{Q}}{2^{n+2} i+j}\right)^{-1} \\
= & \frac{1}{2 p} \sum_{\substack{j=0 \\
(j, 2)=1}}^{2^{n+2}-1}\left(\frac{\mathbb{B}_{n} / \mathbb{Q}}{j}\right)^{-1} \sum_{i=0}^{p-1} i \chi^{*}\left(2^{n+2} i+j\right) \\
& +\frac{1}{2^{n+3} p} \sum_{j=0}^{2^{n+2}-1} j\left(\frac{\mathbb{B}_{n} / \mathbb{Q}}{j}\right)^{-1} \sum_{i=0}^{p-1} \chi^{*}\left(2^{n+2} i+j\right) \\
= & \frac{1}{2 p} \sum_{\substack{j=0 \\
(j, 2)=1}}^{2^{n+2}-1}\left(\frac{\mathbb{B}_{n} / \mathbb{Q}}{j}\right)^{-1} \sum_{i=0}^{p-1} i \chi^{*}\left(2^{n+2} i+j\right),
\end{aligned}
$$

because, for odd j, we have

$$
\begin{aligned}
\sum_{i=0}^{p-1} \chi^{*}\left(2^{n+2} i+j\right) & =\sum_{i=0}^{p-1}(-1)^{2^{n+1}}(-1)^{\frac{j-1}{2}}\left(\frac{2^{n+2} i+j}{p}\right) \\
& =(-1)^{\frac{j-1}{2}} \sum_{a=0}^{p-1}\left(\frac{a}{p}\right)=0
\end{aligned}
$$

Put $G=\left(\mathbb{Z} / 2^{n+2} \mathbb{Z}\right)^{\times}$and $H=\left\langle 1+q_{0}+2^{n+2} \mathbb{Z}\right\rangle$. Then $G=H \cup(-H)$ and hence

$$
\begin{aligned}
G_{n}(T)= & \frac{1}{2 p} \sum_{j=0}^{2^{n}-1}\left(\frac{1+T}{1+q_{0}}\right)^{j} \sum_{i=0}^{p-1} i\left\{\chi^{*}\left(2^{n+2} i+\left(\left(1+q_{0}\right)^{j} \bmod 2^{n+2}\right)\right)\right. \\
& \left.+\chi^{*}\left(2^{n+2} i+\left(-\left(1+q_{0}\right)^{j} \bmod 2^{n+2}\right)\right)\right\}
\end{aligned}
$$

where $a \bmod 2^{n+2}$ means rational integer x satisfying

$$
x \equiv a\left(\bmod 2^{n+2}\right) \quad \text { and } \quad 0 \leqslant x<2^{n+2} .
$$

Now we show two examples, from which we derive Theorem 1.1. Let $p=13841$. Then $s=4$ and we see

$$
\begin{align*}
g(T) & \equiv 44128+126772 T+30644 T^{2}+T^{3}\left(\bmod 2^{17}\right) \\
& \equiv(2616+T)\left(74772+28028 T+T^{2}\right)\left(\bmod 2^{17}\right) \tag{5.1}
\end{align*}
$$

from ξ_{19}. Proposition 2 in [13, Chapter II] with the fact $g_{19}(-2616) \equiv 0\left(\bmod 2^{17}\right)$, $g_{19}^{\prime}(-2616) \not \equiv 0\left(\bmod 2^{3}\right)$ implies that $g(T)$ has a factor $P_{1}(T)=\alpha+T\left(\alpha \in \mathbb{Z}_{2}\right)$ with $\alpha \equiv 2616\left(\bmod 2^{13}\right)$ and (5.1) implies that $g(T) / P_{1}(T)$ is irreducible modulo 2^{13}. Hence $g(T) / P_{1}(T)$ is irreducible in Λ and we see

$$
g(T)=P_{1}(T) P_{2}(T)
$$

with irreducible polynomial $P_{2}(T)$ of degree two.
Now we get e_{n} as follows:

n	1	2	3	4	5	6	7	8
e_{n}	2	4	5	6	7	8	9	10

Hence it follows that $\lambda_{2}(k) \leqslant 1$ by Theorem 4.1 and it suffices to verify the condition (3.2) only for $P(T)=P_{1}(T)$ in order to prove $\lambda_{2}(k)=0$. When $n=10$, we see that $a=13$ in the expression (3.3) and the condition (3.2) holds. Hence we have $\lambda_{2}(k)=0$.

Next we treat $p=67073$. In this case, $s=9$. We calculate ξ_{28} and find that

$$
g(T)=P_{1}(T) P_{2}(T) P_{3}(T)
$$

where $P_{1}(T), P_{2}(T)$ and $P_{3}(T)$ are monic irreducible polynomials with degree 1,2 and 124 respectively by factoring $g_{28}(T)$ modulo 2^{21} and using Hensel's lemma. We also see

$$
\begin{aligned}
& P_{1}(T) \equiv 1000+T \quad\left(\bmod 2^{11}\right) \\
& P_{2}(T) \equiv 1392+796 T+T^{2}\left(\bmod 2^{11}\right)
\end{aligned}
$$

and

n	1	2	3	4	5	6	7	8
e_{n}	3	6	9	12	14	16	18	20

Hence it follows that $\lambda_{2}(k) \leqslant 2$ by Theorem 4.1 and it suffices to verify the condition (3.2) only for $P(T)=P_{1}(T)$ and $P(T)=P_{2}(T)$ in order to prove $\lambda_{2}(k)=0$. Actually we verify the condition (3.2) for $P_{1}(T)$ with $n=8$ and for $P_{2}(T)$ with $n=3$. So we conclude $\lambda_{2}(k)=0$.

6. Comparison of criteria

We would like to compare criteria of $\lambda_{2}(k)=0$. Most fundamental criterion is Theorem 2.1 in [3]. The condition (C) was first verified in our all practical calculations. Theorems 2.1 and 2.2 in [6] are considered the improvement of that in special situations. At the present time, we are abel to check these criteria in k_{n} $(1 \leqslant n \leqslant 8)$. On the other hand, Corollary 3.6 is a criterion of different type. We are abel to check this criterion for larger n.

In the following table, we show n where we verified $\lambda_{2}(k)=0$ under the calculations in k_{n}. The sign \times means that the criterion can not be applied for such p. The inequality $\geqslant 13$ or $\geqslant 12$ means that we need at least $n=13$ or $n=12$ to apply [3, Theorem 2.1]. For p where the sign ? is marked, we failed to factorize Iwasawa polynomial $g(T)$ which has degree 2047, 1022 or 16383. So all the criteria should be considered complementary to each other.

p	$[3$, Theorem 2.1]	$[6$, Theorem 2.1]	$[6$, Theorem 2.2]	Corollary 3.6
1201	2	\times	\times	10
3361	5	\times	\times	3
12161	4	2	\times	11
13121	4	\times	2	6
13841	$\geqslant 13$	\times	\times	10
67073	$\geqslant 12$	\times	\times	8
14929	5	\times	4	2
15217	3	\times	\times	3
20353	1	\times	4	7
61297	8	2	7	2
40961	1	\times	\times	$?$
61441	2	\times	\times	$?$
65537	7		\times	$?$

References

[1] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121-124.
[2] B. Ferrero and L.C. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. 109 (1979), no. 2, 377-395.
[3] T. Fukuda, Greenberg conjecture for the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p})$, Interdisciplinary Information Sciences, 16-1 (2010), 21-32.
[4] T. Fukuda and K. Komatsu, Ichimura-Sumida criterion for Iwasawa λ-invariants, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 111-115.
[5] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p})$, Math. Comp. 78 (2009), 1797-1808.
[6] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p}) I I$, Funct. Approx. Comment. Math. 51 (2014), no. 1, 167-179.
[7] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
[8] R. Greenberg, On the structure of certain Galois groups, Inv. math. 47 (1978), 85-99.
[9] C. Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble), 42, (1992), 449-499.
[10] H. Ichimura and H. Sumida, On the Iwasawa Invariants of certain real abelian fields II, Inter. J. Math. 7 (1996), 721-744.
[11] H. Ichimura, S. Nakajima and H. Sumida-Takahashi, On the Iwasawa lambda invariants of an imaginary abelian field of conductor $3 p^{n+1}$, J. Number Theory 133 (2013), 787-801.
[12] K. Iwasawa, On \mathbb{Z}_{ℓ}-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
[13] S. Lang, Algebraic Number Theory, Graduate Texts in Math. vol. 110, Springer, 1994.
[14] M. Ozaki and H. Taya, On the Iwasawa λ_{2}-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), no. 4, 437-444.
[15] T. Tsuji, Semi-local units modulo cyclotomic units, J. Number Theory 78 (1999), 1-26.
[16] T. Tsuji, On the Iwasawa λ-invariants of real abelian fields, Trans. Amer. Math. Soc. 355 (2003), 3699-3714.
[17] L.C. Washington, Introduction to cyclotomic fields. Second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
[18] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493-540.

Addresses: Takashi Fukuda: Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan;
Keiichi Komatsu and Manabu Ozaki: Department of Mathematical Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan;
Takae Tsuji: Department of Mathematics, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan.

E-mail: fukuda.takashi@nihon-u.ac.jp, kkomatsu@waseda.jp, ozaki@waseda.jp, tsuji@tokai-u.jp Received: 7 November 2014; revised: 19 December 2015

