Functiones et Approximatio 54.1 (2016), 7–17 doi: 10.7169/facm/2016.54.1.1

ON THE IWASAWA λ -INVARIANT OF THE CYCLOTOMIC \mathbb{Z}_2 -EXTENSION OF $\mathbb{Q}(\sqrt{p})$, III

Takashi Fukuda, Keiichi Komatsu, Manabu Ozaki, Takae Tsuji

Abstract: In the preceding papers, two of authors developed criteria for Greenberg conjecture of the cyclotomic \mathbb{Z}_2 -extension of $k = \mathbb{Q}(\sqrt{p})$ with prime number p. Criteria and numerical algorithm in [5], [3] and [6] enable us to show $\lambda_2(k) = 0$ for all p less than 10^5 except p = 13841,67073. All the known criteria at present can not handle p = 13841,67073. In this paper, we develop another criterion for $\lambda_2(k) = 0$ using cyclotomic units and Iwasawa polynomials, which is considered a slight modification of the method of Ichimura and Sumida. Our new criterion fits the numerical examination and quickly shows that $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$ for p = 13841,67073. So we announce here that $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$ for all prime numbers p less that 10^5 .

Keywords: Iwasawa invariant, cyclotomic unit, real quadratic field.

1. Introduction

Let $k = \mathbb{Q}(\sqrt{p})$ be a real quadratic field with prime number p and k_{∞} the cyclotomic \mathbb{Z}_2 -extension of k. It is very important to study Greenberg conjecture for k_{∞}/k , namely to consider whether the Iwasawa λ -invariant $\lambda_2(k) = \lambda(k_{\infty}/k)$ is zero or not. First approach on this problem was made by Ozaki and Taya [14] in which they proved that $\lambda_2(k) = 0$ if p satisfies $p \neq 1 \pmod{16}$ or $2^{(p-1)/4} \neq 1 \pmod{p}$. After Ozaki and Taya, the authors developed criteria for $\lambda_2(k) = 0$ when p satisfies $p \equiv 1 \pmod{16}$ and $2^{(p-1)/4} \equiv 1 \pmod{p}$ (cf. [5], [3], [6]). Our criteria are described by units in k_n , which is the intermediate field of k_{∞}/k with $[k_n : k] = 2^n$, and numerical calculations in k_n ($0 \leq n \leq 8$) show that $\lambda_2(k) = 0$ for all prime number p less than 10^5 except p = 13841,67073. All the known criteria accompanied with calculation in k_8 failed to show $\lambda_2(k) = 0$ for p = 13841,67073. It seems necessary to calculate at least in k_{13} in order to show $\lambda_2(k) = 0$ using those criteria. Such a calculation is far beyond the ability of current computer.

²⁰¹⁰ Mathematics Subject Classification: primary: 11R23; secondary: 11Y40

In this paper, we develop one more criterion using cyclotomic units, which is considered a slight modification of the method of Ichimura and Sumida [10], and verify that $\lambda_2(k) = 0$ for p = 13841,67073 by using cyclotomic units and Iwasawa polynomials in k_8 . Namely, we prove the following theorem:

Theorem 1.1. We have $\lambda_2(\mathbb{Q}(\sqrt{p})) = 0$ for all prime number p less than 10^5 .

2. Preliminaries

From now on, we assume that p is a prime number satisfying $p \equiv 1 \pmod{16}$ and $2^{(p-1)/4} \equiv 1 \pmod{p}$. Let k_n be the *n*-th layer of the cyclotomic \mathbb{Z}_2 -extension k_∞ of k as above, \mathcal{O}_{k_n} the integer ring of k_n , $E_n = \mathcal{O}_{k_n}^{\times}$ the unit group of k_n , A_n the 2-part of the ideal class group of k_n , I_n a prime ideal of k_n lying above 2. We put $\mathbb{B}_n = \mathbb{Q}(\cos \frac{2\pi}{2^{n+2}})$ and $\mathbb{B}_\infty = \bigcup_{n=0}^{\infty} \mathbb{B}_n$. Then $k_n = k\mathbb{B}_n$ and $k_\infty = k\mathbb{B}_\infty$. Moreover, let $\Delta = G(k_\infty/\mathbb{B}_\infty)$ the Galois group of k_∞ over \mathbb{B}_∞ with a generator γ and $\Gamma = G(k_\infty/k)$ the Galois group of k_∞ over k with a topological generator γ .

Then we have $2\mathcal{O}_{k_n} = (\mathfrak{l}_n \mathfrak{l}_n^{\tau})^{2^n}$. Let $k_n \mathfrak{l}_n$ be the completion of k_n at \mathfrak{l}_n and put $c_n = 1 + 2\cos\frac{2\pi}{2^{n+2}}$. Then we have $k_n \mathfrak{l}_n = \mathbb{Q}_2(c_n)$, where \mathbb{Q}_2 is the 2-adic field. Let I'_n be the group of fractional ideals in k_n generated by ideals which are prime to 2. We put $E'_n = \{ \alpha \in k_n \mid (\alpha) \in I'_n \}$ and $U_n = \mathcal{O}_{k_n \mathfrak{l}_n}^{\times} \times \mathcal{O}_{k_n \mathfrak{l}_n}^{\times}$. We embed E'_n in U_n by the injective homomorphism $\varphi : E'_n \ni \alpha \mapsto (\alpha, \alpha^{\tau}) \in \mathbb{Q}$.

We embed E'_n in U_n by the injective homomorphism $\varphi : E'_n \ni \alpha \mapsto (\alpha, \alpha^{\tau}) \in U_n$. We put $(\alpha, \alpha^{\tau})^{\tau^*} = (\alpha^{\tau}, \alpha)$ for $(\alpha, \alpha^{\tau}) \in \varphi(E'_n)$. Since the topological closure $\varphi(E'_n)$ of $\varphi(E'_n)$ is U_n , we can extend the mapping τ^* to U_n continuously.

Now we develop a quadratic version of [15, Theorem 3.3] by following the arguments in [9, §2]. We put $\mathbb{U} = \varprojlim U_n$, where the projective limit is taken with respect to the relative norms. Let $u = (u_n)_{n=1}^{\infty}$ be an element in $\varprojlim \mathcal{O}_{k_n \mathfrak{l}_n}^{\times}$. Then there exists a unique power series $f_u(X) \in \mathbb{Z}_2[[X]]$ satisfying

$$f_u(1 - \zeta_{2^{n+2}}) = u_n,$$

where ζ_m means $\exp(2\pi\sqrt{-1}/m)$. Let $D = (1-X)\frac{d}{dX}$ be a derivative operator on $\mathbb{Z}_2[[X]]$. We put $\Lambda = \mathbb{Z}_2[[T]]$ and let 1+T act on \mathbb{U} as $\gamma \in \Gamma$. Let *s* be a primitive root modulo *p* and put $\xi = \sum_{i=1}^{(p-1)/2} (\zeta_p^{s^{2i}} - \zeta_p^{s^{2i+1}})$, which we regard as the image of the embedding $\mathcal{O}_k \hookrightarrow \mathcal{O}_{k_1} = \mathbb{Z}_2$. Then there exists a unique element $G_u(T)$ of Λ such that

$$D^{\nu}(\log f_u(X) - \frac{1}{2}\log f_u(1 - (1 - X)^2))|_{X=0} = G_u((1 + 4p)^{\nu} - 1)\xi.$$

We note that the correspondence $\mathbb{U}^{1-\tau^*} \ni (u, u^{-1}) \mapsto \frac{1}{2}G_u(T) \in \Lambda$ defines a Λ -isomorphism $\Psi : \mathbb{U}^{1-\tau^*} \longrightarrow \Lambda$. Now, we put

$$\eta_n = \zeta_{2^{n+2}}^{(p-1)/4} \prod_{i=1}^{(p-1)/2} \left(\zeta_{2^{n+2}}^{-1} - \zeta_p^{s^{2i}} \right),$$

and $\eta = (\eta_n)_{n=1}^{\infty}$. A straightforward calculation, which was presented in [6] for instance, shows that

$$\eta_n^2 = N_{\mathbb{Q}(\zeta_{2^{n+2}p})/k_n} \left(1 - \zeta_{2^{n+2}}\zeta_p\right).$$

From now on, we specify the topological generator γ of Γ by the relation

$$(\zeta_{2^{n+2}} + \zeta_{2^{n+2}}^{-1})^{\gamma} = \zeta_{2^{n+2}}^{1+4p} + \zeta_{2^{n+2}}^{-1-4p} \quad (n \ge 0) + \zeta_{2^{n+2}}^{-1-4p} = \zeta_{2^{n+2}}^{-1-4p} + \zeta_{2^{n+2}}^{-1-4p} = \zeta_{2^{n+2}}^{-1-4p} + \zeta_{2^{n+2}}^{-1-4p} + \zeta_{2^{n+2}}^{-1-4p} + \zeta_{2^{n+2}}^{-1-4p} + \zeta_{2^{n+2}}^{-1-4p} = \zeta_{2^{n+2}}^{-1-4p} + \zeta_{2^{n+2}}^{-1-$$

Then Iwasawa's construction of 2-adic L-function associated to k varies now into the following form.

Theorem 2.1. Let χ be the non-trivial character modulo p associated to k and $\frac{1}{2}G(T)$ the image of the element $(\eta^{1-\tau}, \eta^{\tau-1})$ in $\mathbb{U}^{1-\tau^*}$ by the above isomorphism $\mathbb{U}^{1-\tau^*} \cong \Lambda$. Then we have

$$G((1+4p)^{\nu}-1) = -(1-2^{\nu-1})\frac{B_{\nu,\chi}}{\nu} \quad for \ \nu \equiv 0 \pmod{2}.$$

Here $B_{\nu,\chi}$ is a generalized Bernoulli number.

Since the Iwasawa μ -invariant $\mu_2(k) = \mu(k_{\infty}/k)$ is known to be zero by Ferrero-Washington [2], there exist a unique unit element $u(T) \in \Lambda^{\times}$ and a unique distinguished polynomial $g(T) \in \mathbb{Z}_2[[T]]$ such that

$$G(T) = 2u(T)g(T).$$
(2.1)

The distinguished polynomial g(T), which is called Iwasawa polynomial, plays essential role in our arguments. We fix the notation g(T) throughout the paper.

3. Criterion

In this section, we work in abelian extensions of \mathbb{Q} . So Leopoldt conjecture is valid in our situation (cf. [1]). Let L_{∞} is the maximal unramified abelian 2-extension of k_{∞} and M_{∞} the maximal abelian 2-extension of k_{∞} unramified outside 2. Then the Galois groups $I_{\infty} = G(M_{\infty}/L_{\infty})$, $\mathfrak{X}_{\infty} = G(M_{\infty}/k_{\infty})$ and $X_{\infty} = G(L_{\infty}/k_{\infty})$ are finitely generated Λ -modules (cf. [12]). For a finitely generated Λ -module X, ch(X) denotes the characteristic polynomial of X. Then we have the following:

Lemma 3.1. The tensor product $\mathfrak{X}_{\infty} \otimes_{\mathbb{Z}_2[\Delta]} \mathbb{Z}_2$ is pseudo-isomorphic to $\mathfrak{X}_{\infty}^{1-\tau}$, where τ acts on \mathbb{Z}_2 by $\tau a = -a$ for $a \in \mathbb{Z}_2$.

Proof. Let ψ be a Δ -homomorphism of $\mathfrak{X}_{\infty} \otimes_{\mathbb{Z}_2[\Delta]} \mathbb{Z}_2$ to $\mathfrak{X}_{\infty}^{1-\tau}$ defined by $\psi(x \otimes a) = (x^a)^{1-\tau}$. Then ψ is surjective. Now, we assume $\psi(x \otimes a) = 1$. Then we have $(x^a)^{1-\tau} = 1$, which means $(x^a)^{\tau} = x^a$. Hence $x \otimes a = x^a \otimes 1 = (x^a)^{\tau} \otimes 1 = x^a \otimes (-1) = (x^a \otimes 1)^{-1}$, which shows $(x \otimes a)^2 = 1$. Since $\mathfrak{X}_{\infty} \otimes_{\mathbb{Z}_2[\Delta]} \mathbb{Z}_2$ is finitely generated \mathbb{Z}_2 -module, the kernel of ψ is finite.

Hence we have the following (cf. [18, Theorem 6.2]):

Lemma 3.2. We have $ch(\mathfrak{X}_{\infty}^{1-\tau}) = g(T)$.

Moreover, we have the following:

Lemma 3.3. Λ -modules $\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$ and $I_{\infty}^{1-\tau}$ are pseudo-isomorphic. Namely, $ch(\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}) = ch(I_{\infty}^{1-\tau}).$

Proof. Let x be an element in $\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$. Since $x^{\tau} = x^{-1}$, we have $x^2 = x^{1-\tau}$, which means $x^2 \in I_{\infty}^{1-\tau}$. Since $I_{\infty}^{1-\tau} \subset \mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$ and since $\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$ is a finitely generated \mathbb{Z}_2 -module, the index $(\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty} : I_{\infty}^{1-\tau})$ is finite.

Since $X_{\infty}^{1-\tau} = \mathfrak{X}_{\infty}^{1-\tau} I_{\infty}/I_{\infty}$ is isomorphic to $\mathfrak{X}_{\infty}^{1-\tau}/\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}$, we have the following:

Lemma 3.4. We have

$$g(T) = ch(X_{\infty}^{1-\tau})ch(\mathfrak{X}_{\infty}^{1-\tau} \cap I_{\infty}).$$

Now, we put $E_n = \mathcal{O}_{k_n}^{\times}$. Then $\varphi(E_n) = \{ (\varepsilon, \varepsilon^{\tau}) \mid \varepsilon \in E_n \}$. Moreover, we put $\mathcal{E}_n = \overline{\varphi(E_n)} \subset U_n$ and $\mathcal{E} = \varprojlim \mathcal{E}_n$. Then I_{∞} is isomorphic to \mathbb{U}/\mathcal{E} by class field theory, which shows $I_{\infty}^{1-\tau}$ is isomorphic to $\mathbb{U}^{1-\tau}\mathcal{E}/\mathcal{E}$. Let P(T) be a monic irreducible polynomial in Λ which divides g(T) and put

$$Q(T) = \frac{g(T)}{P(T)}.$$

Assume that P(T) divides $ch(X_{\infty}^{1-\tau})$. Then $ch(I_{\infty}^{1-\tau})$ divides Q(T), which shows $(\mathbb{U}^{1-\tau})^{Q(T)} \subset \mathcal{E}$, because \mathfrak{X}_{∞} has no finite Λ -submodule (cf. [8, Theorem 1]). Since P(T) and $\omega_n(T) = (1+T)^{2^n} - 1$ are mutually prime in Λ , which is a consequence of Leopoldt conjecture, there exist elements $q_n(T), r_n(T) \in \Lambda$ with

$$P(T)q_n(T) + r_n(T)\omega_n(T) = 2^{a_n},$$

where a_n is a non-negative integer. Hence we have

$$(\eta_n^{1-\tau}, \eta_n^{\tau-1})^{q_n(T)} = \Psi^{-1}(u(T))^{P(T)Q(T)q_n(T)} \in \mathcal{E}_n^{2^{a_n}}$$

with u(T) define by (2.1). Now we follow the arguments in [4] and [16] noting that Leopoldt conjecture is valid in our situation to establish the following theorem.

Theorem 3.5. Assume that for any monic irreducible polynomial P(T) dividing g(T), there exists $n \ge 1$ which satisfies

$$\eta_n^{(1-\tau)q(\gamma-1)} \notin E_n^{2^a}.$$
(3.1)

Here q(T) is a polynomial in Λ and a is a non-negative integer satisfying

$$P(T)q(T) \equiv 2^a \pmod{\omega_n(T)}.$$

Then we have $\lambda_2(k) = 0$.

The condition (3.1) in Theorem 3.5 guarantees $P(T) \not\mid \operatorname{ch}(X_{\infty}^{1-\tau})$, from which we deduce $\lambda_2(k) = 0$. In the practical computations, we are often aware of an upper bound d of λ -invariant. If P(T) satisfies $\deg P(T) > d$, then we immediately conclude $P(T) \not\mid \operatorname{ch}(X_{\infty}^{1-\tau})$ because $\deg \operatorname{ch}(X_{\infty}) \leq d$. Hence we are able to transform Theorem 3.5 to the following effective form.

Corollary 3.6. Assume that $\lambda_2(k) \leq d$ with positive integer d. Moreover, assume that for any monic irreducible polynomial P(T) dividing g(T) which satisfies deg $P(T) \leq d$, there exists $n \geq 1$ which satisfies

$$\eta_n^{(1-\tau)q(\gamma-1)} \notin E_n^{2^a}.$$
(3.2)

Here q(T) is a polynomial in Λ and a is a non-negative integer satisfying

$$P(T)q(T) \equiv 2^a \pmod{\omega_n(T)}.$$
(3.3)

Then we have $\lambda_2(k) = 0$.

We note here that we verify the condition (3.2) by a congruence relation. Namely, let α be an integer in k_n and ℓ a prime number which satisfies $\chi(\ell) = 1$, $\ell \equiv 1 \pmod{2^{n+2}}$ and $\ell \equiv 1 \pmod{2^a}$. Then ℓ splits completely in k_n/\mathbb{Q} and we find $x = x_{\mathfrak{l}} \in \mathbb{Z}$ satisfying $\alpha \equiv x \pmod{\mathfrak{l}}$ for each prime ideal \mathfrak{l} of k_n lying above ℓ . If we find ℓ and \mathfrak{l} such that

$$x^{\frac{\ell-1}{2^a}} \not\equiv 1 \pmod{\ell},$$

then we see that

 $\alpha \not\in k_n^{2^a}.$

4. Bound of Iwasawa invariants

In this section, we discuss an upper bound of Iwasawa invariants in a general situation. Let F be a finite algebraic extension of \mathbb{Q} , ℓ a prime number and K a \mathbb{Z}_{ℓ} -extension of F. Let F_n be the intermediate field of K/F with $[F_n:F] = \ell^n$ and denote by ℓ^{e_n} the ℓ -part of the class number of F_n . Then there exist integers $\lambda(K/F) \ge 0$, $\mu(K/F) \ge 0$ and $\nu(K/F)$ which satisfy

$$e_n = \lambda(K/F)n + \mu(K/F)\ell^n + \nu(K/F)$$

for all sufficiently large n (cf. [12]).

In some situations, a few practical values of e_n estimate explicitly upper bounds of $\lambda(K/F)$ and $\mu(K/F)$ and enables us to apply Corollary 3.6 to $k = \mathbb{Q}(\sqrt{p})$. A similar estimate is also given in [11, Lemma 5].

Theorem 4.1. Notations being as above, assume that all the ramified primes in K/F are totally ramified. Furthermore we assume that inequality $e_{n+1} - e_n < \ell^{n+1} - \ell^n$ holds for some $n \ge 0$. Then we have $\lambda(K/F) \le e_{n+1} - e_n$ and $\mu(K/F) = 0$.

Proof. Let A_n be the ℓ -part of the ideal class group of F_n . Then $|A_n| = \ell^{e_n}$. Put $e_{n+1} - e_n = b$. Let $X = G(L_{\infty}/K)$ and $Y = G(L_{\infty}/KL_0) \subseteq X$, where L_{∞} and L_0 are the maximal unramified abelian ℓ -extensions of K and F, respectively. Then $\Gamma = G(K/F)$ acts on X by inner automorphism. If we fix a topological generator γ of Γ and associate γ with 1 + T, then we are able to regard X as a $\Lambda = \mathbb{Z}_{\ell}[[T]]$ -module. We put

$$\nu_n = \frac{(1+T)^{\ell^n} - 1}{T}, \ \nu_{n+1,n} = \nu_{n+1}/\nu_n.$$

Then we have the isomorphism

$$A_n \simeq X/\nu_n Y \tag{4.1}$$

from our assumption on the ramification in K/F and [12, Theorem 6]. It follows from (4.1) and our assumption on the class numbers that

$$|\nu_n Y / \nu_{n+1} Y| = \ell^t$$

Hence if we put $M = \nu_n Y$, then we have

$$|M/\nu_{n+1,n}M| = \ell^b.$$
(4.2)

Here we note that $\lambda(K/F) = \operatorname{rank}_{\mathbb{Z}_{\ell}} X = \operatorname{rank}_{\mathbb{Z}_{\ell}} M$ because $X/\nu_n Y \simeq A_n$ is finite. Also, the triviality of the μ -invariant of the Λ -module M implies that of $\mu(K/F)$ by the same reason. Therefore it is enough to show that $\dim_{\mathbb{F}_{\ell}} M/\ell M \leq b$, because $\operatorname{rank}_{\mathbb{Z}_{\ell}} M \leq \dim_{\mathbb{F}_{\ell}} M/\ell M$ holds in general and the finiteness of $M/\ell M$ implies the vanishing of the μ -invariant of M by Nakayama's lemma. Since $\mathbb{F}_{\ell}[[T]]$ is a discrete valuation ring and $M/\ell M$ is a finitely generated $\mathbb{F}_{\ell}[[T]]$ -module, we have

$$M/\ell M \simeq \mathbb{F}_{\ell}[[T]]^{\oplus r} \oplus \left(\bigoplus_{i=1}^{s} \mathbb{F}_{\ell}[[T]]/(T^{a_i})\right)$$
(4.3)

for some integers $r \ge 0$ and $a_1 \ge \ldots \ge a_s \ge 0$. Then we get

$$M/(\ell, \nu_{n+1,n})M = M/(\ell, T^{\ell^{n+1}-\ell^n})M$$

$$\simeq \left(\mathbb{F}_{\ell}[[T]]/(T^{\ell^{n+1}-\ell^n})\right)^{\oplus r} \qquad (4.4)$$

$$\oplus \left(\bigoplus_{i=1}^s \mathbb{F}_{\ell}[[T]]/(T^{\min\{a_i, \ell^{n+1}-\ell^n\}})\right),$$

because $\nu_{n+1,n} \equiv T^{\ell^{n+1}-\ell^n} \pmod{\ell}$. By using our assumption, (4.2) and (4.4), we derive

$$\ell^{n+1} - \ell^n > b \ge \dim_{\mathbb{F}_{\ell}} (M/(\ell, \nu_{n+1,n})M)$$

= $r(\ell^{n+1} - \ell^n) + \sum_{i=1}^s \min\{a_i, \ell^{n+1} - \ell^n\},$ (4.5)

from which we find immediately r = 0 and $a_i < \ell^{n+1} - \ell^n$ for all *i*. Therefore, we get inequality $\dim_{\mathbb{F}_{\ell}} M/\ell M = \sum_{i=1}^{s} a_i \leq b$ by (4.3) and (4.5), which implies the assertion of the theorem as mentioned above.

5. Calculation

In this section, we return to the case $\ell = 2$ and recall $\Lambda = \mathbb{Z}_2[[T]]$. Let $k = \mathbb{Q}(\sqrt{p})$ with prime number p satisfying $p \equiv 1 \pmod{16}$ and $2^{(p-1)/4} \equiv 1 \pmod{p}$. Let k_n be the intermediate field of the cyclotomic \mathbb{Z}_2 -extension of k with $[k_n : k] = 2^n$ and A_n the 2-part of the ideal class group of k_n . We put $|A_n| = 2^{e_n}$.

First of all, we explain how to compute e_n . Straightforward calculation using several software packages developed for number theory handles e_1 , e_2 and e_3 . But it fails to compute e_4 because the degree $[k_n : k] = 2^n$ increases rapidly. So a custom algorithm specialized to k is needed. Thanks to [6, Proposition 3.5], the integer a_r in the table in [3], which is expected to be equal to e_r , is now actually equal to e_r . Hence we can calculate e_n $(1 \le n \le 8)$ by using the method in [5].

Let χ be the character of k and ω the Teichmüller character modulo 4. Then $\chi^* = \omega \chi^{-1}$ is the character of $\mathbb{Q}(\sqrt{-p})$. We define the integer s so that $p \equiv 1 \pmod{2^s}$ and $p \not\equiv 1 \pmod{2^{s+1}}$. Then the Stickelberger element ξ_n is defined by

$$\xi_n = \frac{1}{q_n} \sum_{\substack{a=1\\(a,q_n)=1}}^{q_n} a\chi^*(a)^{-1} \left(\frac{\mathbb{B}_n/\mathbb{Q}}{a}\right)^{-1} \in \mathbb{Z}_2[G(\mathbb{B}_n/\mathbb{Q})],$$

where $q_n = p2^{n+2}$ and $\left(\frac{\mathbb{B}_n/\mathbb{Q}}{a}\right)$ is the Artin symbol. It is known that $\frac{1}{2}\xi_n$ also has integral coefficients. So we associate $\left(\frac{\mathbb{B}_n/\mathbb{Q}}{1+q_0}\right)^{-1}$ with $\frac{1+T}{1+q_0}$ and construct the polynomial $G_n(T) \in \Lambda$ from $\frac{1}{2}\xi_n$. Weierstrass preparation theorem guarantees the decomposition

$$G_n(T) = u_n(T)g_n(T)$$

with the unit element $u_n(T) \in \Lambda$ and the distinguished polynomial $g_n(T) \in \Lambda$, where $g_n(T)$ is constructed explicitly by an algorithm in [17, Proposition 7.2]. Then we know the congruence relation

$$g(T) \equiv g_n(T) \pmod{2^{n-s+2}},$$

where g(T) is the distinguished polynomial defined by (2.1).

Now we see

$$\begin{split} \frac{1}{2}\xi_n &= \frac{1}{2^{n+3}p} \sum_{\substack{a=1\\(a,2p)=1}}^{2^{n+2}p} a\chi^*(a)^{-1} \left(\frac{\mathbb{B}_n/\mathbb{Q}}{a}\right)^{-1} \\ &= \frac{1}{2^{n+3}p} \sum_{\substack{j=0\\(j,2)=1}}^{2^{n+2}-1} \sum_{i=0}^{p-1} (2^{n+2}i+j)\chi^*(2^{n+2}i+j) \left(\frac{\mathbb{B}_n/\mathbb{Q}}{2^{n+2}i+j}\right)^{-1} \\ &= \frac{1}{2p} \sum_{\substack{j=0\\(j,2)=1}}^{2^{n+2}-1} \left(\frac{\mathbb{B}_n/\mathbb{Q}}{j}\right)^{-1} \sum_{i=0}^{p-1} i\chi^*(2^{n+2}i+j) \\ &+ \frac{1}{2^{n+3}p} \sum_{j=0}^{2^{n+2}-1} j \left(\frac{\mathbb{B}_n/\mathbb{Q}}{j}\right)^{-1} \sum_{i=0}^{p-1} \chi^*(2^{n+2}i+j) \\ &= \frac{1}{2p} \sum_{\substack{j=0\\(j,2)=1}}^{2^{n+2}-1} \left(\frac{\mathbb{B}_n/\mathbb{Q}}{j}\right)^{-1} \sum_{i=0}^{p-1} i\chi^*(2^{n+2}i+j), \end{split}$$

because, for odd j, we have

$$\sum_{i=0}^{p-1} \chi^* (2^{n+2}i+j) = \sum_{i=0}^{p-1} (-1)^{2^{n+1}i} (-1)^{\frac{j-1}{2}} \left(\frac{2^{n+2}i+j}{p}\right)$$
$$= (-1)^{\frac{j-1}{2}} \sum_{a=0}^{p-1} \left(\frac{a}{p}\right) = 0.$$

Put $G = (\mathbb{Z}/2^{n+2}\mathbb{Z})^{\times}$ and $H = \langle 1 + q_0 + 2^{n+2}\mathbb{Z} \rangle$. Then $G = H \cup (-H)$ and hence

$$G_n(T) = \frac{1}{2p} \sum_{j=0}^{2^n - 1} \left(\frac{1+T}{1+q_0} \right)^j \sum_{i=0}^{p-1} i \left\{ \chi^* (2^{n+2}i + ((1+q_0)^j \mod 2^{n+2})) + \chi^* (2^{n+2}i + (-(1+q_0)^j \mod 2^{n+2})) \right\},$$

where $a \mod 2^{n+2}$ means rational integer x satisfying

$$x \equiv a \pmod{2^{n+2}}$$
 and $0 \leq x < 2^{n+2}$.

Now we show two examples, from which we derive Theorem 1.1. Let p = 13841. Then s = 4 and we see

$$g(T) \equiv 44128 + 126772T + 30644T^2 + T^3 \pmod{2^{17}}$$
$$\equiv (2616 + T)(74772 + 28028T + T^2) \pmod{2^{17}}$$
(5.1)

from ξ_{19} . Proposition 2 in [13, Chapter II] with the fact $g_{19}(-2616) \equiv 0 \pmod{2^{17}}$, $g'_{19}(-2616) \neq 0 \pmod{2^3}$ implies that g(T) has a factor $P_1(T) = \alpha + T \ (\alpha \in \mathbb{Z}_2)$ with $\alpha \equiv 2616 \pmod{2^{13}}$ and (5.1) implies that $g(T)/P_1(T)$ is irreducible modulo 2^{13} . Hence $g(T)/P_1(T)$ is irreducible in Λ and we see

$$g(T) = P_1(T)P_2(T)$$

with irreducible polynomial $P_2(T)$ of degree two.

Now we get e_n as follows:

n	1	2	3	4	5	6	7	8
e_n	2	4	5	6	7	8	9	10

Hence it follows that $\lambda_2(k) \leq 1$ by Theorem 4.1 and it suffices to verify the condition (3.2) only for $P(T) = P_1(T)$ in order to prove $\lambda_2(k) = 0$. When n = 10, we see that a = 13 in the expression (3.3) and the condition (3.2) holds. Hence we have $\lambda_2(k) = 0$.

Next we treat p = 67073. In this case, s = 9. We calculate ξ_{28} and find that

$$g(T) = P_1(T)P_2(T)P_3(T),$$

where $P_1(T)$, $P_2(T)$ and $P_3(T)$ are monic irreducible polynomials with degree 1,2 and 124 respectively by factoring $g_{28}(T)$ modulo 2^{21} and using Hensel's lemma. We also see

$$P_1(T) \equiv 1000 + T \pmod{2^{11}},$$

$$P_2(T) \equiv 1392 + 796T + T^2 \pmod{2^{11}}.$$

and

ſ	n	1	2	3	4	5	6	7	8
ſ	e_n	3	6	9	12	14	16	18	20

Hence it follows that $\lambda_2(k) \leq 2$ by Theorem 4.1 and it suffices to verify the condition (3.2) only for $P(T) = P_1(T)$ and $P(T) = P_2(T)$ in order to prove $\lambda_2(k) = 0$. Actually we verify the condition (3.2) for $P_1(T)$ with n = 8 and for $P_2(T)$ with n = 3. So we conclude $\lambda_2(k) = 0$.

6. Comparison of criteria

We would like to compare criteria of $\lambda_2(k) = 0$. Most fundamental criterion is Theorem 2.1 in [3]. The condition (C) was first verified in our all practical calculations. Theorems 2.1 and 2.2 in [6] are considered the improvement of that in special situations. At the present time, we are abel to check these criteria in k_n $(1 \leq n \leq 8)$. On the other hand, Corollary 3.6 is a criterion of different type. We are abel to check this criterion for larger n.

In the following table, we show n where we verified $\lambda_2(k) = 0$ under the calculations in k_n . The sign \times means that the criterion can not be applied for such p. The inequality ≥ 13 or ≥ 12 means that we need at least n = 13 or n = 12 to apply [3, Theorem 2.1]. For p where the sign ? is marked, we failed to factorize Iwasawa polynomial g(T) which has degree 2047, 1022 or 16383. So all the criteria should be considered complementary to each other.

p	[3, Theorem 2.1]	[6, Theorem 2.1]	[6, Theorem 2.2]	Corollary 3.6
1201	2	×	×	10
3361	5	×	×	3
12161	4	2	×	11
13121	4	×	2	6
13841	≥ 13	×	×	10
67073	≥ 12	×	×	8
14929	5	×	4	2
15217	3	×	×	3
20353	1	×	4	7
61297	8	×	7	2
40961	1	2	×	?
61441	2	×	×	?
65537	7	×	×	?

References

- A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124.
- [2] B. Ferrero and L.C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. **109** (1979), no. 2, 377–395.
- [3] T. Fukuda, Greenberg conjecture for the cyclotomic \mathbb{Z}_2 -extension of $\mathbb{Q}(\sqrt{p})$, Interdisciplinary Information Sciences, **16-1** (2010), 21–32.
- [4] T. Fukuda and K. Komatsu, *Ichimura-Sumida criterion for Iwasawa* λ -invariants, Proc. Japan Acad. Ser. A Math. Sci. **76** (2000), 111-115.
- [5] T. Fukuda and K. Komatsu, On the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_2 -extension of $\mathbb{Q}(\sqrt{p})$, Math. Comp. **78** (2009), 1797–1808.
- [6] T. Fukuda and K. Komatsu, On the Iwasawa λ-invariant of the cyclotomic Z₂-extension of Q(√p) II, Funct. Approx. Comment. Math. **51** (2014), no. 1, 167–179.
- [7] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263–284.
- [8] R. Greenberg, On the structure of certain Galois groups, Inv. math. 47 (1978), 85–99.
- C. Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble), 42, (1992), 449-499.
- [10] H. Ichimura and H. Sumida, On the Iwasawa Invariants of certain real abelian fields II, Inter. J. Math. 7 (1996), 721–744.

On the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_2 -extension of $\mathbb{Q}(\sqrt{p})$, III 17

- [11] H. Ichimura, S. Nakajima and H. Sumida-Takahashi, On the Iwasawa lambda invariants of an imaginary abelian field of conductor 3pⁿ⁺¹, J. Number Theory 133 (2013), 787–801.
- [12] K. Iwasawa, On Z_ℓ-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326.
- [13] S. Lang, Algebraic Number Theory, Graduate Texts in Math. vol. 110, Springer, 1994.
- [14] M. Ozaki and H. Taya, On the Iwasawa λ_2 -invariants of certain families of real quadratic fields, Manuscripta Math. **94** (1997), no. 4, 437–444.
- [15] T. Tsuji, Semi-local units modulo cyclotomic units, J. Number Theory 78 (1999), 1–26.
- [16] T. Tsuji, On the Iwasawa λ-invariants of real abelian fields, Trans. Amer. Math. Soc. 355 (2003), 3699-3714.
- [17] L.C. Washington, Introduction to cyclotomic fields. Second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.
- [18] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493–540.
- Addresses: Takashi Fukuda: Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan; Keiichi Komatsu and Manabu Ozaki: Department of Mathematical Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; Takae Tsuji: Department of Mathematics, Tokai University, 4-1-1 Kitakaname, Hiratsuka,

Kanagawa, 259-1292, Japan.

E-mail: fukuda.takashi@nihon-u.ac.jp, kkomatsu@waseda.jp, ozaki@waseda.jp, tsuji@tokai-u.jp **Received:** 7 November 2014; **revised:** 19 December 2015