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A BUILDING-THEORETIC APPROACH TO RELATIVE
TAMAGAWA NUMBERS OF SEMISIMPLE GROUPS OVER
GLOBAL FUNCTION FIELDS

Rony A. Bitan, Ralf Köhl (né Gramlich)

Abstract: Let G be a semisimple almost simple group defined over a global function field K,
not anisotropic of type An. We express the (relative) Tamagawa number of G in terms of local
data, including the number t∞(G) of types in one orbit of a special vertex in the Bruhat–Tits
building of G∞(K̂∞) for some place ∞ and the class number h∞(G) of G at ∞.
Keywords: relative Tamagawa number, Bruhat-Tits building, class number, special vertex.

1. Introduction

Let C be a smooth, projective and irreducible algebraic curve defined over the
finite field Fq and let K = Fq(C) be its function field. Let G be a (connected)
semisimple group defined and almost simple over K. The Tamagawa number
τ(G) of G is defined as the covolume of the group G(K) of K-rational points in
the adelic group G(A) (embedded diagonally as a discrete subgroup) with respect
to the volume induced by the Tamagawa measure on G(A) (see [Weil], [Clo] and
Section 4 below). Let π : Gsc → G be the universal covering and let F = ker(π)
be the fundamental group. We assume that G is not anisotropic of type An and
that (char(K), |F |) = 1.

Weil’s conjecture states that τ(Gsc) = 1. By [Har1] the Weil conjecture is
known to hold for split Gsc. A geometric proof of Weil’s conjecture by Gaitsgory–
Lurie has been announced in [Gai, 1.2.3], see also: [Lur].

In the present article we investigate the relative Tamagawa number τ(G)
τ(Gsc)

from a building-theoretic point of view – in the situation in which G is locally
isotropic everywhere. Let ∞ be some non-constant closed point of K and let
A∞ := K̂∞×

∏
p6=∞ Ôp be the subring of {∞}-adèles in the adèle ring A. Defining

some local integral models of G, we may refer to the set of double cosets Cl∞(G) :=
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G(A∞)\G(A)/G(K) which is finite (4.6). This allows us to split off the class
number h∞(G) = |Cl∞(G)| and proceed by computing the co-volume of G(K) in
the trivial coset G(A∞)G(K) w.r.t. the Tamagawa measure by considering the
natural action of G(A∞) on the Bruhat–Tits building of G∞(K̂∞), resulting in
formula (14) below

τ(G) = q−(g−1) dim(G) · h∞(G) · i∞(G) ·
∏
p

ωp(G0
p(Ôp))

where for each p, ωp is some multiplicative local Haar-measure, G0
p stands for

the connected component of the Bruhat–Tits Ôp-model at some special point and
i∞(G) is an arithmetic invariant related to G∞ := G⊗K K̂∞. The key obstruction
for using this formula is to determine a fundamental domain for the action of the
discrete subgroup G0(O{∞}) on a G∞(K̂∞)-orbit of the Bruhat–Tits building of
G∞(K̂∞) where G0 is a flat connected smooth and finite type model of G defined
over the ring O{∞} of {∞}-integers in K.

In Proposition 5.3 below, we will see that for computing the relative local
volumes i∞(G)

i∞(Gsc) it suffices to compare orbits under Gsc
∞(K̂∞) and G∞(K̂∞), whose

behavior is controlled by the number t∞(G) of types in the G∞(K̂∞)-orbit of the
fundamental special vertex and by the number j∞(G) expressing the comparison
between the fundamental domains of Gsc(O{∞}) and G0(O{∞}).

We then arrive at the following main result of our article. By Ks
∞ we denote

the separable closure of K̂∞ with Galois group g∞ = Gal(Ks
∞/K̂∞) and inertia

subgroup I∞ = Gal(Ks
∞/K

un
∞ ). Moreover, σ∞ denotes a generator of g∞/I∞,

i.e., the map σ∞ : x 7→ x|k∞| where k∞ is the residue field of K̂∞. Let F∞ :=
ker[Gsc

∞ → G∞] and F̂∞ := Hom(F∞ ⊗ K̂s
∞,Gm,K̂s

∞
).

Main Theorem. With these notations and assuming the validity of the Weil
conjecture, one has

τ(G) = h∞(G) · t∞(G)

j∞(G)
.

The number t∞(G) satisfies

t∞(G) = |H1(I∞, F∞(K̂s
∞))σ∞ | = |F̂∞

g∞ |

and:

j∞(G) =
|H1

ét(O{∞},F)|
|F(O{∞})|

where F := ker[Gsc → G0].
In particular, if G is quasi-split and the separable closure OG{∞} of O{∞} in the

splitting field of G is a UFD (see Remark 1.1), then j∞(G) = 1 and so

τ(G) = h∞(G) · t∞(G) = h∞(G) · |F̂∞
g∞ |.

If, in addition, G is split or adjoint then h∞(G) = 1 and so τ(G) = t∞(G) =

|F̂∞
g∞ | and just |F | in the split case (see Corollaries 7.10 and 7.14 below).
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Remark 1.1. Such OG{∞} being a UFD arises in cases the underlying extended
curve Caf is of genus zero, and ∞ ∈ Caf(Fq) or it admits no Fq-rational point (see
[Sam, Theorem 5.1]).

Our method of proof is a combination of geometric group theory and coho-
mology. Our approach is independent of Prasad’s covolume formula described in
[Pra2], but it is likely that with some effort it can be used to deduce our Main
Theorem.

As an application in case the group G is quasi-split and OG{∞} is a UFD,
we combine our result with [Ono1, Formula (3.9.1’)] and the techniques from
[PR, § 8.2] in order to relate the cokernels of Bourqui’s degree maps degT sc and
degT from [Bou, Section 2.2], where T sc and T denote suitable maximal tori of
Gsc and G respectively; cf. Proposition 7.8. These concrete computations allow
us to also provide a wealth of examples in Section 6 for which we compute the
relative Tamagawa numbers. We also demonstrate the result in a case of a split
group defined over the function field of an elliptic curve (Remark 7.13).

This article is organized as follows: In the preliminary Section 2, we fix the
relevant notions from Bruhat–Tits theory. In Section 3, we compute volumes of
parahoric subgroups over local fields, their maximal unramified extensions, and
their valuation rings. In Section 4, we revise the definition of the Tamagawa
number of semisimple K-groups and establish a decomposition of G(A)/G(K)
enabling us to express τ(G) in terms of some global and local invariants. In
Section 5, we compute cohomology groups over rings of S-integers with |S| = 1,
use Bruhat–Tits theory and Serre’s formula ([Ser1, p. 84], [BL, Corollary 1.6]) in
order to derive the above-mentioned formula (14) for computing the Tamagawa
number. In Section 6, we express the number t∞(G) of types in the orbit of
a special point in terms of F∞, accomplishing the proof of our Main Theorem.
The final Section 7 addresses the above-mentioned application and examples.

Acknowledgements. The authors thank M. Borovoi, D. Bourqui, B. Conrad,
P. Gille, C. D. González-Avilés, B. Kunyavskĭı, Q. Liu, G. McNinch, G. Prasad
and R. Weissand for valuable discussions concerning the topics of the present
article. They also thank A. Rapinchuk for helpful comments on an earlier version
of this article.

2. Basic notions from Bruhat-Tits theory

We retain the notation from Section 1, only here we assume G to be quasi-split,
allowing us to consider a maximal torus T of G, being the centralizer of a max-
imal split subtorus of G. At the end of Section 3, however, this assumption will
be dropped. Since K is a function field, all valuations defined on K are non-
Archimedean. For any prime p of K let vp be the induced discrete valuation on K.
Let Op := {x ∈ K : vp(x) > 0} and let Kp be its fraction field. Let K̂p be the
completion of Kp w.r.t. vp and let Ôp be its ring of integers. Let kp = Ôp/p be
the corresponding (finite) residue field. Then Gp = G ⊗K K̂p is semisimple. The
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assumption (char(K), |F |) = 1 says that π is separable. Tp = T ⊗K K̂p is a maxi-
mal torus in Gp. Let (X∗(Tp),Φ, X∗(Tp),Φ∨) be the root datum of (Gp, Tp) and
let W be the associated constant Weyl group. Let Bp be the Bruhat–Tits building
associated to the adjoint group of Gp (cf. [BT1, Section 7], also [AB, Chapter 11])
and let A be the apartment in Bp corresponding to Tp.

We fix a special vertex x ∈ A, i.e., a vertex whose isotropy group in the setwise
stabilizer of A is isomorphic to W . Since the Bruhat–Tits building Bp is locally fi-
nite, the stabilizer Px of x in Gp(K̂p) is a compact subgroup of Gp(K̂p). In fact, Px
is a profinite group. As the Bruhat–Tits building is non-positively curved ([BT1,
Section 2.5]; also [AB, Theorem 11.16]), any compact subgroup of Gp(K̂p) neces-
sarily fixes a simplex of Bp by the Bruhat–Tits fixed point lemma ([BT1, Lemma
3.2.3]; also [AB, Theorem 11.23], [BH, Section II.2, p. 178]) and, hence, Px has
finite index in a maximal compact subgroup of Gp(K̂p). A detailed discussion of
maximal parahoric subgroups, maximal compact subgroups, and conjugacy classes
thereof can be found in [BT1, Section 3.3] (see also [IM, Tables (I), (II), p. 41],
[Tit, p. 51]). Let Gx be the Bruhat–Tits model associated to Px, i.e., such that
Gx(Ôp) = Px. Denote by Gx the reduction modulo p of Gx and by G0

x the open
subscheme of Gx whose reduction is the identity component G

0

x of Gx. Let T p be
the Néron–Raynaud Ôp-model (shortly referred as NR-model) of Tp which is of
finite type, i.e., such that T p(Ôp) is the maximal compact subgroup of Tp(K̂p) (see
Theorem 2 in [BLR, § 10.2] and [CY, § 3.2] for an explicit construction). Denote
by T 0

p its subscheme having a connected special fiber. T 0
p(Ôp) is the pointwise sta-

bilizer of A and is a subgroup of G0
x(Ôp). Since Gp is semisimple and the residue

field kp is finite, the adjoint group of Gp(K̂p) permutes transitively the special
vertices (see [Tit, § 2.5]). If Φ is not reduced, we adapt the convention of Prasad
in [Pra2, § 1.2] and of Gross in [Gro, § 4]: for each component of the local Dynkin
diagram of the type

• ⇐= • — • · · · • — • ⇐= •

we choose the special vertex at the right end of the diagram. Now Gx is well-
defined up to isomorphism and is denoted from now on by Gp. x is called the
fundamental special vertex of Bp.

Remark 2.1. If G is either simply connected or adjoint, being also almost simple,
it is one copy of restriction of scalars RK′/K(G′) where K ′ is a separable extension
of K and G′ is split and simple. If G is also quasi-split, its maximal torus T being
the centralizer of a maximal split subtorus of G′, is maximal (see in the proof of
[Spr, Prop. 16.2.2]) and quasi-trivial, i.e. a Weil torus RK′/K(Gdm). In this case,
T p is connected for any p (see [NX, Prop. 2.4]).

3. Volumes of parahoric subgroups

As K̂p is locally compact, its underlying additive group admits a Haar measure
dxp which is unique up to a scalar multiple, determined by fixing the value of
dxp(Ôp). Such a normalization induces a multiplicative Haar measure $p on the
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locally compact group Gp(K̂p) such that for any U ⊂ K̂×p , $p(U) = dxp(Lie(U)).
Our choice of the Bruhat–Tits model in the preceding section allows us easily to
determine the volume of the fundamental parahoric subgroup with respect to this
Haar measure; since G0

p is smooth and connected we have (see [Oes, Thm. 2.5]):

$p(Gp) = dxp(Ôp)d · |kp|−d · |G
0

p(kp)|, d = dim(Gp). (1)

Remark 3.1. [BT2, 4.6.22] If Gp splits over an unramified extension, then
Gp(Ôp) = G0

p(Ôp).

Let πp : Gsc
p → Gp be the universal covering of Gp. According to [BT2,

4.4.18(VI)], the cover πp restricted to T sc
p extends to a homomorphism T sc

p →
T p over Spec Ôp. Together with the associated root subgroups Ôp-scheme X,
which is equal for both Gsc

p and Gp, this homomorphism over Spec Ôp extends to
a homomorphism Gsc

p → Gp of the Bruhat–Tits schemes. Let F p := ker[Gsc
p →

Gp]. It is finite, flat and smooth, due to our assumption that (char(K), F ) = 1. It
is also central, thus embedded in T sc

p.
Let K̂un

p be the maximal unramified extension of K̂p, i.e., the strict henseliza-
tion of K̂p with ring of integers Ôsh

p and algebraically closed residue field ksp. Let
K̂s

p be a separable closure of K̂p containing K̂un
p and let Ip = Gal(K̂s

p/K̂
un
p ) be

the inertia subgroup of gp = Gal(K̂s
p/K̂p). Let σp be a generator of gp/Ip, i.e.,

the map σp : x 7→ x|kp| where as above kp is the residue field of K̂p.

Proposition 3.2. Any separable isogeny πp : Tp → T ′p of K̂p-tori can be extended
to an isogeny π : T un

p → (T ′)un
p
over Ôsh

p , inducing a surjection T un0
p(Ôsh

p ) →
(T ′)un0

p
(Ôsh

p ).

Proof. Any K̂un
p -torus Tp admits a decomposition, i.e., an exact sequence of K̂un

p -
tori

1→ TI,p → Tp → Ta,p → 1 (2)

on which TI,p is the maximal subtorus of Tp splitting over K̂un
p and Ta,p is Ip-

anisotropic, i.e., such that X∗(Ta,p)Ip = {0}.
We denote by T lft

p the locally of finite type (lft) NR-model of Tp defined over
Spec Ôsh

p (see 2). Let j∗ be the functor taking algebraic K̂un
p -tori to their lft-Néron

models. Since T un
I,p is K̂un

p -split, we have R1j∗ = 0 (cf. the beginning of the proof
of III.C.10 in [Mil2]). Thus the exact sequence (2) can be extended to

1→ T lft
I,p → T lft

p → T lft
a,p → 1. (3)

According to [LL, Proposition 4.2(b)], the groups of ksp-points of the connected
components of the reductions of these models fit into the exact sequence

1→ TI,p
0
(ksp)→ T

0

p(ksp)→ Ta,p
0
(ksp)→ 1.
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As ksp is algebraically closed, this sequence implies the corresponding exact se-
quence of ksp-schemes

1→ TI,p
0 → T

0

p → Ta,p
0 → 1.

Notice that the identity components of the lft NR-models coincide with the ones
of the finite type models. Thus the reduction preimages of the latter ksp-schemes,
embedded in the Ôsh

p -schemes in sequence (3), yield the exact sequence of the
identity components over Ôsh

p

1→ TI
0
p
→ T 0

p → Ta
0
p
→ 1. (4)

Now let πp : Tp → T ′p be an isogeny of K̂p-tori. Denote by T un
p and (T ′p)un these

tori tensored with K̂un
p . Then applying the decomposition (4) on both T un

p and
(T ′p)un results in the exact sequences

1→ T un
I

0

p
→ T un0

p → T un
a

0

p
→ 1, (5)

1→ (T ′I)
un0

p
→ (T ′)un0

p
→ (T ′a)un0

p
→ 1.

If we show that the left-hand and right-hand groups in the upper sequence surject
onto the corresponding groups in the lower one, then the surjection of the middle
groups will follow. On the left hand side, T un

I,p and (T ′I,p)un are isogenous and K̂un
p -

split. Then πI := ker[T un
I � (T ′I)

un] is a finite K̂un
p -split group of multiplicative

type. Thus, the Kummer exact sequence of K̂un
p -schemes

1→ πI → T un
I,p → (T ′I,p)un → 1

extends to the exact sequence of corresponding schemes over Ôsh
p

1→ πI → T un
I p
→ (T ′I)

un

p
→ 1,

showing the desired surjection on the left-hand side (notice that both T un
I p

and

(T ′I)
un

p
split over Ôsh

p and, thus, are connected, i.e. coincide with their identity
component; see Remark 3.1).

Both groups T un
a,p and (T ′a,p)un on the right-hand side of sequences (5) are Ip-

anisotropic. Therefore their NR-models coincide with the finite type (classical)
Néron model. In that case, according to [BLR, Section 7.3, Proposition 6], the
K̂un

p -isogeny T un
a,p → (T ′a,p)un extends to a Ôsh

p -isogeny T un
a p
→ (T ′a)un

p
, such that

the surjection holds for the identity components, see Definition 4 of loc. cit. Hence
we deduce the surjection T un0

p � (T ′)un0

p
.

Further, as the degree of the latter Ôsh
p -isogeny is prime to char(K̂p), its kernel

F un
p has a smooth reduction as well. Thus the exact sequence of the reduction

groups over the algebraically closed residue field ksp

1→ F un
p(ksp)→ T un0

p(ksp)→ (T ′)un
0

p(ksp)→ 1
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implies the exactness of the reduction preimage groups of Ôsh
p -points

1→ F un
p(Ôsh

p )→ T un0
p(Ôsh

p )→ (T ′)un0

p
(Ôsh

p )→ 1. �

Corollary 3.3. The homomorphism of Ôp-schemes Gsc
p → G0

p is surjective.

Proof. Our assumption (char(K), F ) = 1 in Section 1 implies that the isogeny
πp : T sc

p → Tp is separable at any p. As G0
p(Ôsh

p ) = T 0
p(Ôsh

p )X(Ôsh
p ), the surjection

of groups of Ôsh
p -points in Proposition 3.2 can be extended to π : Gsc0

p(Ôsh
p ) �

G0
p(Ôsh

p ). As Gsc
p is simply connected, Gsc

p has a connected special fiber (see
[Tit, § 3.5.2]). By [BT2, Proposition 1.7.6], we know that the coordinate ring
representing Gp is

Ôp[Gp] =
{
f ∈ K̂p[Gp] : f(Gp(Osh

p )) ⊂ Osh
p

}
⊂ K̂p[Gp].

As π(Gsc
p(Ôsh

p )) = G0
p(Ôsh

p ), any function f ∈ Ôp[G0
p] satisfies

f ◦ π(Gsc
p(Ôsh

p )) ⊂ f(Gp(Ôsh
p )) ⊂ Ôsh

p ,

thus f◦π ∈ Ôp[Gsc
p] yielding the surjection of the contravariant functor of schemes.

�

Lemma 3.4. $p(Gsc
p(Ôp)) = $p(G0

p(Ôp)).

Proof. Consider the following exact sequences, obtained by the reduction of
groups of points

1→ Gsc1
p(Ôp)→ Gsc0

p(Ôp)
red−→ Gsc0

p(kp)→ 1,

1 −→ G1
p(Ôp) −→ G0

p(Ôp)
red−→ G

0

p(kp)→ 1.

Since Tp is maximal and Gp is quasi-split, by [BT2, Corollary 4.6.7] G0
p(Ôp) =

T 0
p(Ôp)X(Ôp) where X(Ôp) is the group generated by the root subgroups each

fixing an half apartment containing x. Let d = dim(Gp). The preimage of 1d

in G0
p(Ôp)/T 0

p(Ôp) is homeomorphic to the additive group p|Φ|. The preimage
of 1d in T 0

p(Ôp) is isomorphic to (1 + p)dimTp , being homeomorphic to pdimTp .
Together, Lie(G1

p(Ôp)) ∼= pdimTp+|Φ| = pd. The same is true for Gsc1
p(Ôp). Thus

the two kernels above share the same volume with respect to $p. Further, as the
residue field kp is finite and the reductions Gsc0

p = Gsc
p and G

0

p are connected and
kp-isogeneous, they also share the same number of rational kp-points (see [Bor,
§ 16.8]). Now the claim follows from equality (1). �

Remark 3.5. The following argument for generalizing the above results for a non
quasi-split group can be found in [Gro, Prop. 4.7]. At any prime p, if Gp is not
quasi-split, then it is an inner form of a quasi-split group Hp. Let Gsc

p and G0
p be
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the underlying group schemes stabilizing respectively the images of Hsc
p(Ôp) and

H0
p(Ôp) in the twisted building. These schemes are connected and the surjection

Gsc
p → G0

p as shown in Corollary 3.3 is preserved. Applying the twisted measure
of $p on Hp – being again some scalar multiple of $p – results in Lemma 3.4
equality for Hp and therefore for Gp as well. And so, a posteriori, the restriction
to quasi-split groups throughout this section is redundant for Corollary 3.3 and
Lemma 3.4.

4. The Tamagawa number of semisimple groups

We return to the definition of G over the global field K as introduced in Section 1.
Let ω be a non-zero left-invariant differential K-form on G of highest degree. It
induces a Haar measure on the adelic group G(A) of G, which is unique up to
a scalar multiplication. Let ωp be the multiplicative Haar measure induced locally
by ω at p. The Tamagawa measure on G(A) is defined as

τ = q−(g−1) dimG
∏
p

ωp

where g is the genus of C.
Due to the product formula, the measure τ does not depend on the choice of

ω, i.e., for each λ ∈ K× the volume forms ω and λω yield identical Haar measures
(cf. [Weil, 2.3.1]). Therefore τ is wel- defined. Identifying K with its diagonal
embedding in A and consequently G(K) with its diagonal embedding in G(A), we
consider the following arithmetic invariant of G:

Definition 4.1. The Tamagawa number τ(G) of G is the volume of G(A)/G(K)
with respect to the Tamagawa measure τ .

Remark 4.2. Since the multiplicative Haar measure on Gp(K̂p) at any p is unique
up to a scalar multiplication, there exists λp ∈ K̂×p such that ωp = λp$p (see
notation in Section 3) and so Lemma 3.4 and Remark 3.5 remain true for any p
after replacing $p with ωp.

Recall that all discrete valuations of K are non-archimedean. For any finite
set S of primes of K, we define:

AS :=
{

(xp)p/∈S : xp ∈ Ôp for almost all p
}
⊂
∏
p/∈S

K̂p.

We also define the ring of S-adèles as:

A(S) :=
∏
p∈S

K̂p ×
∏
p/∈S

Ôp.

Note that
A =

⋃
S

A(S).



Relative Tamagawa numbers 223

For any prime p, let Gp(Ôp) be the maximal compact subgroup of Gp(K̂p)
w.r.t. some special point x as defined in (2). Moreover, we define

GS :=
∏
p∈S

Gp(K̂p), G(A(S)) := GS ×
∏
p/∈S

Gp(Ôp).

Definition 4.3 ([Kne, p. 187], [Pla]). We say that G satisfies the strong ap-
proximation property w.r.t. a finite set of primes S, if the diagonal embedding
G(K) ↪→ G(AS) is dense, or, equivalently, if GS ·G(K) is dense in G(A). If |S| = 1,
we call it the absolute strong approximation property.

Theorem 4.4 ([Pra1, Theorem A]). Let G be a connected, simply connected,
semisimple linear algebraic group defined and almost simple over K. If the topo-
logical group GS is non-compact w.r.t. to a finite set of primes S, then GS ·G(K)
is dense in G(A).

Theorem 4.5 ([Tha, Thm. 3.2 3)], [PR, Prop. 8.8] in the number field
case). Let G be a connected reductive K-group such that the simply connected
covering of the derived subgroup of G has the strong approximation property w.r.t.
a finite set of primes S. Then G(A(S))G(K) is a normal subgroup of G(A) with
finite abelian quotient, the S-class group ClS(G) = G(A)/G(A(S))G(K) of cardi-
nality hS(G) = |ClS(G)|.

We choose an arbitrary closed point ∞ of C to be the point at infinity, and in
accordance to Section 1 define:

A∞ := A({∞}), G(A∞) := G∞(K̂∞)×
∏
p6=∞

Gp(Ôp).

The following facts are now deduced from the preceding theorems in the case of
S = {∞}:

Definition 4.6. There exists a finite set {x1, ..., xh} ⊂ G(A) such that

G(A) =

h⊔
i=1

G(A∞)xiG(K).

The finite number h = h∞(G) is called the class number of G (see [Beh, Satz 7],
[BP, Prop. 3.9], also [BW, proof of Theorem 2.1]).

Remark 4.7. Our restriction of G as mentioned in Section 1, of not being
anisotropic of type An, implies that for any prime p, Gp is Kp-isotropic (see [BT3,
4.3 and 4.4]). Hence by Theorem 4.4 in the case of S = {∞}, Gsc admits the
absolute strong approximation property implying h∞(Gsc) = 1.

According to Theorem 4.5 together with Remark 4.7, G(A∞)G(K) is a normal
subgroup of G(A) and we may consider the natural epimorphism:

ϕ : G(A)/G(K)� G(A)/G(A∞)G(K) : ∀x ∈ G(A) : xG(K) 7→ xG(A∞)G(K)
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for which

ker(ϕ) = {xG(K) : x ∈ G(A∞)G(K)} = G(A∞)G(K)/G(K)
∼= G(A∞)/G(A∞) ∩G(K).

Since all fibers of ϕ are isomorphic to ker(ϕ), we get a bijection of measure spaces

G(A)/G(K) ∼= im(ϕ)× ker(ϕ) (6)
= (G(A)/G(A∞)G(K))× (G(A∞)/G(A∞) ∩G(K))

4.5∼= Cl∞(G)× (G(A∞)/Γ)

on which the first factor cardinality is h∞(G) and Γ := G(A∞) ∩ G(K). We will
next study the volume of the second factor.

5. On the cohomology of O{∞}-schemes and relative local covolumes

The discrete group Γ = G(K) ∩G(A∞) consists only of elements over the ring of
{∞}-integers of K, namely:

O{∞} = {a ∈ K | vp(a) > 0 ∀p 6=∞} =
⋂

p6=∞

Op.

So it would be natural to describe it using an O{∞}-scheme. Consider the following
construction: For any p let G̃p be the Bruhat-Tits model of Gp defined over Op,
i.e., such that:

1. G̃p ⊗Op
K̂p = Gp, and

2. G̃p ⊗Op
Ôp = Gp.

According to Proposition D.4(a) in [BLR, § 6.2] the patch (Gp, Gp, τ), where τ is
the canonical isomorphism Gp⊗Kp

K̂p
∼= Gp⊗Op

K̂p, corresponds uniquely to the
Op-module G̃p, in the sense that it covers it with a canonical descent datum. Now
since C is one dimensional, for any two distinct primes p1 and p2, the product
Op1
⊗ Op2

is isomorphic to K. Thus we may Zariski-glue all geometric fibers
{SpecOp : p 6=∞} along the generic point SpecK, resulting in SpecO{∞}. Then
the aforementioned patches cover (with descent datum) a unique group scheme G
over SpecO{∞}. Moreover, for any p, the localization (O{∞})p is a base change
of Op. Thus the bijection Spec (O{∞})p → SpecOp is faithfully flat (see [Liu,
Thm. 3.16]). Hence G extended to Spec Ôp is smooth by construction so that G is
smooth at p by faithfully flat descent, see [EGAIV, 17.7.3]. Its generic fiber is G
and it satisfies:

G(O{∞}) = G(K) ∩
∏
p6=∞

Gp(Ôp) = G(K) ∩G(A∞).

We denote by G0 the subscheme of G whose geometric fibers are G0
p. The same

construction for Gsc is denoted by Gsc. The surjectivity at the geometric fibers
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Gsc
p → G0

p (see Lemma 3.3 and Remark 3.5) leads to the surjection πO{∞} : Gsc →
G0 over SpecO{∞} as étale sheaves. Since the morphism of the geometric fibers
Gsc

p → G0
p is smooth for any p (due to our assumption that char(K) is prime

to |F |), according to Proposition 17.8.2. in [EGAIV] the global morphism πO{∞}
is also smooth, as well as its kernel denoted by F . We have an exact sequence of
O{∞}-models:

1→ F → Gsc → G0 → 1. (7)

Let T be the subscheme of G whose generic fiber is T , let T 0 := T ∩G0 and let
T sc be its preimage under πO{∞} in Gsc. Being central (as all its geometric fibers),
F is equal to the kernel of the corresponding O{∞}-tori-models, fitting into the
following exact sequence of O{∞}-schemes

1→ F → T sc → T 0 → 1. (8)

Lemma 5.1. H1
ét(O{∞},Gsc) = 1.

Proof. According to Nisnevitch ([Nis, 3.6.2]), we have the following exact se-
quence

1→ Cl∞(Gsc)→ H1
ét(O{∞},Gsc)→ H1(K,Gsc(Ks))

on which in our case Cl∞(Gsc) is trivial (see Remark 4.7), and the latter group
in the sequence is trivial as well due to Harder’s result (see [Har2, Satz A]). The
claim follows. �

Lemma 5.2. Let πO{∞} : Gsc(O{∞})→ G0(O{∞}). Then:

j∞(G) :=
| coker(πO{∞})|
| ker(πO{∞})|

=
|H1

ét(O{∞},F)|
|F(O{∞})|

.

If in particular G is quasi-split and OG{∞} is a UFD, then j∞(G) = 1 which means
that the discrete groups Γsc and Γ0 are bijective.

Proof. Since F is smooth we have: H1
ét(O{∞},F) = H1

fppf(O{∞},F). Due to
Lemma 5.1, flat cohomology applied on sequence (7) gives rise to the following
sequence of groups of O{∞}-points:

1→ F(O{∞})→ Gsc(O{∞})
πO{∞}→ G0(O{∞})→ H1

ét(O{∞},F)→ 1. (9)

This gives us the first assertion.
If G is quasi-split, then T sc is a Weil-torus (see Remark 2.1). Consequently,

its O{∞}-model T sc is isomorphic to RO′{∞},O{∞}(G
d
m) where OG{∞} stands for the

integral closure of O{∞} in the splitting field of T . By Shapiro’s formula for the
flat topology, we have:

H1
fppf(O{∞}, T sc) ∼= H1

fppf(O{∞}, ROG{∞}/O{∞}(G
d
m)) ∼= H1

fppf(O
G

{∞},Gdm)

=
⊕

Pic (OG{∞}).
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Hence given that OG{∞} is a UFD, being a Dedekind domain Pic (OG{∞}) = 0, and
so flat cohomology applied on sequence (8) gives rise to the following sequence of
multiplicative groups of O{∞}-points

1→ F(O{∞})→ T sc(O{∞})
π→ T 0(O{∞})→ H1

ét(O{∞},F)→ 1. (10)

Recall that O{∞} = K ∩
⋂

p6=∞Op, i.e., O{∞} consists of exactly those elements
of K that do not have poles at any place p 6= ∞. If x ∈ O{∞} has a proper pole
at ∞, then it has a proper zero at some place p 6=∞. Hence its inverse x−1 ∈ K
has a proper pole at that place and, thus, x−1 ∈ K\O{∞}. We conclude that the
only invertible elements of O{∞} are the constants. In other words, since the curve
C is projective, its regular functions are exactly the constants. This means that
T sc(O{∞}) = T sc(Fq) and T (O{∞}) = T (Fq) are finite groups.

As the reduction of all geometric fibers of T sc and T 0 are smooth and con-
nected, the specializations T sc = T sc ⊗SpecO{∞} SpecFq and T 0

= T 0 ⊗SpecO{∞}
SpecFq are connected Fq-schemes, where SpecFq → SpecO{∞} is the closed im-
mersion of the special point. Thus the exact sequence (10) can be rewritten as:

1→ F(O{∞})→ T sc(Fq)
π→ T 0

(Fq)→ H1
ét(O{∞},F)→ 1. (11)

The surjectivity of T sc � T 0 implies the one of T sc � T 0
. These schemes are

isogenous, connected and defined over Fq, so they share the same number of Fq-
points. Then the exactness of (11) implies that |F(O{∞})| = |H1

ét(O{∞},F)|.
Returning back to the exact sequence (9), we get the claim. �

The group G(A) admits a natural action on the product B =
∏

p Bp of the
Bruhat–Tits buildings, and its subgroup G(A∞) fixes the fundamental special
vertex of each building Bp with p 6= ∞. Identifying B∞ with its product with
these fundamental special vertices therefore yields an action of G(A∞) on B∞.
Let:

G0(A∞) = G∞(K̂∞)×
∏
p6=∞

G0
p(Ôp), Γ0 = G0(A∞) ∩G(K) ⊂ Γ.

Notice that as Gsc is simply connected Γsc := Gsc(A∞) ∩G(K) = (Γsc)0.
Consider the following compact subgroups:

U sc =
∏
p

Gsc
p (Ôp) ⊂ Gsc(A∞), U =

∏
p

G0
p(Ôp) ⊂ G(A∞).

Let Y sc and Y be the sets of representatives respectively for the double cosets sets:

Γsc\Gsc(A∞)/U sc ∼= (Γsc ∩Gsc(K̂∞))\Gsc
∞(K̂∞)/Gsc

∞(Ô∞), (12)

Γ0\G(A∞)/U ∼= (Γ0 ∩G(K̂∞))\G∞(K̂∞)/G0
∞(Ô∞).
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For any y ∈ Y, yUy−1 is compact and Γ0 is discrete thus their intersection is finite.
More precisely, by the isomorphism above any such y may represents a non-trivial
double coset only by its ∞-component, whence yUy−1 ⊂ G(A∞) and therefore:

yUy−1 ∩ Γ0 = yUy−1 ∩ (G(K) ∩G(A∞)) = yUy−1 ∩G(K).

But conjugation by y on the ∞-component of U is a shift to the stabilizer of yx
in G∞(K̂∞):

yUy−1 = G∞,yx(Ô∞)×
∏
p6=∞

Gp(Ôp).

Thus yUy−1 ∩G(K) admits an underlying group scheme Ĝ∞,y having only global
sections on K, i.e., defined over SpecFq (recall that C is projective). We denote
by Ĝsc

∞,y′ the resulting Fq-group for the same construction for Gsc with y′ ∈ Y sc

s.t. π(y′) = y. The surjectivity of Gsc
p � G0

p for all p and of Gsc � G imply
the one of Ĝsc

∞,y′ � Ĝ∞,y having a finite kernel as well. So the groups Ĝsc
∞,y and

Ĝ∞,y, being isogeneous, connected and of finite dimension, defined over the finite
field Fq, share the same finite number of Fq-points, i.e.:

∀y′ ∈ Y sc : |y′U scy′−1 ∩ Γsc| = |π(y′)Uπ(y′)−1 ∩ Γ0|. (13)

As G(A∞) is unimodular by [Mar, Corollary I.2.3.3], we get to Serre’s formula
([Ser1, p. 84],[BL, Corollary 1.6]) :

τ(G)
(6)
= h∞(G) · τ(G(K)\G(A∞)) = h∞(G) ·

∑
y∈Y

τ(yU) (14)

= h∞(G) ·
∑
y∈Y

τ(U)

|yUy−1 ∩ Γ0|

= q−(g−1) dim(G) · h∞(G) ·
∏
p

ωp(G0
p(Ôp)) ·

∑
y∈Y

1

|yUy−1 ∩ Γ0|

= q−(g−1) dim(G) · h∞(G) · i∞(G) ·
∏
p

ωp(G0
p(Ôp))

where:
i∞(G) =

∑
y∈Y

1

|yUy−1 ∩ Γ0|
. (15)

Lemma 5.3. With the previously introduced notations, one has

i∞(G)

i∞(Gsc)
=
t∞(G)

j∞(G)
.

Proof. Let us regard the double cosets groups in formulas 12. The representatives
of Gsc(A∞)/U sc ∼= Gsc

∞(K̂∞)/Gsc
∞(Ô∞) and of G(A∞)/U ∼= G∞(K̂∞)/G0

∞(Ô∞)
correspond to vertices in the orbits of x in B∞ obtained by the actions of Gsc

∞(K̂∞)
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and G(K̂∞), respectively (the Iwahori subgroup is the kernel of this action in each
case). These actions are transitive on the alcoves in B∞, thus it is sufficient to
compare between the orbits inside one alcove, in which there are t∞(G) (special)
points in the orbit of x, while simply-connected groups are type preserving, thus
t∞(Gsc) = 1 (see [Tit, § 2.5]). So the orbit of x under the G(K̂∞)-action is bijective
to t∞(G)-times the orbit under the Gsc

∞(K̂∞)-one.
To accomplish the comparison between Y sc and Y , the above right quotients,

taken modulo the discrete subgroups Γsc and Γ0 (from the left), respectively, cor-
respond to vertices in some fundamental domains of the aforementioned orbits
of x. In Lemma 5.2, we compared between these subgroups and got that Γ0 is
bijective to j∞(G)-times Γsc. Moreover, along any orbit the Bruhat-Tits schemes
are isomorphic (see [Tit, § 2.5.,p. 47]) and have isomorphic reductions. Thus the
cardinality |yUy−1 ∩ Γ0| is the same for all y ∈ Y . We get:

i∞(G)
(15)
=
∑
y∈Y

1

|yUy−1 ∩ Γ0|

(13)
=

t∞(G)

j∞(G)
·
∑

y′∈Y sc

1

|y′U scy′−1 ∩ Γsc|

=
t∞(G)

j∞(G)
· i∞(Gsc). �

Recall that

τ(G)
(14)
= q−(g−1) dimG · h∞(G) · i∞(G) ·

∏
p

ωp(G0
p(Ôp)).

Clearly the invariant q−(g−1) dimG is the same for both G and Gsc, as well as the
volume of the compact subgroups U sc and U (see Lemma 3.4 and Remark 4.2).
We conclude that:

τ(G)

τ(Gsc)
=

h∞(G)

h∞(Gsc)
· i∞(G)

i∞(Gsc)
.

Now assuming the validity of the Weil Conjecture: τ(Gsc) = 1 and due to the
strong approximation related to Gsc for which h∞(Gsc) = 1 (see Remark 4.7),
plus Lemma 5.3 we finally deduce:

Corollary 5.4.

τ(G) = h∞(G) · t∞(G)

j∞(G)
.

If G is quasi-split and OG{∞} is a UFD, according to Lemma 5.2 this formula
simplifies to:

τ(G) = h∞(G) · t∞(G).
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Remark 5.5. From a geometric point of view, the key issue of computing the
Tamagawa number τ(G) therefore is to describe a fundamental domain for the ac-
tion of G(O{∞}) on the G∞(K̂∞)-orbit of the fundamental special vertex x of the
Bruhat–Tits building B∞. This is not surprising at all via the following considera-
tion: If G is simply connected, by the absolute strong approximation property (see
Remark 4.7 above) the group G(K) is dense in

∏
p6=∞Gp(Kp) so that it has the

same orbits on the product of buildings B =
∏

p6=∞ Bp as
∏

p6=∞Gp(Kp). Hence
any element of B in the G(A)-orbit of the tuple consisting of all the fundamental
special vertices of the Bruhat–Tits buildings Bp in fact lies is the same G(K)-orbit
with a tuple consisting of a special vertex of B∞ and all the fundamental special
vertices of the Bruhat–Tits buildings Bp for p 6=∞.

The situation of a general G can then be analyzed by studying how a G(K)-
orbit changes under an isogeny.

6. Number of types in the orbit of a special point

We retain the notation and terminology introduced in the preceding sections.

Lemma 6.1. For any prime p, one has H1(〈σp〉, π(Gsc
p (K̂un

p ))) = 1.

Proof. At any prime p, we may consider the following exact sequence of K̂p-
groups:

1→ Fp → Gsc
p → π(Gsc)→ 1.

Due to Harder [Har2, Satz A], we know that H1(〈σp〉, Gsc
p (K̂un

p )) = 1, hence 〈σp〉-
cohomology gives rise to the exact sequence:

1→ H1(〈σp〉, π(Gsc
p (K̂un

p ))→ H2(〈σp〉, Fp(K̂un
p ))

on which the right term is trivial as Fp(K̂un
p ) is finite. This gives the required

result. �

Lemma 6.2. The number t∞(G) of (special) types in the G∞(K̂∞)-orbit of the
fundamental special vertex x in B∞ is given by

t∞(G) = |H1(I∞, F∞(K̂s
∞))σ∞ | = |F̂∞

g∞ |.

Proof. Galois I∞ and g∞-cohomology yield the exact diagram

1 // F∞(K̂un
∞ ) // Gsc

∞(K̂un
∞ )

π // G∞(K̂un
∞ ) // H1(I∞, F∞(K̂s

∞)) // 1

1 // F∞(K̂∞) // Gsc
∞(K̂∞)

π //
?�

OO

G∞(K̂∞) //
?�

OO

H1(g∞, F∞(K̂s
∞)) //

OO

1

The group π∞(Gsc
∞(K̂un

∞ )) ∩ G∞(K̂∞) is the largest type-preserving subgroup of
G∞(K̂∞). By the classification of affine Dynkin diagrams an automorphism of
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B∞ preserves the types of special vertices in B∞ if and only if it preserves types of
arbitrary vertices. Therefore the cosets of π∞(Gsc

∞(K̂un
∞ ))∩G∞(K̂∞) in G∞(K̂∞)

are in 1-to-1 correspondence with the types of special vertices in the G∞(K̂∞)-
orbit. We conclude that

t∞(G) =
∣∣∣G∞(K̂∞)/

(
π(Gsc

∞(K̂un
∞ )) ∩G∞(K̂∞)

)∣∣∣ .
The exact sequence

1→ F∞(K̂un
∞ )→ Gsc

∞(K̂un
∞ )

π→ G∞(K̂un
∞ )→ H1(I∞, F∞(K̂s

∞))→ 1

can be shortened to

1→ π(Gsc
∞(K̂un

∞ ))→ G∞(K̂un
∞ )→ H1(I∞, F∞(K̂s

∞))→ 1.

Applying 〈σ∞〉-cohomology on this exact sequence gives the exact sequence

1→ π(Gsc
∞(K̂un

∞ )) ∩G∞(K̂∞)→ G∞(K̂∞)

→ H1(I∞, F∞(K̂s
∞))σ∞ → H1(〈σ∞〉, π(Gsc

∞(K̂un
∞ )))

on which the right-hand group is trivial by Lemma 6.1. Hence t∞(G) =
|H1(I∞, F∞(K̂s

∞))σ∞ |.
More explicitly, the Kottwitz epimorphism together with Galois descent, yields

an epimorphism T∞(K̂∞) → X∗(T∞)σ∞I∞ whose kernel is the Iwahori subgroup
T 0
∞(Ô∞) (see [Bit, Corollary 3.2]). We get the following exact diagram

1 //F∞(Ô∞) // T sc
∞(Ô∞)

π∞ //

��

T 0
∞(Ô∞) //

��

H1(〈σ∞〉, F∞(Ôsh
∞))

��

// 0

1 //F∞(K̂∞) //

��

T sc
∞(K̂∞)

π∞ //

��

T∞(K̂∞) //

��

H1(g∞, F∞(K̂s
∞)) //

��

0

0 // X∗(T sc
∞)σ∞I∞

π∨I∞ // X∗(T∞)σ∞I∞
// H1(I∞, F∞(K̂s

∞))σ∞ // 0

on which the lower row can be also obtained by the following steps: applying
the contravariant left-exact functor Hom(−,Z) on the exact sequence of character
g∞-modules

0→ X∗(T∞)→ X∗(T sc
∞)→ F̂∞ → 0,

on which F̂∞ = Hom(F∞ ⊗ K̂s
∞,Gm,K̂s

∞
), gives the exact sequence

0→ 0 = Hom(F̂∞,Z)→ X∗(T
sc
∞)

π∨−→ X∗(T∞)

→ Ext1(F̂∞,Z)→ Ext1(X∗(T sc
∞),Z) = 0. (16)
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Applying the functor Hom(F̂∞,−) on the resolution

0→ Z→ Q→ Q/Z→ 0

gives rise to a long exact sequence on which as F̂∞ is finite, Hom(F̂∞,Q) = 0 and
Ext1(F̂∞,Q) = 0, showing the existence of an isomorphism

Ext1(F̂∞,Z) ∼= Hom(F̂∞,Q/Z) = F̂∞
∗

where F̂∞
∗
is the Pontryagin dual of F̂∞, i.e., the group of finite order characters

of F̂∞, see also [Mil2, p. 23]. Being finite, these duals are isomorphic. So sequence
(16) can be rewritten as

0→ X∗(T
sc
∞)

π∨−→ X∗(T∞)→ F̂∞
∗
→ 0. (17)

The I∞-coinvariants functor is in general only right exact, but here as T sc
∞ is con-

nected, X∗(T sc
∞)I∞ is free (see [Bit, Formula (3.1)]) and embedded into X∗(T∞)I∞ .

Thus applying this functor on

0→ X∗(T
sc
∞)

π∨−→ X∗(T∞)→ F̂∞
∗ ∼= F̂∞ → 0

also leaves the left hand side exact

0→ X∗(T
sc
∞)I∞

π∨−→ X∗(T∞)I∞ → F̂∞
∗
I∞ → 0.

Now applying the Galois 〈σ∞〉-cohomology gives the exact lower row on the above
diagram

0→ X∗(T
sc
∞)σ∞I∞

π∨I∞−→ X∗(T∞)σ∞I∞ → (F̂∞
∗
I∞)σ∞ → H1(〈σ∞〉, X∗(T sc

∞)) = 0. (18)

Returning to the diagram, as F̂∞
∗
being finite is isomorphic as a g∞-module to

F̂∞, we finally get

t∞(G) = |H1(I∞, F∞(K̂s
∞))σ∞ | = | coker(π∨I∞)| = |F̂∞

g∞ |. �

Remark 6.3.

1. The sequence (18) illustrates the fact that the number t∞(G) of types in the
orbit of x depends only on the embedding of X∗(T sc

∞) in X∗(T∞).
2. By the geometric version of Čebotarev’s density theorem (see in [Jar]), one

may choose the point ∞ such that G∞ is split. In this case t∞(G) = |F∞|.

Now Corollary 5.4 together with Lemma 6.2 lead to the Main Theorem.

Main Theorem. Assuming the Weil conjecture validity one has:

τ(G) = h∞(G) · t∞(G)

j∞(G)
.
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The number t∞(G) satisfies

t∞(G) = |H1(I∞, F∞(K̂s
∞))σ∞ | = |F̂∞

g∞ |

and

j∞(G) =
|H1

ét(O{∞},F)|
|F(O{∞})|

.

If in particular G is quasi-split and OG{∞} is a UFD then j∞(G) = 1 and so

τ(G) = h∞(G) · t∞(G) = h∞(G) · |F̂∞
g∞ |.

7. Application and examples

In this section, we describe an application of our Main Theorem in case G is
quasi-split and OG{∞} is a UFD (see Remark 1.1). We combine our result with
[Ono1, Formula (3.9.1’)] and the techniques from [PR, § 8.2] in order to relate
the cokernels of Bourqui’s degree maps degT sc and degT from [Bou, Section 2.2],
where T sc and T denote suitable maximal tori of Gsc and G, respectively; cf.
Proposition 7.8 below. These concrete computations will allow us to also provide
a wealth of examples for which we compute the relative Tamagawa numbers. Ono’s
formula was originally designed for groups over number fields and was generalized
to the function field case in [BD, Theorem 6.1]. We will use freely the notation
concerning algebraic tori introduced in [Ono1]. In this section, we will usually
assume that Weil’s conjecture τ(Gsc) = 1 holds.

Remark 7.1. According to the Bruhat–Tits construction, Gp(Ôp) =

T p(Ôp)X(Ôp). As Gp is quasi-split, one has (see [BT2, Corollary 4.6.7]) G0
p(Ôp) =

T 0
p(Ôp)X(Ôp) and so

[Gp(Ôp) : G0
p(Ôp)] = [T p(Ôp) : T 0

p(Ôp)].

Definition 7.2. The finite group W (T ) = T (K)∩ T c(A) = T (Fq) is the group of
units of T and its cardinality is denoted by w(T ).

Lemma 7.3.

w(T )

w(T sc)
=
|T (Fq)|
|T sc(Fq)|

=
|T (Fq)|
|T 0(Fq)|

= [T (Fq) : T 0(Fq)].

Proof. Under the assumptions of G being quasi-split and OG{∞} is a UFD, the
finite groups T sc(Fq) and T 0(Fq) are of the same cardinality (see in the proof of
Lemma 5.2). The assertion follows. �

For an algebraic K-torus T , we set the following subgroup of the adelic
group T (A)

T 1(A) := {x ∈ T (A) : ||χ(x)|| = 1 ∀χ ∈ X∗(T )K}. (19)
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Let g = Gal(Ks/K). Following J. Oesterlé in [Oes, I.5.5], D. Bourqui defines in
[Bou, §2.2.1] the morphism

degT : T (A)→ Hom(X∗(T )g,Z)

with ker(degT ) = T 1(A) and a finite cokernel (see [Bou, Proposition 2.21]). The
maximal compact subgroup of T (A) is denoted by

T c(A) :=
∏
p

T p(Ôp).

Definition 7.4. The class number of T is h(T ) := [T 1(A) : T c(A)T (K)].

By [Ono1, Formula (3.9.1’)] for a K-isogeny π : T → T ′ of tori T , T ′ defined
over K, one has

τ(π) :=
τ(T ′)

τ(T )
=

w(T )

w(T ′)

h(T ′)

h(T )

∏
p

Lp(1, χT ′p) · ωp(T ′p(Ôp))

Lp(1, χTp
) · ωp(T p(Ôp))

. (20)

We shall need the following

Lemma 7.5. Let Hp be an affine, smooth and connected group scheme defined
over Op. Then H1(〈σp〉, Hp(Osh

p )) = 1.

Proof. As Op is Henselian, we have H1(〈σp〉, Hp(Osh
p )) ∼= H1(〈σp〉, Hp(ksp)) (see

Remark 3.11(a) in [Mil1, Chapter III, §3]). The group on the right hand side is
trivial by Lang’s Theorem (see [Lan] and [Ser2, Chapter VI, Proposition 5]). �

Remark 7.6. As Gsc
p is quasi-split, simply connected and almost simple, its

maximal torus T sc
p is a quasi-trivial torus (i.e. a Weil tori). Thus not only

H1(gp, G
sc
p (Ks

p)) = 1 (which is due to Harder as mentioned above), but also
H1(gp, T

sc
p (Ks

p)) = 1 as well as H1(g, Gsc(Ks)) = 1 and H1(g, T sc(Ks)) = 1.

Lemma 7.7. The map π∨K : Hom(X∗(T sc)g,Z) → Hom(X∗(T )g,Z) is injective.
One has

h∞(G) · h(T sc)

h(T )
=
| coker(π∨K)|
t∞(G) · |D|

·
∏

p[T p(Ôp) : T 0
p(Ôp)]

[T (Fq) : T 0(Fq)]
.

Proof. Since G is of non-compact type, the exact sequence of K-groups

1→ F → Gsc π→ G→ 1

induces the exactness over the adelic ring A

1→ F (A)→ Gsc(A)
πA−→ G(A)

ψA
� coker(πA) ⊂

∏
p

H1(gp, Fp(K̂s
p))
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where gp := Gal(K̂s
p/K̂p) – see [PR, § 8.2] and 3) in the proof of Thm. 3.2. in

[Tha] for the function field case. According to [PR, Proposition 8.8], one has

h∞(G) = [ψA(G(A)) : ψA(G(A∞)G(K))].

Denote G0(A∞) = G∞(K̂∞) ×
∏

p6=∞G0
p(Ôp). Define the finite set S := {p |

p ramified}. If S = ∅, then G0(A∞) = G(A∞) (see Remark 3.1). Otherwise, by the
Borel density theorem (e.g. in the guise of [CM, Thm. 2.4, Prop. 2.8]), G(O{∞∪S) is
Zariski-dense in

∏
p∈S\{∞}Gp. This implies the equality G(A∞)G(K) =

G0(A∞)G(K), and so

h∞(G) = [ψA(G(A)) : ψA(G0(A∞)G(K))]. (21)

Since F is central in Gsc, it is embedded in T sc. The corresponding exact sequence
of K-groups of multiplicative type

1→ F → T sc π→ T → 1

induces by g-cohomology the exact sequences over K (see Remark 7.6):

1→ F (K)→ Gsc(K)
π→ G(K)

δK−→ H1(g, F (Ks))→ 1

1→ F (K)→ T sc(K)
π→ T (K)

δK−→ H1(g, F (Ks))→ 1

showing that δK(G(K)) = δK(T (K)). At any p, as Gsc
p is connected, by Lemma

7.5 and Remark 7.6 one has

coker[Gsc
p(Ôp)→ G0

p(Ôp)] = coker[T sc
p(Ôp)→ T 0

p(Ôp)] = H1(〈σp〉, F p(Ôsh
p )),

coker[Gsc
p (K̂p)→ Gp(K̂p)] = coker[T sc

p (K̂p)→ Tp(K̂p)] = H1(gp, Fp(K̂s
p)).

Thus together with [Gp(Ôp) : G0
p(Ôp)] = [T p(Ôp) : T 0

p(Ôp)] (see Remark 7.1), we
may infer that

ψA(G(A)) = coker[Gsc(A)→ G(A)] = coker[T sc(A)→ T (A)] = ψA(T (A)).

In particular, over A∞, due to Corollary 3.3 Galois cohomology yields an exact
sequence

1→ F (A∞)→ Gsc(A∞)
πA→ G0

∞(A∞)

ψA−→ H1(g∞, F∞(K̂s
∞))×

∏
p6=∞

H1(〈σp〉, F p(Ôsh
p ))→ 1

and similarly for the tori, showing that ψA(G0(A∞) = ψA(T 0(A∞)). These coker-
nel equalities enable us to express h∞(G) as given in (21) via T , namely

h∞(G) = [ψA(T (A)) : ψA(T 0(A∞)T (K))]. (22)
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Applying the Snake Lemma on its two middle rows, we get the exactness of the
diagram

1 // F (A) // (T sc)1(A)
πA //

� _

��

T 1(A)
ψA //

� _

��

ψA(T 1(A)) //
� _

��

1

1 // F (A) //

��

T sc(A)
πA //

degT sc

��

T (A)
ψA //

degT
��

ψA(T (A)) //

��

1

0 // Hom(X∗(T sc)g,Z)
π∨K //

����

Hom(X∗(T )g,Z) //

����

coker(π∨K) //

����

0

coker(degT sc)
π∨K // coker(degT ) // D // 0

(note that the elements in ker(πA) are units, and so belong to T 1(A)) from which
we see that:

[ψA(T (A)) : ψA(T 1(A))] = | coker(π∨K)|/|D|. (23)

Furthermore, from the following exact diagram

1 // F (A) // (T sc)c(A)T sc(K)
πA //

� _

��

(T c)0(A)T (K)
ψA //

� _

��

ψA((T c)0(A)T (K)) //
� _

��

1

1 // F (A) //

��

(T sc)1(A)
πA //

��

T 1(A)
ψA //

��

ψA(T 1(A)) //

��

1

1 // Cl(T sc) // Cl(T 0) // ψA(T 1(A))/ψA((T c)0(A)T (K)) // 1

with (T c)0(A) :=
∏

p T
0
p(Ôp) one can see that

h(T )

h(T sc)
=

h(T 0)/h(T sc)

[T c(A)T (K) : (T c)0(A)T (K)]
=

[ψA(T 1(A)) : ψA((T c)0(A)T (K))]

[T c(A)T (K) : (T c)0(A)T (K)]
.

(24)

Using the Third and Second Isomorphism Theorems one has

T c(A)T (K)
/

(T c)0(A)T (K) ∼= T c(A)T (K)/T (K)
/

(T c)0(A)T (K)/T (K)

∼= T c(A)/T (Fq)
/

(T c)0(A)/T 0(Fq)

whence

[T c(A)T (K) : (T c)0(A)T (K)] =

∏
p[T p(Ôp) : T 0

p(Ôp)]

[T (Fq) : T 0(Fq)]
. (25)
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Similarly,

T 0(A∞)T (K)
/

(T c)0(A)T (K) ∼= T 0(A∞)T (K)/T (K)
/

(T c)0(A)T (K)/T (K)

∼= T 0(A∞)/T 0(Fq)
/

(T c)0/T 0(Fq) (26)

∼= T 0(A∞)/(T c)0(A).

In order to compute the cardinality of the latter ratio image under ψ, we may use
cohomology again. Fix a separable closure K̂s

∞ of K̂∞ containing the maximal un-
ramified extension K̂un

∞ of K̂∞ with absolute Galois group g∞ and inertia subgroup
I∞ = Gal(K̂s

∞/K̂
un
∞ ). The spectral sequence then induces the exact sequence (see

[Ser3, I.2.6(b)])

0→ H1(〈σ∞〉, F∞(K̂un
∞ ))

inf→ H1(g∞, F∞(K̂s
∞))

res→ H1(I∞, F∞(K̂s
∞))σ∞ → H2(〈σ∞〉, F∞(K̂un

∞ )) = 0

which shows that

[ψA(T 0(A∞)) : ψA((T c)0(A))] =
|H1(g∞, F∞(K̂s

∞))|
|H1(〈σ∞〉, F∞(Ôsh

∞))|

= |H1(I∞, F∞(K̂s
∞))σ∞ | (6.2)

= t∞(G).

(27)

All together, we finally get

h∞(G) · h(T sc)

h(T )

(22),(24),(25)
=

[ψA(T (A)) : ψA(T 0(A∞)T (K))]

[ψA(T 1(A)) : ψA((T c)0(A)T (K))]

×
∏

p[T p(Ôp) : T 0
p(Ôp)]

[T (Fq) : T 0(Fq)]

=
[ψA(T (A)) : ψA(T 1(A))]

[ψA(T 0(A∞)T (K)) : ψA((T c)0(A)T (K))]

×
∏

p[T p(Ôp) : T 0
p(Ôp)]

[T (Fq) : T 0(Fq)]

(26)
=

[ψA(T (A)) : ψA(T 1(A))]

[ψA(T 0(A∞)) : ψA((T c)0(A))]
·
∏

p[T p(Ôp) : T 0
p(Ôp)]

[T (Fq) : T 0(Fq)]

(23),(27)
=

| coker(π∨K)|
|D| · t∞(G)

·
∏

p[T p(Ôp) : T 0
p(Ôp)]

[T (Fq) : T 0(Fq)]
. �

The following proposition now is an immediate consequence of the Main The-
orem, Lemma 7.7.

Proposition 7.8. |D| = | coker(π∨K) = 1.
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Proof. Following [Ono3] by the proof of Theorem 6.1 in [BD], one has

τ(G) = τ(Gsc) · τ(T )

τ(T sc)
· | coker(π̂K)|. (28)

Applying the functor Hom(−,Z) on the sequence:

0→ X∗(T )g
π̂K−→ X∗(T sc)g →M := coker(π̂K)→ 0 (29)

gives rise to the exact sequence

0→ 0 = Hom(M,Z)→ Hom(X∗(T sc)g,Z)

π∨K−→ Hom(X∗(T )g,Z)→ Ext1(M,Z) ∼= Hom(M,Q/Z)→ 0

which shows that coker(π∨K) is the Pontryagin dual of coker(π̂K). As both groups
are finite, they therefore have the same cardinality. Hence from formula (28) we
get

τ(G) = τ(Gsc) · | coker(π∨K)| · τ(T )

τ(T sc)

(20)
= τ(Gsc) · | coker(π∨K)| · h(T )

h(T sc)
· w(T sc)

w(T )

∏
p

Lp(1, χTp
) · ωp(T p(Ôp))

[Bit, 3.2]
= τ(Gsc) · | coker(π∨K)| · h(T )

h(T sc)
· w(T sc)

w(T )

∏
p

[T p(Ôp) : T 0
p(Ôp)]

7.3
= τ(Gsc) · | coker(π∨K)| · h(T )

h(T sc)
·
∏

p[T p(Ôp) : T 0
p(Ôp)]

[T (Fq) : T 0(Fq)]
7.7
= τ(Gsc) · h∞(G) · t∞(G) · |D|
1
= τ(Gsc) · τ(G) · |D|.

This implies |D| = 1
τ(Gsc) = 1, according to the Weil conjecture. �

Remark 7.9. Any isogenous K-tori T sc and T with T sc quasi-trivial can be real-
ized as maximal tori of semisimple and quasi-split groups Gsc and G, respectively,
with Gsc simply connected. E.g., given the isogeny π : T sc → T , then each factor
RL/K(Gdm) in T sc is a maximal torus of the quasi-split and simply connected group
Gsc = RL/K(SLd+1), and T is a maximal torus of G = Gsc/ ker(π), cf. Exam-
ples 7.16 – 7.18 below. Hence we may generalize Proposition 7.8 to the statement
that for any isogeny T sc → T , the induced map coker(degT sc) → coker(degT ) is
surjective.

Quite naturally, our Main Theorem reproduces the following well-known facts.
Recall that in this section we assume the validity of the Weil Conjecture.
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Corollary 7.10. If G is K-split and O{∞} is a UFD, then h∞(G) = 1 and
τ(G) = t∞(G) = |F |.

Proof. IfG isK-split, then T sc and T areK-split thus having connected reduction
everywhere and h(T ) = h(T sc). Furthermore, | coker(π∨K)| = |F | = |F∞| = t∞(G)
whence by Lemma 7.7 h∞(G) = 1. Hence according to the Main Theorem 1, we
get τ(G) = t∞(G) = |F∞| = |F |. �

Example 7.11. (Type A2) Let G = PGL3 with Gsc = SL3 defined over the
rational function field K = Fq(x). Since G is split, by removing one point ∞ we
get that h∞(G) = 1 (Cor. 7.10). Let T∞ be the diagonal maximal torus in G∞
and let T sc

∞ = π−1(T∞) in Gsc
∞. We have the following Z-lattices:

X∗(T sc) = P =

〈
ε1 −

1

3

3∑
i=1

εi, ε1 + ε2 −
1

3

3∑
i=1

εi

〉
,

X∗(T ) = Q = 〈ε1 − ε2, ε2 − ε3〉

where εi is the projection of the i-entry in the diagonal matrix and:

X∗(T
sc
∞) = P∨ = 〈e12 = λ1 − λ2, e23 = λ2 − λ3〉 embedded in:

X∗(T∞) = Q∨ =

〈
λ1 −

1

3

3∑
i=1

λi, λ1 + λ2 −
2

3

3∑
i=1

λi

〉

where for any t ∈ K×∞, λi(t) is the diagonal matrix with t in the i-th entry and 1
everywhere else. The fundamental alcove associated to the root basis ∆ = {α12 :=
ε1 − ε2, α23 := ε2 − ε3} with highest root α13 := ε1 − ε3 is bounded by the walls
Hα12,0, Hα23,0 and Hα13,−1. Its special vertices are:

o, x =
e12 + 2e23

3
, y =

2e12 + e23

3

of types denoted by filled circle, empty circle and filled rectangle, respectively in
Figure 4.12. Then: x, y, x − y ∈ X∗(T∞) − X∗(T

sc
∞) and therefore τ(PGL3) =

t∞(PGL3) = 3.

Example 7.12. (Type B2
∼= C2) Consider the special unitary group of the

quadratic form f(x̄) = x1x5 + x2x4 + x2
3, G = SU(f) = SO5 with Gsc = Spin5

defined over K = Fq(x). Over K∞, let T∞ = {diag(t, t′, 1, t′−1, t−1)} ⊂ G∞ and
T sc
∞ = π−1(T∞) ⊂ Gsc

∞. We have:

X∗(T sc) = P =

〈
ε1,

1

2
(ε1 + ε2)

〉
, X∗(T ) = Q = 〈α = ε1 − ε2, β = ε2〉 .

and:

X∗(T
sc
∞) = P∨ = 〈λ1 − λ2, 2λ2〉 embedded in: X∗(T∞) = Q∨ = 〈λ1, λ1 + λ2〉 .
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o

x y

Figure 4.12. Affine apartment of type A2

o

x

y

Figure 4.13. Affine apartment of type B2

The fundamental alcove associated to the basis: ∆ = {α := ε2, β := ε1 − ε2} with
highest root: γ := 2α+β = ε1 + ε2 is bounded by the walls Hα,0, Hβ,0 and Hγ,−1.
Its vertices are

o, x = λ1, y =
1

2
(λ1 + λ2)

of types denoted by filled circle, empty circle and filled rectangle respectively in
Figure 4.13 among which only o, x are special as the isotropic group of y is not
maximal (lying on the intersection of only two walls out of three possible). Since:
x − o = x = λ1 ∈ X∗(T ) − X∗(T

sc) we get that (G is split again): τ(SO5) =
t∞(SO5) = 2.

Remark 7.13. We have assumed in this section that OG{∞} is a UFD. Otherwise,
h∞(G) does not need to be 1, though G splits overK. For example, let G = PGLn
defined over K = Fq(C) where C is an elliptic curve (g = 1). Let ∞ be a Fq-
rational point and let G be an affine, smooth, flat, connected and of finite type
model of G defined over SpecO{∞} as was constructed above. Let GLn be a similar
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construction for GLn and Gm for Gm. According to Nisnevich’s exact sequence
(see [Nis, 3.5.2] and also [Gon, Thm. 3.4]), since the Shafarevich-Tate group w.r.t.
S = {∞} is trivial in this split case, we have:

Cl∞(G) ∼= H1
ét(O{∞},G).

The exact sequence of smooth O{∞}-groups

1→ Gm → GLn → G → 1

gives rise by flat cohomology to the following exact sequence

Pic (Caf)
∂→ H1

ét(O{∞},GLn)
δ→ H1

ét(O{∞},G)→ H2
ét(O{∞},Gm)

on which H1
ét(O{∞},GLn) classifies the rank n vector bundles defined over Caf :=

C − {∞}. Every rank-n vector bundle over a Dedekind domain is a direct sum
On−1
Caf ⊕L, where [L] ∈ Pic (Caf) and OCaf is the trivial line bundle. As ∂ : [L] 7→

nL we have:

im(δ) ∼= H1
ét(O{∞},GLn)/ ker(δ)

= H1
ét(O{∞},GLn)/ im(∂) ∼= Pic (Caf)[n] := Pic (Caf)/nPic (Caf).

Moreover, as Caf is smooth, one has (see [Mil1, Prop. 2.15]): H2
ét(O{∞},Gm) =

Br(O{∞}), classifying Azumaya O{∞}-algebras (see [Mil1, § 2]). At each prime
p: Br(O{∞}) ⊆ Br((O{∞})p) ⊆ Br(Ôp). As Ôp is complete, the latter group is
isomorphic to Br(kp) (see [AG, Thm. 6.5]). But kp is a finite field, thus Br(kp)
is trivial as well as H2

ét(O{∞},Gm) and δ is surjective. We get that h∞(G) =

|Cl∞(G)| = |H1
ét(O{∞},G)| = |Pic (Caf)[n]|. In order to compute this group,

we obtain the following isomorphism: Since {∞} is an irreducible subset of co-
dimension 1 in C, the restriction of C to Caf gives rise to an exact sequence (see
[Hart, Cha.II, Prop.6.5(c)]):

0→ Z→ Pic (C)→ Pic (Caf)→ 0

on which the first map 1 7→ 1 · {∞} is injective because the degree of a curve’s
divisor is well defined. As we assumed ∞ is Fq-rational, this sequence splits as
abelian groups. Moreover, the embedding of the identity component of Pic (C)
yields another exact sequence:

0→ Pic 0(C)→ Pic (C)→ Z→ 0

in which the right term is the Néron-Severi group. It also splits as abelian groups
and so we get an isomorphism of summands Pic 0(C) ∼= Pic (Caf). Together with
another isomorphism of abelian groups: C(Fq) ∼= Pic 0(C);P 7→ [P ]− [∞] we may
deduce that:

C(Fq) ∼= Pic (Caf).

Now it is easy to find an elliptic curve C for which h∞(G) = |C(Fq)[n]| > 1.
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Applying flat cohomolopgy on Kummer’s exact sequence of O{∞}-schemes:

1→ µn → Gm
x 7→xn−→ Gm

gives rise to the exact sequence of groups of O{∞}-points:

(O{∞})×
x 7→xn−→ (O{∞})× → H1

ét(O{∞}, µn)→ Pic (Caf)
z 7→nz−→ Pic (Caf)

which in light of the proof of Lemma 5.2 can we rewritten as

1→ F×q /(F×q )n → H1
ét(O{∞}, µn)→ Pic (Caf)[n]→ 0.

We deduce that H1
ét(O{∞}, µn) is an extension of F×q /(F×q )n by Pic (Caf)[n] and

so

|H1
ét(O{∞}, µn)| = |F×q /(F×q )n| · |Pic (Caf)[n]| = |H1(Fq, µn)| · |Pic (Caf)[n]|.

Consequently,

j∞(G) =
|H1

ét(O{∞}, µn)|
|µn(Fq)|

=
|H1

ét(O{∞}, µn)|
|H1(Fq, µn)|

= |Pic (Caf)[n]| = h∞(G)

and finally:

τ(G) = h∞(G) · t∞(G)

j∞(G)
= |F̂∞

g∞ | = |F | = n.

Corollary 7.14. If G is adjoint (not necessarily split) and OG{∞} is a UFD, then
h∞(G) = 1 and τ(G) = t∞(G) = |F̂ g|, where F̂ := Hom(F (Ks),Gm,Ks) and
g := Gal(Ks/K).

Proof. According to Ono’s formula (3.9.11′) in [Ono1], considering the isogeny of
class groups of T sc and T , there exists a finite set of primes S for which

h(T )

h(T sc)
=

(
q(α1

S)∏
p∈S q(αOp

)

)/( q(αSK)

q(αW )

)
where for any isogeny α, q(α) stands for | coker(α)|/| ker(α)| and (see notation in
Section 4):

T 1
S(A) := T 1(A) ∩ TS , TS(K) := T (A(S)) ∩ T (K),

α1
S := (T sc

S )1(A)→ T 1
S(A), αSK := T sc

S (K)→ TS(K), αW := W (T sc)→W (T ).

As Gsc is simply-connected and G is adjoint, both quasi-split, their maximal tori
T sc and T are quasi-trivial and their integral models are connected everywhere (see
Remark 2.1). In this case, the quantities q(α) related to αS and αSK are equal to
the ones obtained in the split case on which the class group of each Gm is the class
group of K (see Formulas (3.1.7) and (3.1.8) in [Ono1]), thus equal to 1. Also by
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Lemma 3.4 one may deduce that q(αOp
) = 1 at each p and by Lemma 7.3 (recall

OG{∞} is a UFD), this can be deduced also for αW . Hence T sc and T share the
same class number and so by Lemma 7.7, Proposition 7.8 and our Main Theorem
τ(G) = h∞(G) · t∞(G) = | coker(π∨K)| (see in the proof of 7.8). But as T is quasi-
trivial, X∗(T ) =

⊕n
i=1 IndHi{id}(Z) where Hi are some finite subgroups of g, thus

by Shapiro’s lemma H1(g, X∗(T )) ∼=
⊕
H1(Hi,Z) = 0. Consequently, the exact

sequence of character groups (considered as g-modules):

0→ X∗(T )→ X∗(T sc)→ F̂ → 0

gives rise by g-cohomology to the exact sequence:

0→ X∗(T )g
π̂K−→ X∗(T sc)g → F̂ g → H1(g, X∗(T )) = 0

from which we can see that τ(G) = | coker(π∨K)| = | coker(π̂K)| = |F̂ g|. This
also shows by Ono’s formula [Ono3, Main Theorem] (see Cor. 7.15 below) that
X1

(F̂ ) = 1. �

More generally, our Main Theorem leads us to the following more general result
obtained by Ono in 1965 (see Main Theorem in [Ono3]). It was designed for groups
over number fields and has been generalized by Behrend and Dhillon at 2009 to
the function field case in [BD, Theorem 6.1].

Corollary 7.15 (Ono’s formula). One has

τ(G) =
|F̂ g|

|X1
(F̂ )|

where the denominator is the first Shafarevitch–Tate group assigned to F̂ .

Proof. Applying Galois g-cohomology to the sequence of groups of characters

0→ X∗(T )
π̂→ X∗(T sc)→ F̂ → 0

where F̂ := Hom(F ⊗K Ks,Gm,Ks) yields the relation

| coker(π̂K)| = |F̂ g|
|H1(g, X∗(T ))|

. (30)

The following formula for the Tamagawa number of a torus is taken from [Ono2,
Main Theorem], [Oes, Corollary 3.3]

τ(T ) =
|H1(g, X∗(T ))|
|X1

(T )|
. (31)
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Together with |X1
(T )| = |X1

(F̂ )| ([Ono3, p. 102]), we conclude

τ(G)
(28)
= τ(Gsc) · τ(T ) · | coker(π̂K)|

(30)
= τ(Gsc) · τ(T ) · |F̂ g|

|H1(g, X∗(T ))|
(31)
= τ(Gsc) · |F̂ g|

|X1
(F̂ )|

. �

In the following examples, we refer to a construction which was demonstrated
by Ono over number fields, in [Ono2, Example 6.3]. Our ground field is K = Fq(t)
with odd characteristic and ∞ is chosen to correspond to the pole of t. At each
example we consider another extension L of K. We denote g = Gal(L/K). The
group Gsc = RL/K(SL2) is the universal cover of the semisimple and quasi-split
K-group G = Gsc/F where F := R

(1)
L/K(µn) = ker[RL/K(µn) → µn]. Let S be

the diagonal K-split maximal torus in G. Then T = CentG(S) is a maximal torus
of G and is isomorphic as a g-module to the K-torus Gm ×R(1)

L/K(Gm) where the
right hand factor is the norm torus, namely the kernel of the norm map (see [San,
Example 5.6])

R
(1)
L/K(Gm) := ker

[
RL/K(Gm)

NL/K−→ Gm
]
.

Its preimage in Gsc is the Weil torus T sc = RL/K(Gm,L), fitting into the exact
sequence

1→ F → T sc π−→ T → 1.

Over any Ôp, the norm torus is Spec Ô∞[a, b]/(a2−pb2−1). Its reduction provides
at each place p, ep connected components, where ep stands for the ramification
index there (see [Bit, Example 3.3]), i.e. [T p(Ôp) : T 0

p(Ôp)] = ep. In this construc-
tion | coker(π̂K)| = 1 .

Example 7.16. We start by L = Fq2(t) obtained by extending the field of con-
stants of K. Since the extension is quadratic, F∞ = µ2 is K̂∞-split whence
t∞(G) = |F̂∞| = |F∞| = 2. Moreover, as L/K is imaginary and totally unramified
we have h(T )/h(T sc) = 2 (see [Mor, Example 1]). Thus by Lemma 7.7, h∞(G) = 1
whence according to our Main Theorem τ(G) = h∞(G) · t∞(G) = 2.

Example 7.17. Now let L = K(
√
d) where d is a product of m distinct finite

primes pi. As before, F∞ = µ2 and t∞(G) = 2. Recall that the norm torus is the
only factor in T sc and T which might have a disconnected reduction. This time,
since each pi, as well as ∞, ramifies in L with ep = 2 we have∏

p

[T p(Ôp) : T 0
p(Op)] = 2m+1

while:
[T (Fq) : T 0(Fq)] = |{x ∈ Fq : x2 = 1}| = |{±1}| = 2.
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Moreover, as h(T sc)/h(T ) = 2m−1 (see [Mor, Example 1]) and coker(π∨K) = 1,
by Lemma 7.7 we get h∞(G) = 1. All together, we see by the Main Theorem
that τ(G) remains equal to 2, independently of m. Both this result and the one
of the previous example agree with Ono’s formula 7.15; indeed, as L/K is cyclic,
X1

(F̂ ) = 1 and τ(G) = |F̂ g| = |F | = 2.

Example 7.18. Let L = K(Λf ) be the f -cyclotomic extension where f is an
irreducible polynomial of degree d. Then g is cyclic of order n = qd − 1. We still
have h(T )/h(T sc) = 1 ([Mor, Example 2]). The only places which ramify in L are
∞ with e∞ = q − 1 and (f) which is totally ramified (see [Hay, Theorem 3.2]).
Therefore [T (∞)(O(∞)) : T 0

(∞)(O(∞))] = q − 1 and [T (f)(O(f)) : T 0
(f)(O(f))] = n.

On the units group, since q − 1|n we have

[T (Fq) : T 0(Fq)] = |{x ∈ Fq : xn = 1}| = |F×q | = q − 1.

Moreover, t∞(G) = |F̂∞
g∞ | = |µn| = n and as before coker(π̂K) = 1. So by

Lemma 7.7, we get

h∞(G) =

∏
p[T p(Ôp) : T 0

p(Ôp]

t∞(G) · [T (Fq) : T 0(Fq)]
=

(q − 1) · n
n · (q − 1)

= 1.

Thus by our Main Theorem we conclude that τ(G) = t∞(G) = n. Indeed, as L/K
is cyclic, X1

(F̂ ) = 1 and τ(G) = |F̂ g| = |µn| = n, which agrees again with Ono’s
formula 7.15.
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