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ALL MAXIMAL COMMUTATIVE SUBALGEBRAS OCCUR
IN L(X) UNCOUNTABLY MANY TIMES

Wiesław Żelazko

Abstract: We show that for every Banach space X, dimX > 1, every maximal commutative
subalgebra of L(X) has uncountably many copies between maximal commutative subalgebras
of L(X). Answering to a question of Aleksander Pełczyński, we show also that for an arbitrary
infinite dimensional Banach space X there are at least countably many multiplications making
of X a commutative unital Banach algebra.
Keywords: algebra of Banach space operators, maximal commutative subalgebra, multiplica-
tions on Banach spaces.

Theorem. Let X be a Banach space, dimX > 1. Let A be a maximal commutative
subalgebra of L(X). Then L(X) contains uncountably many copies of A (i.e.
maximal commutative subalgebras of L(X) isomorphic to A).

Proof. Denote by A(X) the family of all maximal commutative subalgebras of
L(X) and let A ∈ A(X). It is easy to see that for any Q ∈ L(X) the algebra

eQAe−Q

is in A(X) and is (topologically) isomorphic to A. For Q as above consider the set

GQ(A) = {t ∈ R : etQAe−tQ = A}.

First we show that it is a closed subgroup of the (additive) group R. In fact, the
relation

(1) etQAe−tQ = A

implies
e−tQAetQ = A
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and so t ∈ GQ(A) implies −t ∈ GQ(A). If t1, t2 ∈ GQ(A), then the formula (1)
implies

A = et1QAe−t1Q = et2Qet1QAe−t1Qe−t2Q = e(t1+t2)QAe−(t1+t2)Q,

and so t1 + t2 ∈ GQ(A). Thus GQ(A) is a group. It is closed, because whenever
t1, t2, · · · ∈ GQ(A) and lim ti = t0, then for every operator T ∈ A and every
natural i we have

etiQTe−ti ∈ A,
and so

et0QTe−t0Q = lim
i
etiQTe−tiQ

is in A, since A is closed. If GQ(A) 6= {0} put

ρQ(A) = inf{t > 0 : t ∈ GQ(A)},

and ρQ(A) =∞ if t ∈ GQ(A) for all positive T . We shall show that if ρQ(A) > 0,
then all algebras

At = etQAe−tQ, 0 < t < ρQ(A)

are different. Thus in this case there exist uncountably many copies of A and so
the conclusion follows.

In fact, if 0 < t1 < t2 < ρQ(A), then the relationAt1 = At2 impliesAt2−t1 = A,
i.e. t2 − t1 ∈ GQ(A), which is in contradiction with the fact that 0 < t2 − t1 <
ρQ(A).

Observe now that if ρQ(A) = 0, then GQ(A) = R. In fact, for each positive
ε there is a t ∈ GQ(A) with 0 < t < ε such that At = A. Thus each interval of
length ε contains a t belonging to GQ(A). That means that GQ(A) is dense in the
real line, and, since it is closed, it equals to R.

In order to prove our theorem it is sufficient to show, that for every A ∈ A(X)
there is a Q in L(X), so that ρQ(A) > 0, or, equivalently, GQ(A) 6= R.

Assume towards contradiction that there is an A in A(X) with ρQ(A) = 0 for
all Q in L(X) We fix this A from now on. Thus we have

(2) eQAe−Q = A

for all Q in L(X). Consequently

(3) eQTe−QT = TeQTe−Q

for all T in A and all Q in L(X). Take a non-zero Q satisfying Q2 = 0 (it will be
specified later). In this case, we have eQ = I +Q and e−Q = I −Q. For such a Q
we can rewrite (3) as

(I +Q)T (I −Q)T = T (I +Q)T (I −Q),

for all T in A, which implies

(4) TQT =
1

2

[
QT 2 + T 2Q+ TQTQ−QTQT

]
.
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Multiplying both sides of (4) by Q from the left and from the right, we obtain

(5) QTQTQ = 0.

For obtaining desired contradiction we shall specify now T and Q. Since dimX >
1, A must contain an operator T which is not of the form λI. For such an operator
we can find an element a in X with Ta = b 6= λa for all scalars λ. To see it assume
towards contradiction that for some linearly independent a, b in X there are scalars
λ0, λ1 and λ2, λ1 6= λ2 with Ta = λ1a, Tb = λ2b and T (a+b) = λ0(a+b). But this
implies (λ1 − λ0)a + (λ2 − λ0)b = 0 – a contradiction. We can find now a linear
functional f in X∗ with f(a) = 0 and f(b) = 1. Define Q = f ⊗a (Q(x) = f(x)a).
Thus TQ(b) = b, and so the value of the left-hand operator in (5) at the point
b equals to a. Since a is different from zero, we obtain a contradiction with the
formula (5). The conclusion follows. �

The above theorem fails if we replace L(X) by an arbitrary non-commutative
unital Banach algebra. In [5] we constructed a unital Banach algebra which has
only one infinite dimensional maximal commutative subalgebra, while the remain-
ing ones are of dimension two. We do not know, however, the answer to the
following question.

Problem 1. Let A be a non-commutative unital Banach algebra. Does it contain
an uncountable family of mutually isomorphic maximal commutative subalgebras?

The following question also seems to be of an interest.

Problem 2. Let X be an infinite dimensional Banach space. Do there exist
uncountably many maximal commutative subalgebras of L(X) which are mutually
non-isomorphic?

The above Problem is connected with the question the author was (long ago)
asked by Aleksander Pełczyński: Let X be a Banach space. How many different
multiplications make of it a commutative unital Banach algebra?

It is well known (see [1]) that if A is a commutative unital Banach algebra,
then the set of operators

{Ta ∈ L(A) : Tax = ax, a, x ∈ A}

is a maximal commutative subalgebra of L(A) which is clearly isomorphic with
A. Thus all multiplications on X making it a commutative unital Banach algebra
are given by the family of all maximal commutative subalgebras of L(X) which,
as a Banach space, are isomorphic to X. With respect to this remark, we have

Proposition. Let X be an infinite dimensional Banach space. Then there exist at
least countably many mutually non-isomorphic maximal commutative subalgebras
of L(X), which, as the Banach spaces, are isomorphic to X.
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Proof. Choose a continuous linear functional f on X and an element e ∈ X with
f(e) = 1. Put Y = ker f . Then

X = Y ⊕ {e},

where {e} denotes the one-dimensional subspace of X spanned by e. For an
arbitrary n ∈ N decompose

Y = Yn ⊕ Zn,

where dimYn = n, Yn = span{e1, . . . , en}. Making Yn a commutative Banach
algebras under coordinatewise multiplication, and making Zn such an algebra
under trivial (zero) multiplication, we made of Y a non-unital commutative Banach
algebra, whose unitization, as a Banach space, is isomorphic with X. Clearly, for
different n the obtained in this way multiplications on X are non-isomorphic. The
conclusion follows. �

We could take different commutative multiplications on Yn, but it would not
help in answering to the Problem 2, since for a fixed n we have only finitely many
such multiplications.

Returning to the Theorem, observe that its proof works neither for for lo-
cally convex spaces, nor for quasi-Banach (locally bounded) spaces. The reason
is that for the locally convex spaces there can exist continuous linear operators
not possessing exponentials (cf. [3]), while some quasi-Banach spaces do not pos-
sess continuous linear functionals ([4]). In the case of locally pseudoconvex spaces
(inverse limits of locally bounded spaces; for the locally bounded and locally pseu-
doconvex spaces the Reader is referred to [4]), there can occur rigid spaces i.e.
topological vector spaces on which the only continuous linear operators are scalar
multiples of the identity operator (see [2], or [4], pp 210-220). So if we want to
have the above Theorem for the locally pseudoconvex spaces, we should replace
condition dimX > 1 by the condition dimL(X) > 1.
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