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ON q-ANALOGUES OF MULTIPLE ZETA VALUES

Johannes Singer

Abstract: We study a q-analogue of multiple zeta values that was proposed by Zudilin and is
closely related to that of Schlesinger. We explore the double q-shuffle structure and provide an
Euler decomposition formula. Furthermore we compare our results with the classical multiple
zeta values and the q-models of Ohno-Okuda-Zudilin and Bradley.
Keywords: multiple zeta values, q-analogues, double shuffle relation, Euler decomposition for-
mula.

1. Introduction

The classical multiple zeta values (MZVs) are multidimensional generalizations of
the Riemann zeta function which are defined for k1, . . . , kn ∈ N with k1 > 1 by
the iterated sums

ζ(k1, . . . , kn) :=
∑

m1>···>mn>0

1

mk1
1 · · ·m

kn
n

. (1)

The first appearance could be traced back to Euler. For instance, he proved the
identity ζ(2, 1) = ζ(3). The systematic study of MZVs was initiated by Hoffman
[10] and Zagier [18]. The Q-vector space spanned by

M := 〈ζ(k1, . . . , kn) : k1, . . . , kn ∈ N, k1 > 1, n ∈ N〉Q

is an algebra with two different products - the shuffle and the quasi shuffle product -
that do not coincide. Therefore there are many Q-linear relations involving MZVs.
We remember that the quasi shuffle product relies on the series representation (1)
of MZVs. The shuffle product is induced from the integral representation of MZVs
([18])

ζ(k1, . . . , kn) =

∫
1>t1>···>tk>0

ω1(t1) · · ·ωk(tk),
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where k := k1 + · · · + kn and ωi(t) := dt/(1 − t) if i ∈ {k1, k1 + k2, . . . , k1 +
· · ·+kn} and ωi(t) := dt/t otherwise. In [12] Ihara, Kaneko and Zagier introduced
a regularization procedure for the double shuffle relation and there is the conjecture
that all Q-linear relations of MZVs can be obtained by this extended double shuffle
relation.

In this paper we study a q-analog of MZVs (q-MZVs). Let 0 < q < 1 be a fixed
real number. For k := (k1, . . . , kn) ∈ Nn0 with k1 > 0 we consider the model

ζq[k] :=
∑

m1>···>mn>0

qk1m1+···+knmn

[m1]k1q · · · [mn]knq
, (2)

where [m]q := 1−qm
1−q . Additionally, we regard the q-analog of multiple zeta star

values (q-MZSVs) given by

ζ?q [k] :=
∑

m1>···>mn>0

qk1m1+···+knmn

[m1]k1q · · · [mn]knq
. (3)

The iterated sums (2) and (3) converge for k1, . . . , kn ∈ N0 with k1 > 0 (see [19,
Proposition 2.2]). If (k1, . . . , kn) ∈ Nn with k1 > 1, then the q-MZVs reduce to
the classical MZVs in the limit q ↑ 1. In [20] Zudilin proposed model (2) as an
appropriate q-extension of MZVs. It essentially coincides with that of Schlesinger
in [15]. For technical reasons we regard the extended model given by

ζq[k] := (1− q)−|k|ζq[k]. (4)

On the one hand, model (4) has a very natural quasi q-shuffle product which
coincides with that of classical MZVs. On the other hand, there was no suitable
q-shuffle product and hence a lack of Q-linear relations in the algebra

Mq := 〈ζq[k1, . . . , kn] : k1, . . . , kn ∈ N0, k1 > 0, n ∈ N〉Q.

In this paper we propose a q-shuffle product (Theorem 3.2) that is not compatible
with the quasi q-shuffle product (Theorem 3.3). Therefore we can establish double
q-shuffle relations for that model (Theorem 3.4). The key ingredient is a repre-
sentation of (4) via an iteration of Rota-Baxter operators (Proposition 2.6). This
progress considerably relies on the techniques of [4, 3] where Castillo Medina,
Ebrahimi-Fard and Manchon studied the model

zq[k] :=
∑

m1>···>mn>0

qm1

(1− qm1)k1 · · · (1− qmn)kn
(5)

for k := (k1, . . . , kn) ∈ Nn with k1 > 1 which was first proposed by Ohno, Okuda
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and Zudilin in [13]. Moreover the most studied q-analogue in literature is that of
Bradley (see [2]) given by

ζ
B

q [k] :=
∑

m1>···>mn>0

q(k1−1)m1+···+(kn−1)mn

(1− qm1)k1 · · · (1− qmn)kn
(6)

for k := (k1, . . . , kn) ∈ Nn with k1 > 1.
The Rota-Baxter operator characterization of model (4) allows us – as in [4] –

to find an Euler decomposition formula (Theorem 5.2) that relies on an identity
of Rota-Baxter operators (Theorem A.2). Furthermore we generalise this identity
to a specific class of two different Rota-Baxter operators (Theorem 5.5) which
allows us to present a completely combinatorial proof of Euler’s decomposition
formula for model (6) (Corollary 5.6). In [1] Bradley has already proved this
formula. However he used a differential identity. By mathematical folklore it is
well known that Euler’s formula relies on the shuffle product. Therefore, in the
q-case we can interpret the Rota-Baxter operator characterization as a substitute
of the integral representation for classical MZVs. The q-shuffle product induced
by the iteration of Rota-Baxter operators for Bradley’s model is addressed in the
forthcoming paper [16].

Finally, we show that period-1 sums of the models (2) and (3) completely
reduce to a polynomial equation in q-ZVs over Q (Corollary 6.3). For this reason
we study polynomials that arise form the well known Spitzer identity for Rota-
Baxter operators (Theorem 6.2). To translate this result in the q-MZ(S)Vs setting,
we use the concept of free Rota-Baxter algebras. In order to apply this techniques,
we employ a Rota-Baxter operator description of the models (2) and (3) that is
different from that regarded in Section 2 and is related to the quasi q-shuffle
product.

The paper is organized as follows. In Section 2 we introduce the concept of
Rota-Baxter algebras and review the construction of free Rota-Baxter algebras
and their connection to q-MZ(S)V. Furthermore we provide several examples of
Rota-Baxter operators and present characterizations of the models given above
via iterations of these operators. Section 3 is devoted to the algebraic theory
of Q-linear relations of model (4). We establish a double q-shuffle product on the
algebraMq. Furthermore we illuminate the differential algebra structure ofMq in
Section 4. Euler’s decomposition formulas for the models (4) and (6) are provided
in Section 5. In Section 6 we show that period-1 sums of q-MZ(S)V can be written
as certain polynomials in q-ZV. In the Appendix A we just recall the main results
of [5] used in our article because the paper has a problem in the correct display of
its results.

Notation. We write N := {1, 2, 3 . . . } for the positive integers and
N0 := {0, 1, 2, . . . } for the additive monoid. The binomial coefficient is defined
for any k, n ∈ N0 with k 6 n by

(
n
k

)
:= n!

k!(n−k)! . Furthermore we declare the
common convention

(
n
k

)
:= 0 if k > n. Further the multinomial coefficient is given

for k1, . . . , kn ∈ N0 and k := k1 + · · · + kn by
(

k
k1,...,kn

)
:= k!

k1!···kn! . For an index
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k := (k1, . . . , kn) ∈ Nn0 we call n the depth of k and denote by |k| := k1 + · · ·+ kn
the weight and by ht(k) := #{i ∈ {1, . . . , n} : ki > 0} the height of k. The
symmetric group on m ∈ N symbols is denoted by Sm.

2. Rota-Baxter algebras and q-multiple zeta values

2.1. (Free) Rota-Baxter algebras and mixable shuffle

Let k be a ring, λ ∈ k and A a k-algebra. A Rota-Baxter operator of weight λ on
A over k is a k-module endomorphism L of A such that

L(x)L(y) = L(xL(y)) + L(L(x)y) + λL(xy)

for any x, y ∈ A. A Rota-Baxter k-algebra of weight λ is a pair (A, L) with a
k-algebra A and a Rota-Baxter operator L of weight λ on A over k. Let (L1,A1)
and (L2,A2) be two Rota-Baxter k-algebras of weight λ. A homomorphism of
Rota-Baxter k-algebras f : (L1,A1) → (L2,A2) is a homomorphism f : A1 → A2

of k-algebras satisfying f ◦ L1 = L2 ◦ f on A1.
We review the construction of the free Rota-Baxter algebra of a given unitary

k-algebra A (for details see [8, 9]). Let n ∈ N0. Then we denote by A⊗n the n-fold
tensor product of A in the category of k-modules with the convention A⊗0 = k.
For n,m ∈ N we define the set of (n,m)-shuffles by

Sn,m = {σ ∈ Sn+m : σ−1(1) < · · · < σ−1(n), σ−1(n+ 1) < · · · < σ−1(m+ n)}.

Let σ ∈ Sn,m. A pair of indices (k, k + 1) with 1 6 k < m+ n is called admissible
for σ if σ(k) 6 n < σ(k+ 1). The set of admissible indices for σ is denoted by Tσ.
We denote by

Sn,m := {(σ, T ) : σ ∈ Sn,m, T ⊆ Tσ}

the set of mixable shuffles. Let x := x1⊗ · · · ⊗ xn ∈ A⊗n and y := y1⊗ · · · ⊗ ym ∈
A⊗m for n,m ∈ N. We denote by x⊗ y = x1⊗· · ·⊗xn⊗ y1⊗· · ·⊗ ym ∈ A⊗(n+m)

and for σ ∈ Sn,m
σ(x⊗ y) = zσ(1) ⊗ zσ(2) ⊗ · · · ⊗ zσ(n+m)

where

zk :=

{
xk k ∈ {1, . . . , n};
yk−n k ∈ {n+ 1, . . . ,m+ n}.

Let σ ∈ Sn,m. For T ⊆ Tσ we call

σ(x⊗ y;T ) := zσ(1)⊗̂ · · · ⊗̂zσ(n+m)

the mixable shuffle of x and y, where for each pair (k, k + 1), 1 6 k < n+m,

zσ(k)⊗̂zσ(k+1) :=

{
zσ(k)zσ(k+1) (k, k + 1) ∈ T ;

zσ(k) ⊗ zσ(k+1) (k, k + 1) 6∈ T.
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Example 2.1. Let σ1 :=

(
1 2 3
1 2 3

)
, σ2 :=

(
1 2 3
2 1 3

)
, x := x1 and y :=

y1 ⊗ y2. Then we have

σ1(x⊗ y; (1, 2)) = x1y1 ⊗ y2, σ2(x⊗ y; (2, 3)) = y1 ⊗ x1y2.

The binary operation �+ given by

x �+ y :=
∑

(σ,T )∈Sn,m

λ|T |σ(x⊗ y;T ) ∈
n+m⊕
j=0

A⊗j

can be extended by k-linearity and additivity to the k-bilinear map

�+ : �+
k (A)×�+

k (A)→ �+
k (A),

in which

�
+
k (A) :=

⊕
j∈N0

A⊗j .

This binary operation is called mixable shuffle product of weight λ.
Now we construct the free Rota-Baxter algebra on a unitary k-algebra A. As

A-modules we have �k(A) := A ⊗ �+
k (A) ∼=

⊕
j∈NA⊗j . Then we define the

product � on �k(A) via

(x0 ⊗ x1 ⊗ · · · ⊗ xn) � (y0 ⊗ y1 ⊗ · · · ⊗ ym)

:= (x0y0)⊗ ((x1 ⊗ · · · ⊗ xn) �+ (y1 ⊗ · · · ⊗ ym)) ∈ A⊗(n+m+1).

Further we establish the k-linear endomorphism PA on �k(A) by

PA(x0 ⊗ x1 ⊗ · · · ⊗ xn) = 1A ⊗ x0 ⊗ x1 ⊗ · · · ⊗ xn

and extending by additivity. Further let jA : A → �k(A) be the canonical inclu-
sion map.

Theorem 2.2. [8, Theorem 4.1] Let A be a unitary k-algebra. Then the k-module
�k(A) with the multiplication � is a unitary commutative k-algebra. Furthermore
the pair (�k(A), PA) with jA : A → �k(A) is a free Rota-Baxter algebra on A of
weight λ, i. e. for any Rota-Baxter k-algebra (R, P ) of weight λ and any k-algebra
homomorphism ϕ : A → R there exists a unique Rota-Baxter k-algebra homomor-
phism ϕ̂ : (�k(A), PA)→ (R, P ) such that the following diagram commutes:

A �k(A)

R

//jA

��

ϕ̂

''

ϕ
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Now we recall the concept of MZV algebras introduced in [6]. Let R be
a k-algebra and P : R → R a partially defined map. If P satisfies the Rota-Baxter
identity we call it partially defined Rota-Baxter operator. For f := (f1, . . . , fn) ∈
Rn we define the symbol Pf := P [f1[P [f2 . . . P [fn] . . . ]]]. Let A be a filtered subal-
gebra of R. The corresponding ideals with respect to the filtration are denoted by
Ak, k > 0. Then A is called iteratively summable of level k if the formal symbols
Pf are well-defined for all fi ∈ A (i > 1) with fn ∈ Ak. For this algebra we call

Ak :=
{
P(f1,...,fn) : fi ∈ A, i = 1, . . . , n, fn ∈ Ak

}
.

the MZV algebra of level k.
Now let A be a filtered k-algebra. The MZV algebra of level k generated by A

in �k(A) is the subspace M(A)k of �k(A) generated by the pure tensors of the
form 1 ⊗ a1 ⊗ · · · ⊗ an ∈ 1 ⊗ A⊗n with an ∈ Ak. We call M(A)k the universal
MZV algebra of level k generated by A.

Theorem 2.3. [6, Theorem 3.3] Let R be a k-algebra with a partially defined Rota-
Baxter operator P and let k ∈ N0. Let A be an iteratedly summable subalgebra of
R of level k. Then we have:

(i) The MZV algebra Ak is a subalgebra of R.
(ii) The universal MZV algebra M(A)k is a subalgebra of �(A)k.
(iii) There is an algebra surjection

Pk : M(A)k → Ak, 1⊗ f1 ⊗ · · · ⊗ fn 7→ P(f1,...,fn).

(iv) For an algebra homomorphism ν : A → k (evaluation) we obtain an algebra
homomorphism ν ◦Pk : M(A)k → k.

Therefore all algebraic relation among elements fi, i ∈ {1, . . . , n} in M(A)k
for a fixed k can be "transformed" into algebraic relations of the MZV algebra Ak
via Pk or to k via ν ◦Pk (see [6, Corollary 3.4]). We use this result in Section 6.

2.2. Examples of Rota-Baxter algebras

Now we provide several well known examples of Rota-Baxter algebras which are
related to MZVs and their q-analogues (see e. g. [4], [3] and for further exam-
ples [7]).

Example 2.4. Let A1 be the R-algebra of continuous functions on R. Due to the
integration by parts formula the integration operator I : A1 → A1

I[f ](x) :=

∫ x

0

f(t)dt (x ∈ R)

is a Rota-Baxter operator of weight 0.
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For a formal power series f ∈ Q[[t]] we define the q-dilation operator as

Eq[f ](t) := f(qt),

where 0 < q < 1. Let A := tQ[[t, q]] be the space of formal power series in the two
variables t and q without an term of degree zero in t. We can interpret A as the
Q[[q]]-algebra tQ[[t]]. Then the Q[[q]]-linear map Pq : A → A is defined by

Pq[f ](t) :=
∑
n>0

Enq [f ](t). (7)

On the same algebra A we define the linear operator P q : A → A given by

P q[f ](t) :=
∑
n>0

Enq [f ](t). (8)

We have the following result:

Proposition 2.5. Let 0 < q < 1 and A the Q[[q]]-algebra tQ[[t]].

(i) The pair (A, Pq) is a Rota-Baxter Q[[q]]-algebra of weight 1, i. e.

Pq[f ]Pq[g] = Pq[Pq[f ]g] + Pq[fPq[g]] + Pq[fg]

for any f, g ∈ A.
(ii) The pair (A, P q) is a Rota-Baxter Q[[q]]-algebra of weight −1, i. e.

P q[f ]P q[g] = P q[P q[f ]g] + P q[fP q[g]]− P q[fg]

for any f, g ∈ A.
(iii) For the mixed product we have

Pq[f ]P q[g] = P q[Pq[f ]g] + Pq[fP q[g]]

for f, g ∈ A.

Proof. (i) and (ii) can be found in [4]. For (iii) we have

Pq[f ](t)P q[g](t) =
∑
n>0

f(qnt)
∑
m>0

g(qmt)

=
∑

n>m>0

f(qnt)g(qmt) +
∑

m>n>0

f(qnt)g(qmt)

=
∑

n>0,m>0

f(qn+mt)g(qmt) +
∑

m>0,n>0

f(qnt)g(qm+nt)

= P q[Pq[f ]g](t) + Pq[fP q[g]](t)

for any f, g ∈ A. �
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2.3. Models arising from the iteration of Rota-Baxter operators

In this section we provide Rota-Baxter operator identities for the extended versions
of the models regarded in the introduction.

Proposition 2.6. Let 0 < q < 1 and n ∈ N. With the operators Pq and P q
defined in (7) and (8) and y(t) := t

1−t ∈ tQ[[t]] we have
(i) for k := (k1, . . . , kn) ∈ Nn0 with k1 > 0

ζq[k] = P k1q [yP k2q [y · · ·P knq [y] · · · ]](1);

(ii) for k := (k1, . . . , kn) ∈ Nn with k1 > 1

zq[k] = P
k1
q [yP

k2
q [y · · ·P knq [y] · · · ]](q);

(iii) for k := (k1, . . . , kn) ∈ Nn with k1 > 1

ζ
B

q [k] = P k1−1
q P q[yP

k2−1
q P q[y · · ·P kn−1

q P q[y] · · · ]](1).

Remark 2.7. In [4, Eq. (20)] the authors provide a characterization of ζBq via the
iteration of the Rota-Baxter operator Pq and a set of power series in Q[[t, q]] whose
cardinality is equal to the length of k. Heuristically, they work with an algebra
which is induced by infinitely many letters. In contrast to this our description in
Proposition 2.6 (iii) relies only on the two Rota-Baxter operators Pq and P q as
well as on y ∈ tQ[[t]]. Therefore the underlying algebra is induced by only three
letters. The reduction to three letters is in accordance with the double shuffle
relation of Takeyama in [17].

Proof of Proposition 2.6. (ii) was proved in [3, Eq. (17)]. (i) follows by induc-
tion on the height of k. Let k := (k1, . . . , kn) ∈ Nn0 with k1 > 0 and fixed n ∈ N.
For ht(k) = 1 the index is of the form k = (k1, 0, . . . , 0) with k1 > 0. Then we
have

P k1q [yn](t) = P k1−1
q

[∑
m>0

(
qmt

1− qmt

)n]
= P k1−1

q

[∑
m>0

n∏
i=1

∑
li>0

qmlitli

]

= P k1−1
q

 ∑
li>0

i=1,...,n

tl1+···+ln ql1+···+ln

1− ql1+···+ln


= P k1−1

q

[ ∑
m1>···>mn>0

tm1
qm1

1− qm1

]

=
∑

m1>···>mn>0

tm1
qk1m1

(1− qm1)k1

and evaluation at t = 1 shows that the base case is true. By the induction
hypothesis, (i) is true for ht(k) := s ∈ N. Then in the inductive step s→ s+ 1 we
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assume that ht(k) = s+1 and therefore k = (k′,k′′) with k′ := (k′1, 0, . . . , 0) ∈ Na
(1 6 a 6 n − 1) and k′′ := (k′′a+1, . . . , k

′′
n) ∈ N(n−a) such that ht(k′) = 1 and

ht(k′′) = s. Then we obtain

P k1q [yP k2q [y · · ·P knq [y] · · · ]](t)

= P
k′1
q

ya(t)
∑

ma+1>···>mn>0

tma+1
qk
′′
a+1ma+1+···+k′′nmn

(1− qma+1)k
′′
a+1 . . . (1− qmn)k

′′
n


= P

k′1−1
q

∑
m>0

(
qmt

1− qmt

)a ∑
ma+1>···>mn>0

qmma+1tma+1

× qk
′′
a+1ma+1+···+k′′nmn

(1− qma+1)k
′′
a+1 . . . (1− qmn)k

′′
n

]

= P
k′1−1
q

 ∑
li>0

i=1,...,a

∑
ma+1>···>mn>0

tl1+···+la+ma+1
ql1+···+la+ma+1

1− ql1+···+la+ma+1

× qk
′′
a+1ma+1+···+k′′nmn

(1− qma+1)k
′′
a+1 . . . (1− qmn)k

′′
n

]

= P
k′1−1
q

 ∑
m1>···>ma>ma+1>···>mn>0

tm1
qm1

1− qm1

qk
′′
a+1ma+1+···+k′′nmn

(1− qma+1)k
′′
a+1 . . . (1− qmn)k

′′
n


=

∑
m1>···>ma>ma+1>···>mn>0

tm1
qk
′
1m1

(1− qm1)k
′
1

qk
′′
a+1ma+1+···+k′′nmn

(1− qma+1)k
′′
a+1 . . . (1− qmn)k

′′
n

.

Now we evaluate at t = 1 and get the claim. (iii) follows by a similar induction
on the shifted height of k := (k1, . . . , kn) which is defined by h̃t(k) := #{i ∈
{1, . . . , n} : ki > 1}. �

In [4, Corollary 5] it was shown that

ζ
B

q [k] = (−1)|k|zq−1 [k] +

n−1∑
j=1

∑
l2+···+ln=j

li∈{0,1},i=2,...,n

(−1)|k|−jzq−1 [k1, k2 − l2, . . . , kn − ln]

for k := (k1, . . . , kn) ∈ Nn with k1 > 1. In the next lemma we disclose the
connection between the models (4) and (5).

Lemma 2.8. Let n ∈ N. For k := (k1, . . . , kn) ∈ Nn0 with k1 > 0 we have

zq[k] =

k1∑
r1=1

k2∑
r2=0

· · ·
kn∑
rn=0

(
k1 − 1

r1 − 1

) n∏
j=2

(
kj
rj

)
ζq[r1, . . . , rn].



144 Johannes Singer

Proof. The shift operator Sj : Mq →Mq is defined as

Sjζq[k1, . . . , kn] := ζq[k1, . . . , kn] + ζq[k1, . . . , kj−1, kj − 1, kj+1, . . . , kn]

for j ∈ {1, . . . , n}. Obviously, for s1, . . . , sn ∈ N0 with s1 6 k1 − 1 and sj 6 kj for
j 6= 1 we have

Ss11 ◦ · · · ◦ Ssnn ζq[k1, . . . , kn] =

s1∑
r1=0

· · ·
sn∑
rn=0

 n∏
j=1

(
sj
rj

)
ζq[k1 − r1, . . . , kn − rn]


by the definition of the shift operator. On the other hand, we see that

Snζq[k1, · · · , kn]

= ζq[k1, . . . , kn] + ζq[k1, . . . , kn−1, kn − 1]

=
∑

m1>···>mn>0

qk1m1+···+kn−1mn−1

(1− qm1)k1 . . . (1− qmn−1)kn−1

(
qknmn

(1− qmn)kn
+

q(kn−1)mn

(1− qmn)kn−1

)

=
∑

m1>···>mn>0

qk1m1+···+kn−1mn−1+(kn−1)mn

(1− qm1)k1 . . . (1− qmn)kn
.

Therefore we easily get by induction that

Ss11 ◦ · · · ◦ Ssnn ζq[k1, . . . , kn] =
∑

m1>···>md>0

q(k1−s1)m1+···+(kn−sn)mn

(1− qm1)k1 . . . (1− qmn)kn

(cf. [19, proof of Proposition 2.5]). We choose s1 = k1 − 1 and sj = kj for
j ∈ {2, . . . , n} to complete the proof. �

3. Algebraic theory of Q-linear relations

This section is devoted to the study of the Q-linear relations for the model ζq that
are induced by a double q-shuffle product.

3.1. q-shuffle

Let X := {y, p} be the set of letters and X∗ be the free monoid of X with respect
to concatenation. The elements of X∗ are called words and the empty word in X∗
is denoted by 1. The q-shuffle product � : X∗×X∗ → Q〈X〉 is defined iteratively
by

(i) 1� v = v� 1 = v for any v ∈ X∗;
(ii) (yu)� v = u� (yv) = y(u� v) for any u, v ∈ X∗;
(iii) (pu)� (pv) = p(u� (pv)) + p((pu)� v) + p(u� v) for any u, v ∈ X∗.

Now we can extent the q-shuffle product to Q〈X〉 by distributivity.

Lemma 3.1. The q-shuffle product � is commutative and associative.
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Proof. We define the length l(u) of the word u ∈ X∗ as the number of letters
of u. Now let v, w ∈ X∗. We prove commutativity by induction on the length
l(v) + l(w). The base case is obvious due to (i). By induction hypothesis we get:

Case 1: v or w begin with y. Without loss of generality let v = yv′ (v′ ∈ X∗)
with l(v′) = l(v)− 1:

v� w = y(v′ � w) = y(w� v′) = w� v

Case 2: v and w begin with p. Therefore we have v = pv′ and w = pw′

(v′, w′ ∈ X∗) with l(v′) = l(v)− 1 and l(w′) = l(w)− 1 :

v� w = p(v′ � pw′) + p(pv′ � w′) + p(v′ � w′) = w� v

Now we prove associativity by induction on the length l(u)+l(v)+l(w) for u, v, w ∈
X∗. The base case is clear. The induction hypothesis implies:

Case 1: u, v or w begin with y. Without loss of generality let u = yu′ (u′ ∈ X∗)
with l(u′) = l(u)− 1:

(u� v)� w = (y(u′ � v)� w) = y((u′ � v)� w) = y(u′ � (v� w))

= u� (v� w)

Case 2: u, v and w begin with p. Therefore we have u = pu′, v = pv′ and
w = pw′ (u′, v′, w′ ∈ X∗) with l(u′) = l(u)−1, l(v′) = l(v)−1 and l(w′) = l(w)−1:

(u� v)� w = (pu′ � pv′)� pw′ = p {(u′ � pv′)� pw′ + p(u′ � pv′)� w′

+(u′ � pv′)� w′ + (pu′ � v′)� pw′

+p(pu′ � v′)� w′ + (pu′ � v′)� w′

+(u′ � v′)� pw′ + p(u′ � v′)� w′

+(u′ � v′)� w′}
= p {u′ � p(v′ � pw′) + pu′ � (v′ � pw′)

+u′ � (v′ � pw′) + u′ � p(pv′ � w′)

+pu′ � (pv′ � w′) + u′ � (pv′ � w′)

+u′ � p(v′ � w′) + pu′ � (v′ � w′)

+u′ � (v′ � w′)}
= pu′ � (pv′ � pw′) = u� (v� w)

This completes the proof. �

The set Y := pX∗y consists of the words beginning with p and ending with y.
This generates the subalgebra 〈Y 〉Q of Q〈X〉 given by

〈Y 〉Q = Q1 + pQ〈X〉y

Now we define the map ζ
�

q : Y → R by

ζ
�

q [pk1y · · · pkny] := ζq[k1, . . . , kn]

and extend it via ζ
�

q [1] := 1 and Q-linearity to 〈Y 〉Q.
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Now we have the following result:

Theorem 3.2. The map

ζ
�

q : (〈Y 〉Q,�)→ (Q[[q]], ·)

is a homomorphism of commutative algebras. Especially we have

ζ
�

q [u]ζ
�

q [v] = ζ
�

q [u� v]

for all u, v ∈ Y .

Proof. The associativity and commutativity of the shuffle product � is an imme-
diate consequence of Lemma 3.1. Due to relation (iii) in the definition of � and
the Rota-Baxter identity for Pq, the map φq : 〈Y 〉Q → A given by

pk1ypk2y · · · pkny 7→ P k1q [yP k2q [y · · ·P knq [y] · · · ]]

is an algebra homomorphism. Since

ζ
�

q [w] = φq(w)(t) |t=1

for any word w ∈ Y we obtain the claimed formula. �

3.2. Quasi q-shuffle

Let U := {ui : i ∈ N0} and U∗ the free monoid of U with respect to concatena-
tion. The empty word is denoted by 1. Now we define the quasi q-shuffle product
t : U∗ × U∗ → Q〈U〉, that coincides with the classical quasi shuffle product, re-
cursively

(i) us t 1 = 1 t us = us for all s ∈ N0;
(ii) (usv) t (utw) = us(v t (utw)) + ut((usv) tw) + us+t(v tw) for all s, t ∈ N0

and v, w ∈ U∗.

Now we extend t to Q〈U〉 by distributivity. Further we define the set of convergent
words by

V := {uk1 · · ·ukn ∈ U∗ : (k1, . . . , kn) ∈ Nn0 , n ∈ N, k1 > 0}

and denote 〈V 〉Q as the subalgebra of Q〈U〉 that is generated by V .
The map ζ

t
q : V → R is given by

ζ
t
q [uk1 · · ·ukn ] := ζq[k1, . . . , kn]

for words in V and is extended to 〈V 〉Q by ζ
t
q [1] := 1 and Q-linearity.
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Theorem 3.3. The map

ζ
t
q : (〈V 〉Q,t)→ (Q[[q]], ·)

is a homomorphism of commutative algebras. Especially we have

ζ
t
q [u]ζ

t
q [v] = ζ

t
q [u t v]

for all u, v ∈ V .

Proof. From [11, Theorem 2.1] we know that t is commutative and associative.
The second claim is an obvious consequence of the multiplication of two series of
MZVs. One should keep in mind that we just have to substitute the terms qm/[m]q
to obtain the classical MZVs. �

3.3. Double q-shuffle relation

Using Theorem 3.2 and 3.3 we can produce Q-linear relations between the ζq. We
define the map Φ: Y → V via

pk1y · · · pkny 7→ uk1 · · ·ukn

and extend it to the Q-vector spaces that are spanned by Y and V . Obviously,
the extended map Φ: 〈Y 〉Q

∼−→ 〈V 〉Q is a Q-vector space isomorphism.

Theorem 3.4. For u, v ∈ Y we have

ζ
t
q [Φ(u) t Φ(v)− Φ(u� v)] = 0.

Proof. For w := pk1y · · · pkny ∈ Y with (k1, . . . , kn) ∈ Nn0 , k1 > 0, we have

ζ
�

q [w] = ζq[k1, . . . , kn] = ζ
t
q [Φ(w)].

Therefore Theorem 3.2 and 3.3 imply

ζ
t
q [Φ(u) t Φ(v)] = ζ

t
q [Φ(u)]ζ

t
q [Φ(v)] = ζ

�

q [u]ζ
�

q [v]

= ζ
�

q [u� v] = ζ
t
q [Φ(u� v)]

for u, v ∈ Y . �

3.4. q-regularization and classical case

The q-MZVs allow us to deduce identities for classical MZVs. The parameter q
acts as an intrinsic regulator. Therefore we need no additional regularization in
the sense of Ihara, Kaneko and Zagier. The most prominent relation which is
not covered by classical unregulated double shuffle relation is Euler’s identity for
MZVs given by ζ(2, 1) = ζ(3). For py, p2y ∈ Y we calculate

Φ(py) t Φ(p2y) = u1u2 + u2u1 + u3
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and

Φ(py� p2y) = u1u2 + 2u2u1 + u2u0 + u2
1.

Therefore we get

ζq[3] = ζq[2, 1] + ζq[2, 0] + ζq[1, 1]. (9)

Multiplying (9) with (1− q)3 results in

ζq[3] = ζq[2, 1] + (1− q) (ζq[2, 0] + ζq[1, 1]) .

Since limq↑1(1− q) (ζq[2, 0] + ζq[1, 1]) = 0 we get Euler’s identity in the limit q ↑ 1.
For p2y ∈ Y we calculate

Φ(p2y) t Φ(p2y) = 2u2u2 + u4

and

Φ(p2y� p2y) = 2u2u2 + 4u3u1 + 2u3u0 + 4u2u1 + u2u0.

Therefore we get

ζq[4] = 4ζq[3, 1] + 2ζq[3, 0] + 4ζq[2, 1] + ζq[2, 0].

Again, we get the classical identity ζ(4) = 4ζ(3, 1) in the limit q ↑ 1.
For py ∈ Y we calculate

Φ(py) t Φ(py) = 2u1u1 + u2

and

Φ(py� py) = 2u1u1 + u1u0.

Therefore we get

ζq[2] = ζq[1, 0]. (10)

and in the limit case we obtain

lim
q↑1

(1− q)ζq[1, 0] =
π2

6
.

4. Differential algebra structure

We introduce the derivation operator δ : Q[[q]] → Q[[q]] given by δ := q ddq . The
main result of this section is
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Theorem 4.1. The algebra Mq of q-MZVs is a differential algebra with respect
to δ. Especially we have

δζq[k1, . . . , kn]

=

n∑
r=1

kr

{
(n− r + 1)

(
ζq[k1, . . . , kn] + ζq[k1, . . . , kr + 1, . . . , kn]

)
+

n∑
s=r

(
ζq[k1, . . . , ks, 0, ks+1, . . . , kn] + ζq[k1, . . . , kr + 1, . . . , ks, 0, ks+1, . . . , kn]

)}
for (k1, . . . , kn) ∈ N0 with k1 > 0.

Proof. It suffices to prove the formula. We get

δζq[k1, . . . , kn] =
∑

m1>···>mn>0

(k1m1 + · · ·+ knmn)qk1m1+···+knmn

(1− qm1)k1 · · · (1− qmn)kn

+
∑

m1>···>mn>0

n∑
r=1

krmrq
k1m1+···+(kr+1)mr+···+knmn

(1− qm1)k1 · · · (1− qmr )kr+1 · · · (1− qmn)kn

=

n∑
r=1

kr
∑

m1>···>mn>0

mrq
k1m1+···+knmn

(1− qm1)k1 · · · (1− qmn)kn

+

n∑
r=1

kr
∑

m1>···>mn>0

mrq
k1m1+···+(kr+1)mr+···+knmn

(1− qm1)k1 · · · (1− qmr )kr+1 · · · (1− qmn)kn
.

Now we use

mr = (n− r + 1) + (mr −mr+1 − 1)

+ (mr+1 −mr+2 − 1) + · · ·+ (mn−1 −mn − 1) + (mn − 1).

By summation along the anti-diagonal we get∑
m1>···>mn>0

(ms −ms+1 − 1)qk1m1+···+knmn

(1− qm1)k1 . . . (1− qmn)kn
= ζq[k1, . . . , ks, 0, ks+1, . . . , kn].

Therefore

δζq[k1, . . . , kn]

=

n∑
r=1

kr

{
(n− r + 1)ζq[k1, . . . , kn] +

n∑
s=r

ζq[k1, . . . , ks, 0, ks+1, . . . , kn]

}

+

n∑
r=1

kr

{
(n− r + 1)ζq[k1, . . . , kr + 1, . . . , kn]

+

n∑
s=r

ζq[k1, . . . , kr + 1, . . . ks, 0, ks+1, . . . , kn]

}
,

which yields the claim. �
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5. Euler’s decomposition formula

In the framework of classical MZVs, Euler proved the following decomposition
formula

ζ(a)ζ(b) =

a−1∑
l=0

(
b+ l − 1

b− 1

)
ζ(b+ l, a− l) +

b−1∑
l=0

(
a+ l − 1

a− 1

)
ζ(a+ l, b− l) (11)

for a, b > 2. This result can be deduced from [5, Theorem 1] (see Theorem A.1)
using the Rota-Baxter operator I.

For model (4), using the shuffle product induced by the operator Pq, we get
Theorem 5.2. The result relies on the same identity in Rota-Baxter algebras as
in [4]. The second part of this section is devoted to Bradley’s model. We use
Proposition 2.6 (iii) to present a purely combinatorial proof of Euler’s decomposi-
tion formula (Corollary 5.6) relying on a Rota-Baxter operator identity (Theorem
5.5). Note that the proof of Euler’s decomposition formula in [2] relies on a dif-
ferential identity. Zhao also provided a rather complicated formula in [19] using a
q-analogue of Jackson’s integral formula. In [17] Takeyama proposed an extension
of the algebra

MB
q :=

〈
ζ
B

q [k] : k ∈ Nn, k1 > 1, n ∈ N
〉
Q

and proved that there is a double shuffle product. Takeyama’s extension also
contains the terms ϕq[k] (k ∈ N). The iteration of Rota-Baxter operators P and
P as described in Proposition 2.6 can also be used to establish a double shuffle
product. This will be discussed in [16].

5.1. Euler’s decomposition formula for Zudilin’s model

We start with the following result:

Proposition 5.1. For k ∈ N we have

ζq[k, 0] =

k−1∑
m=1

(−1)m+1

k −m
δζq[k −m]− ζq[k] + (−1)k+1(ζq[1] + ζq[2]).

Proof. For k = 1 we have ζq[1, 0] = ζq[2] which is exactly (10). Now we can
conclude from Theorem 4.1 and the induction hypothesis that

ζq[k + 1, 0] =
1

k
δζq[k]− ζq[k]− ζq[k + 1]− ζq[k, 0]

=

k−1∑
m=0

(−1)m

k −m
δζq[k −m]− ζq[k + 1] + (−1)k+2(ζq[1] + ζq[2])

=

k∑
m=1

(−1)m+1

k + 1−m
δζq[k + 1−m]− ζq[k + 1] + (−1)k+2(ζq[1] + ζq[2]),

which yields the claim. �
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Theorem 5.2. For a, b ∈ N we have

ζq[a]ζq[b] =

a−1∑
l=0

a−1−l∑
k=0

(
l + b− 1

b− 1

)(
b

k

)
ζq[b+ l, a− l − k]

+

b−1∑
l=0

b−1−l∑
k=0

(
l + a− 1

a− 1

)(
a

k

)
ζq[a+ l, b− l − k]

+

a+b−2∑
l=1

αlδζq[l] +

min(a,b)∑
l=1

βlζ[a+ b− l] + (−1)a+b(ζq[1] + ζq[2])

where αl and βl are coefficients depending on a and b given by

αl :=


(−1)a+b+l

l
, 1 6 l 6 max(a, b)− 1,

(−1)a+b+l

l

min(a,b)−1∑
j=l−max(a,b)+1

(−1)j−1

(
a+ b− j − 1

a− j, b− j, j − 1

)
, else;

βl := −
(

a+ b− l − 1

a− l, b− l, l − 1

)
.

Remark 5.3. If we assume a, b > 1 and multiply Euler’s formula in Theorem 5.2
with (1− q)a+b we obtain immediately the classical formula (9) in the limit q ↑ 1.

Proof. From Theorem A.2 and the proof of Corollary 12 in [4] we observe that
the summation corresponding to the domains D1, D2, D3 and D4 corresponds to

a−1∑
l=0

a−1−l∑
k=0

(
l + b− 1

b− 1

)(
b

k

)
ζq[b+ l, a− l − k]

+

b−1∑
l=0

b−1−l∑
k=0

(
l + a− 1

a− 1

)(
a

k

)
ζq[a+ l, b− l − k].

For the sum over the domain D5 we obtain with Proposition 5.1

sa,b :=

a+b−1∑
j=max(a,b)

(
j − 1

j − b, j − a, a+ b− j − 1

)
ζq[j, 0]

=

min(a,b)∑
j=1

(
a+ b− j − 1

a− j, b− j, j − 1

)
ζq[a+ b− j, 0]

=

min(a,b)∑
j=1

(
a+ b− j − 1

a− j, b− j, j − 1

) a+b−j−1∑
m=1

(−1)m+1

a+ b− j −m
δζq[a+ b− j −m]

−
min(a,b)∑
j=1

(
a+ b− j − 1

a− j, b− j, j − 1

)
ζq[a+ b− j]

+

min(a,b)∑
j=1

(
a+ b− j − 1

a− j, b− j, j − 1

)
(−1)a+b−j−1(ζq[1] + ζq[2]).
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In order to simplify the terms we use the following combinatorial result:

Lemma 5.4. For a, b ∈ N we have

min(a,b)∑
j=1

(−1)j+1

(
a+ b− j − 1

a− j, b− j, j − 1

)
= 1.

Proof. Without loss of generality we assume a 6 b ∈ N. We prove the claim by
induction on a. The base case is true because(

b− 1

0, b− 1, 0

)
= 1

for all b > 1. In the inductive step let a + 1 6 b. Then obviously a 6 b and we
obtain with the induction hypothesis

a+1∑
j=1

(−1)j+1

(
a+ b− j

a− j + 1, b− j, j − 1

)

= (−1)a
(

b− 1

0, b− a− 1, a

)
+

a∑
j=1

(−1)j+1 a+ b− j
a− j + 1

(
a+ b− j − 1

a− j, b− j, j − 1

)

= 1 + (−1)a
(

b− 1

0, b− a− 1, a

)
+ (b− 1)

a∑
j=1

(−1)j+1

(
a+ b− j − 1

a− j + 1, b− j, j − 1

)

= 1 + (b− 1)

a+1∑
j=1

(−1)j+1

(
a+ b− j − 1

a− j + 1, b− j, j − 1

)
= 1.

The last equality is true, since we have

a+1∑
j=1

(−1)j+1

(
a+ b− j − 1

a− j + 1, b− j, j − 1

)
=

a∑
j=0

(−1)a−j

j + b− 1

(
j + b− 1

j, b− a+ j − 1, a− j

)
= 0

due to [4, Lemma 11]. This completes the proof. �
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Therefore we have

sa,b =

min(a,b)∑
j=1

(
a+ b− j − 1

a− j, b− j, j − 1

)
(−1)a+b−j

a+b−j−1∑
m=1

(−1)m+1

m
δζq[m]

−
min(a,b)∑
j=1

(
a+ b− j − 1

a− j, b− j, j − 1

)
ζq[a+ b− j] + (−1)a+b(ζq[1] + ζq[2])

= (−1)a+b

max(a,b)−1∑
m=1

(−1)m

m
δζq[m]

+

min(a,b)∑
j=1

(
a+ b− j − 1

a− j, b− j, j − 1

) a+b−j−1∑
m=max(a,b)

(−1)a+b−j−1+m

m
δζq[m]

+

min(a,b)∑
j=1

βjζq[a+ b− j] + (−1)a+b(ζq[1] + ζq[2])

= (−1)a+b

max(a,b)−1∑
m=1

(−1)m

m
δζq[m]

+

a+b−2∑
m=max(a,b)

(−1)m

m
δζq[m]

min(a,b)−1∑
j=m−max(a,b)+1

(−1)a+b−j−1

(
a+ b− j − 1

a− j, b− j, j − 1

)

+

a−1∑
j=0

βjζq[j + b] + (−1)a+b(ζq[1] + ζq[2])

=

a+b−2∑
k=1

αkδζq[k] +

min(a,b)−1∑
j=1

βjζq[a+ b− j] + (−1)a+b(ζq[1] + ζq[2])

finishing the proof of Theorem 5.2. �

5.2. Euler’s decomposition formula for Bradley’s model

Let (P,A) and (Q,A) be two Rota-Baxter k-algebras of weight α respectively β.
We call them compatible, if they satisfy the relations

P [f ]Q[g] = P [fQ[g]] +Q[P [f ]g] (12)

and

Q[f ]P [g] = Q[fP [g]] + P [Q[f ]g] (13)

for any f, g ∈ A. One should note that this is fulfilled by P and P as shown
in Proposition 2.5. Now we are interested in the operator T (a1, a2; b1, b2; c1, c2) :
A×A → A which is defined as

T (a1, a2; b1, b2; c1, c2) = P c1Qc2 [P a1 [Qa2 [·]] · P b1 [Qb2 [·]]]
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for a1, a2, b1, b2, c1, c2 ∈ N0. We have the following result:

Theorem 5.5. Let (P,A) and (Q,A) be two compatible Rota-Baxter k-algebras
of weight α respectively β. For a, b ∈ N we have

T (a− 1, 1; b− 1, 1; 0, 0)

=

a−1∑
s=0

a−1−s∑
t=0

αt
(
s+ b− 1

b− 1

)(
b− 1

t

)
T (a− s− t− 1, 1; 0, 0; b+ s− 1, 1)

+

b−1∑
s=0

b−1−s∑
t=0

αt
(
s+ a− 1

a− 1

)(
a− 1

t

)
T (0, 0; b− s− t− 1, 1; a+ s− 1, 1)

+ β

min(a,b)∑
s=1

αs−1

(
a+ b− s− 1

a− s, b− s, s− 1

)
T (0, 0; 0, 0; a+ b− s− 1, 1).

In order to prove the theorem we use the graphical notation of [5]. A product
on A is represented by

the Rota-Baxter operator P by

and the Rota-Baxter operator Q by

We have four calculation rules:
(A) The Rota-Baxter identity of P is decoded by

=

type P1

+

type P2

+ α

type P3

(B) The Rota-Baxter identity of Q is decoded by

=

type Q1

+

type Q2

+ β

type Q3
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(C) Due to equation (12) the mixed application of the operators P and Q is given
by

=

type M1

+

type M2

(D) Due to equation (13) the mixed application of the operators Q and P is given
by

=

type M3

+

type M4

Proof of Theorem 5.5. Let a, b ∈ N. We regard the operator T (a − 1, 1; b −
1, 1; 0, 0) which corresponds to the tree

a-1 b-1

From the iterated applications of the Rota-Baxter identities of P and Q and the
interplay of P and Q we conclude that the tree can be written as a k[α, β]-linear
combination of trees exhibiting the following three canonical forms

i

j

i

j j

with i, j ∈ N0 depending on a and b.
We begin by counting the occurrence of the canonical form related to

T (i, 1; 0, 0; j, 1) (for i, j ∈ N0 depending on a, b) which is represented by the fol-
lowing tree:

i

j

There are j + 1 applications of our calculation rules (A)-(D). The last application
is either of type M1 if i > 0 or of type Q1 if i = 0. Therefore we have j applications
of our calculation rules (A)-(D) to transform the tree T (a− 1, 1; b− 1, 1; 0, 0) to

i

j
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In order to attain this form we have to move b − 1 dots from the right leg to
the neck. Furthermore we can annihilate dots but we can not create new ones.
Therefore b−1 6 j 6 a+b−2. For i we have the obvious restriction 0 6 i 6 a−1.
Additionally, we have to ensure i+j 6 a+b−2. Hence i 6 min(a−1, a+b−j−2) =
a + b − j − 2 since j > b − 1. On the other hand the number of annihilated dots
is bounded from above by min(a, b)− 1. Hence i+ j > max(a, b)− 1 and finally

i > max(0,max(a, b)− 1− j) = max(0, a− j − 1)

due to j > b− 1. Now the j moves of dots rely on k1 moves of type P2 or M2, k2

moves of type P1 or M3 and k3 moves of type P3. Note that there is no intrinsic
permutation of P2 and M2 in k1 because k1 counts the number of dots moved from
the left leg to the neck. The choice of type P2 or M2 is then determined by the
fact of having a dot or a stroke on the right leg. The same argument holds for k2.
All in all we get the following system of equations

k1 + k2 + k3 = j, k1 + k3 = a− 1− i, k2 + k3 = b− 1.

Then we obtain

k1 = j − b+ 1, k2 = i+ j − a+ 1, k3 = a+ b− i− j − 2.

Hence the term T (i, 1; 0, 0; j, 1) arises(
j

k1, k2, k3

)
=

(
j

j − b+ 1, i+ j − a+ 1, a+ b− i− j − 2

)
times in the the expansion of T (a − 1, 1; b − 1, 1; 0, 0). The power of the weight
factor α of our canonical form is determined by k3. All in all the number of
appearances of the canonical form in the expansion of the original operator T is
given by

a+b−2∑
j=b−1

a+b−j−2∑
i=max(0,a−j−1)

αa+b−i−j−2

×
(

j

j − b+ 1, i+ j − a+ 1, a+ b− i− j − 2

)
T (i, 1; 0, 0; j, 1)

=

a−1∑
j=0

min(b−1,a−j−1)∑
i=0

αi
(

j + b− 1

j, b− i− 1, i

)
T (a− i− j − 1, 1; 0, 0; b+ j − 1, 1)

=

a−1∑
j=0

a−j−1∑
i=0

αi
(
j + b− 1

b− 1

)(
b− 1

i

)
T (a− i− j − 1, 1; 0, 0; b+ j − 1, 1).

In the second case we count the trees corresponding to T (0, 0; i, 1; j, 1). This
is completely analogous to the first case.
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In the last case we count the trees reducing to T (0, 0; 0, 0; j, 1). The graphical
representation is given by

j

There are j + 1 moves obeying the calculation rules (A)-(D). The last move must
be of type Q3 and gives rise to the weight factor β. Therefore we have to apply j
moves of dots to the tree

j

With a similar argumentation as in the first case we deduce max(a, b) − 1 6 j 6
a + b − 2. The j moves of dots rely on k1 moves of type P2 or M2, k2 moves of
type P1 or M3 and k3 moves of type P3. We get the following system of equations

k1 + k2 + k3 = j, k1 + k3 = a− 1, k2 + k3 = b− 1.

Therefore we get

k1 = j − b+ 1, k2 = j − a+ 1, k3 = a+ b− j − 2

and the term T (0, 0; 0, 0; j, 1) arises(
j

j − b+ 1, j − a+ 1, a+ b− j − 2

)
times in the the expansion of T (a− 1, 1; b− 1, 1; 0, 0). This leads to

β

a+b−2∑
j=max(a,b)−1

αa+b−j−2

(
j

j − b+ 1, j − a+ 1, a+ b− j − 2

)
T (0, 0; 0, 0; j, 1)

= β

min(a,b)∑
j=1

αj−1

(
a+ b− j − 1

a− j, b− j, j − 1

)
T (0, 0; 0, 0; a+ b− j − 1, 1).

This concludes the proof. �
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Using Proposition 2.6, Theorem 5.5 immediately implies the following result:

Corollary 5.6 ([1]). For a, b ∈ N>2 we have

ζ
B

q [a]ζ
B

q [b] =

a−1∑
s=0

a−1−s∑
t=0

(
s+ b− 1

b− 1

)(
b− 1

t

)
ζ
B

q [b+ s, a− s− t]

+

b−1∑
s=0

b−1−s∑
t=0

(
s+ a− 1

a− 1

)(
a− 1

t

)
ζ
B

q [a+ s, b− s− t]

−
min(a,b)∑
s=1

(a+ b− s− 1)!

(a− s)!(b− s)!(s− 1)!
ϕq[a+ b− s],

where

ϕq[k] :=
∑
n>0

(n− 1)q(k−1)n

(1− qn)k
=
∑
n>0

nq(k−1)n

(1− qn)k
− ζBq [k].

6. Polynomials related to Spitzer’s identity

We start with the well known Spitzer-Identity.

Theorem 6.1 ([14]). Let A be a unitary commutative Q-algebra and P a Rota-
Baxter operator of weight λ ∈ Q×. Then for a ∈ A we have

exp

−∑
k>1

λk−1(−x)kP (ak)

k

 =
∑
n>0

xnPna (1)

in the ring of formal power series A[[x]] where we used the notation Pc(a) = P (ac)
and Pna denotes the n-fold composition of Pa.

The set of Rota-Baxter operators has no known algebraic structure. Therefore
we cannot apply Spitzer’s identity to iterations of Rota-Baxter operators Pq and P q
defined in Section 2.2 because e. g. the composition of two Rota-Baxter operators
is in general no Rota-Baxter operator. To overcome this constraint we need the
concept of free Rota-Baxter algebras as reviewed in Section 2.1.

In order to reproduce the q-MZ(S)V that are defined by iterated sums we define
the summation operators

P [f ](x) :=
∑
n>0

f(x+ n) and P [f ](x) :=
∑
n>0

f(x+ n).

Under certain regularity conditions on f we can deduce that P is a Rota-Baxter
operator of weight 1 and P is one of weight −1. For fk(t) := qkt

[t]kq
we regard the

Q-algebra

Aq :=
⊕
k∈N0

Qfk(t)
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with a filtration given by Aq,m =
⊕

k>mQfk(t). For f := (f1, . . . , fn) ∈ Anq
we define the symbol Pf := P [f1[P [f2 . . . P [fn] . . . ]]]. Since Aq is an iteratively
summable subalgebra of level 1 of the algebra of continuous function Cq(]0,∞[)
on ]0,∞[ in the parameter q, the MZV algebra is given by

Aq,1 :=
{
P(f1,...,fn) : fi ∈ Aq, i = 1, . . . , n, fn ∈ Aq,1

}
.

The MZV algebra Aq,1 is the algebra of q-MZVs if we employ the evaluation ho-
momorphism f 7→ f(0). The algebra of q-MZSVs is obtained by replacing P by P
in Aq,1 and employing the evaluation f 7→ f(1).

Theorem 6.2. Let s ∈ N and A be a unitary commutative Q-algebra and P
a Rota-Baxter operator of weight λ ∈ Q×. Then there is a unique sequence
(Q

(λ)
n )n∈N of polynomials with Q

(λ)
n ∈ Q[X1, . . . , Xn] and deg(Q

(λ)
n ) = n such

that

Pnas(1) = Q(λ)
n

(
P (as), P (a2s), . . . , P (asn)

)
(14)

for a ∈ A satisfying

(i) Q(λ)
0 = 1 and ∇nQ(λ)

n =

n∑
k=1

(−λ)k−1

k
Q

(λ)
n−k~ek,

(ii) Q(λ)
n ({0}n) = 0

for all n ∈ N in which ∇n :=
∑n
k=1 ∂Xk~ek where ~ek is the k-th canonical unit

vector and {k}n denotes the n-tuple (k, . . . , k).

Corollary 6.3. For k, n ∈ N we have

ζq[{k}n] = Q(1)
n (ζq[k], ζq[2k], . . . , ζq[nk])

and

ζ?q [{k}n] = Q(−1)
n (ζ?q [k], ζ?q [2k], . . . , ζ?q [nk]),

where (Q
(1)
n )n∈N and (Q

(−1)
n )n∈N are the unique sequences of polynomials in The-

orem 6.2.

Proof. For the filtered algebra Aq we regard the corresponding free Rota-Baxter
algebra (�Q(Aq), PAq ) of weight 1 respectively −1 and we can apply Theorem
6.2. For a := fk(t) = qkt

[t]kq
∈ Aq, equation (14) is an algebraic relation in M(Aq)k.

Using the evaluation ν : f 7→ f(0) respectively ν : f 7→ f(1), the relation reduces
via ν ◦Pk to the claim in which Pk(1⊗f1⊗f2⊗· · ·⊗fn) := P(f1,...,fn) respectively
Pk(1⊗ f1 ⊗ f2 ⊗ · · · ⊗ fn) := P (f1,...,fn). �

Example 6.4.

(a) For a Rota-Baxter operator of weight 1 we get the polynomials listed in Table 1.
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(b) The first three nontrivial identities for q-MZVs are

ζq[s, s] =
1

2
ζq[s]

2 − 1

2
ζq[2s],

ζq[s, s, s] =
1

6
ζq[s]

3 − 1

2
ζq[s]ζq[2s] +

1

3
ζq[3s],

ζq[s, s, s, s] =
1

24
ζq[s]

4 − 1

4
ζq[s]

2ζq[2s] +
1

3
ζq[s]ζq[3s] +

1

8
ζq[2s]

2 − 1

4
ζq[4s].

and for q-MZSV are

ζ?q [s, s] =
1

2
ζ?q [s]2 +

1

2
ζ?q [2s],

ζ?q [s, s, s] =
1

6
ζ?q [s]3 +

1

2
ζ?q [s]ζ?q [2s] +

1

3
ζ?q [3s],

ζ?q [s, s, s, s] =
1

24
ζ?q [s]4 +

1

4
ζ?q [s]2ζ?q [2s] +

1

3
ζ?q [s]ζ?q [3s] +

1

8
ζ?q [2s]2 +

1

4
ζ?q [4s].

n p(n) Q
(1)
n

0 0 1

1 1 X1

2 2 1
2X

2
1 − 1

2X2

3 3 1
6X

3
1 − 1

2X1X2 + 1
3X3

4 5 1
24X

4
1 − 1

4X
2
1X2 + 1

3X1X3 + 1
8X

2
2 − 1

4X4

5 7 1
120X

5
1 − 1

12X
3
1X2 + 1

6X
2
1X3 + 1

8X1X
2
2 − 1

4X1X4 − 1
6X2X3 + 1

5X5

6 11 1
720X

6
1 − 1

48X
4
1X2 + 1

18X
3
1X3 + 1

16X
2
1X

2
2 + 1

8X
2
1X4 − 1

6X1X2X3 − 1
48X

3
2

+ 1
5X1X5 + 1

8X2X4 + 1
18X

2
3 − 1

6X6

Table 1. List of the polynomials Q
(1)
n for a Rota-Baxter operator of weight 1 for n =

1, . . . , 6, where p(n) denotes the number of integer partitions of n.

Proposition 6.5. Let s, n ∈ N. Then we have

Pnas(1) = (−λ)n
n∑
r=1

(−λ)−r

r!

∑
n1+···+nr=n
n1,...,nr>1

r∏
i=1

P (asni)

ni
.

Proof. Let s ∈ N. Now we consider

fs(z) :=
∑
k>1

(−λ)k−1zskP (ask)

k
.
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From the Taylor expansion of the exponential function we can deduce

∂sn

∂zsn
exp(fs(z)) =

∑
r>0

1

r!

∂sn

∂zsn
fs(z)

r

=
∑
r>0

1

r!

∑
ñ1+···+ñr=sn

(
sn

ñ1, . . . , ñr

) r∏
i=1

∂ñi

∂zñi
fs(z).

In the last step we used the generalized Leibniz rule. Now

∂l

∂zl
fs(z)

∣∣∣∣
z=0

=

{
0 if l 6≡ 0 mod s or l = 0,
(−λ)l/s−1l!

l/s P (al) if l ≡ 0 mod s and l 6= 0,

implies

∂sn

∂zsn
exp(fs(z))

∣∣∣∣
z=0

=
∑
r>0

1

r!

∑
n1+···+nr=n
n1,...,nr>1

(
sn

sn1, . . . , snr

) r∏
i=1

(−λ)ni−1(sni)!

ni
P (asni)

and therefore we get

1

(sn)!

∂sn

∂zsn
exp(fs(z))

∣∣∣∣
z=0

= (−λ)n
n∑
r=1

(−λ)−r

r!

∑
n1+···+nr=n
n1,...,nr>1

r∏
i=1

P (asni)

ni
.

Theorem 6.1 with a substituted by as implies the claim. �

Proof of Theorem 6.2. Let n, r > 1. We introduce the following notation. Let
n1 + · · · + nr = n be an integer partition of n with length r and suppose that
n1 > . . . > nr > 1. Therefore we have 1 6 r 6 n. Then we define

am := #{i ∈ {1, . . . , r} : ni = m}

for 1 6 m 6 n. Let j ∈ {1, . . . .n} and aj 6= 0. Then we can ensure that
an−j+1 = · · · = an = 0. Furthermore we denote by ñ1 + · · · + ñr̃ = n − j the
integer partition of n− j with length r̃ arising from our old partition by deleting
exactly one summand j. Now we have 0 6 r̃ 6 n− j. We can conclude using the
definition

ãm := #{i ∈ {1, . . . , r̃} : ñi = m}

that ãi = ai for i 6= j and ãj = aj − 1. If we substitute P (asni) by the variable
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Xni for i ∈ {1, . . . , r} we get

Q(λ)
n (X1, . . . , Xn) = (−λ)n

n∑
r=1

(−λ)−r

r!

∑
n1+···+nr=n
n1,...,nr>1

r∏
i=1

Xni

ni

= (−λ)n
n∑
r=1

(−λ)−r
∑

n1+···+nr=n
n1>···>nr>1, aj=0

1

a1! · · · an!

n∏
i=1

Xai
i

iai

+ (1− δn(j))(−λ)n
n∑
r=1

(−λ)−r
∑

n1+···+nr=n
n1>···>nr>1, aj 6=0

1

a1! · · · an!

n∏
i=1

Xai
i

iai

+
(−λ)n−1

n
Xnδn(j),

where δn(j) denotes Kronecker’s delta. Now we determine ∂XjQ
(λ)
n (X1, . . . , Xn).

The first term in the last equation vanishes since it does not depend on Xj . Now
we get

∂XjQ
(λ)
n (X1, . . . , Xn)

= (1− δn(j))(−λ)n
n∑
r=1

(−λ)−r
∑

n1+···+nr=n
n1>···>nr>1, aj 6=0

1

a1! · · · (aj − 1)! · · · an!

X
aj−1
j

jaj

n∏
i=1
i 6=j

Xai
i

iai

+
(−λ)n−1

n
δn(j)

= (1− δn(j))
(−λ)j−1

j
(−λ)n−j

n−j∑
r=1

(−λ)−r
∑

ñ1+···+ñr=n−j
ñ1>···>ñr>1

1

ã1! · · · ãj ! · · · ãn−j !

n−j∏
i=1

X ãi
i

iãi

+
(−λ)n−1

n
δn(j)

=
(−λ)j−1

j
Q

(λ)
n−j(X1, . . . , Xn−j).

Therefore condition (i) is verified. (ii) is an immediate consequence of Proposi-
tion 6.5. Uniqueness can be shown by induction on n using condition (i). �
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Note added in proof. The author was informed that J. Zhao published a preprint
(arXiv:1412.8044) in December 2014 that includes parts of the results provided in
this work.

Appendix A. Comments on [5]

In this appendix we just recall the main results of [5]. It has already been men-
tioned by Castillo Medina, Ebrahimi-Fard and Manchon in [4] that there are some
problems with the display of the results concerning Theorem 3. However it is pos-
sible to correct the calculations in the proof. Let (A, P ) be a Rota-Baxter algebra
of weight λ. Then for a, b, c ∈ N0 the operator T (a, b, c) : A×A → A is given by

T (a, b, c) := P c[P a[·] · P b[·]].

Then we have the following results:

Theorem A.1 ([5]). Let a, b > 1 and c > 0 be integers. The following identity
holds in any Rota-Baxter algebra of weight 0:

T (a, b, c) =

b−1∑
i=0

(
a+ i− 1

a− 1

)
T (0, b− i, a+ c+ i)

+

a−1∑
i=0

(
b+ i− 1

b− 1

)
T (a− i, 0, b+ c+ i)

Theorem A.2 ([5],[4]). Let a, b > 1 and c > 0 be integers. The following identity
holds in any Rota-Baxter algebra of weight λ:

T (a, b, c) =
∑

(i,j)∈D1

λa+b−i−j
(

j − 1

i+ j − b− 1, j − a, a+ b− i− j

)
T (0, i, c+ j)

+
∑

(i,j)∈D2

λa+b−i−j
(

j − 1

i+ j − b, j − a, a+ b− i− j − 1

)
T (0, i, c+ j)

+
∑

(i,j)∈D3

λa+b−i−j
(

j − 1

j − b, i+ j − a− 1, a+ b− i− j

)
T (i, 0, c+ j)

+
∑

(i,j)∈D4

λa+b−i−j
(

j − 1

j − b, i+ j − a, a+ b− i− j − 1

)
T (i, 0, c+ j)

+
∑
j∈D5

λa+b−j
(

j − 1

j − b, j − a, a+ b− j − 1

)
T (0, 0, c+ j),
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where

D1 :=
{

(i, j) ∈ N2 : 1 6 i 6 b, a 6 j, b− i+ 1 6 j, j 6 a+ b− i
}
,

D2 :=
{

(i, j) ∈ N2 : 1 6 i 6 b− 1, a 6 j, b− i 6 j, j 6 a+ b− i− 1
}
,

D3 :=
{

(i, j) ∈ N2 : 1 6 i 6 a, a− i+ 1 6 j, b 6 j, j 6 a+ b− i
}
,

D4 :=
{

(i, j) ∈ N2 : 1 6 i 6 a− 1, a− i 6 j, b 6 j, j 6 a+ b− i− 1
}
,

D5 := {j ∈ N : a 6 j, b 6 j, j 6 a+ b− 1} .
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