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APPROXIMATE FUNCTIONAL EQUATION AND MEAN VALUE
FORMULA FOR THE DERIVATIVES OF L-FUNCTIONS
ATTACHED TO CUSP FORMS

Yoshikatsu Yashiro

Abstract: Let f be a holomorphic cusp form of weight k with respect to the full modular
group SL2(Z). We suppose that f is a normalized Hecke eigenform. Let Lf (s) be the L-function
attached to the form f . Good gave the approximate functional equation and mean square formula
of Lf (s). In this paper, we shall generalize these formulas for the derivatives of Lf (s).

Keywords: cusp forms, L-functions, derivative, approximate functional equation, mean value
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1. Introduction

Let Sk be the space of cusp forms of even weight k ∈ Z>12 with respect to the full
modular group SL2(Z). Let f ∈ Sk be a normalized Hecke eigenform, and af (n)
the n-th Fourier coefficient of f . Set λf (n) = af (n)/n(k−1)/2. The L-function
attached to f is defined by

Lf (s) =

∞∑
n=1

λf (n)

ns
=

∏
p: prime

(
1− αf (p)

ps

)−1(
1− βf (p)

ps

)−1

(Re s > 1), (1.1)

where αf (p) and βf (p) satisfy αf (p) + βf (p) = λf (p) and αf (p)βf (p) = 1. Then
it is well-known that the function Lf (s) is analytically continued to the whole
s-plane by

(2π)−s−
k−1
2 Γ(s+ k−1

2 )Lf (s) =

∫ ∞
0

f(iy)ys+
k−1
2 −1dy, (1.2)

and has a functional equation

Lf (s) = χf (s)Lf (1− s)
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where χf (s) is given by

χf (s) = (−1)
k
2 (2π)2s−1 Γ(1− s+ k−1

2 )

Γ(s+ k−1
2 )

(1.3)

= (−1)
k
2 (2π)2σ−1|t|1−2σei(

π
2 (1−k)sgn(t)−2t log

|t|
2πe )(1 +O(|t|−1)) (1.4)

where sgn(t) is defined by sgn(t) = 1 for t ∈ R>0 and sgn(t) = −1 for t ∈ R<0,
and (1.4) is obtained by Stirling’s formula (see [3, (19)]).

Good [3] gave the approximate functional equation for Lf (s):

Lf (σ + it) =
∑
n6x

λf (n)

ns
+ χf (s)

∑
n6y

λf (n)

n1−s +O(|t| 12−σ+ε)

where ε ∈ R>0, s = σ + it such that σ ∈ [0, 1] and |t| � 1, and x, y ∈ R>0

satisfying (2π)2xy = |t|2. The feature of his proof of this equation is to introduce
characteristic function and use the residue theorem. Moreover, he gave the mean
square formula for Lf (s) using the above equation:

∫ T

1

|Lf (σ + it)|2dt =



AfT log T +O(T ), σ = 1/2,

T

∞∑
n=1

|λf (n)|2

n2σ
+O(T 2(1−σ)), 1/2 < σ < 1,

T

∞∑
n=1

|λf (n)|2

n2σ
+O(log2 T ), σ = 1,

(1.5)

where Af is a positive constant depending on f .
Let ζ(s) be the Riemann zeta function and ζ ′(s) be its first derivative. Since

Speiser [6] proved that the Riemann Hypothesis (for short RH) is equivalent to the
non-existence of zeros of ζ ′(s) in 0 < Re s < 1/2, zeros of ζ ′(s) have been interested
by many researchers. Recently Aoki and Minamide [1] studied the density of zeros
of ζ(m)(s) in the right hand side of critical line Re s = 1/2 by using Littlewood’s
method. However there is no result concerning zeros of derivatives of L-functions
attached to cusp forms. The m-th derivative of Lf (s) is given by

L
(m)
f (s) =

∞∑
n=1

λf (n)(− log n)m

ns
(Re s > 1).

Differentiating both sides of (1.2), we find

L
(m)
f (s) =

m∑
r=0

(
m

r

)
(−1)rχ

(m−r)
f (s)L

(r)
f (1− s). (1.6)

In this paper, we shall show the approximate functional equation and the mean
value formula for L(m)

f (s) for the purpose of studying the zero-density for L(m)
f (s).
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Following [3], we shall introduce characteristic functions. Let ϕ be the real
valued C∞ function on [0,∞) satisfying ϕ(ρ) = 1 for ρ ∈ [0, 1/2] and ϕ(ρ) = 0 for
ρ ∈ [2,∞). Let R be the set of these characteristic functions ϕ. Write ϕ0(ρ) =
1 − ϕ(1/ρ). It is clear to show that if ϕ ∈ R then ϕ0 ∈ R. Let ϕ(j) be the j-th
derivative function of ϕ ∈ R. Then ϕ(j) becomes absolutely integrable function
on [0,∞). Let ‖ϕ(j)‖1 be L1-norm of ϕ(j), that is, ‖ϕ(j)‖1 =

∫∞
0
|ϕ(j)(ρ)|dρ. For

r ∈ {0, . . . ,m}, j ∈ Z>0, ρ ∈ R>0 and s = σ+ it such that |t| � 1, let γ(r)
j (s, ρ) be

γ
(r)
j (s, ρ) =

1

2πi

∫
F

(χ
(r)
f /χf )(1− s− w)

w(w + 1) · · · (w + j)

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

(ρe−i
π
2 sgn(t))wdw

where F is given by F = {−1/2−σ+
√
|t|eiπθ | θ ∈ (1/2, 3/2)}∪{3/2−σ+

√
|t|eiπθ |

θ ∈ (−1/2, 1/2)} ∪ {u±
√
|t| | u ∈ [−1/2− σ, 3/2− σ]}.

Then using (1.6) and the approximate formula for χ(r)
f (s) as |t| → ∞ where

r ∈ {0, . . . ,m}, we obtain the approximate functional equation for L(m)
f (s) with

characteristic functions.

Theorem 1.1. For any m ∈ Z>0, l ∈ Z>(k+1)/2, ϕ ∈ R, s = σ + it such that
σ ∈ [0, 1] and |t| � 1, and y1, y2 ∈ R>0 satisfying (2π)2y1y2 = |t|2, we have

L
(m)
f (s) =

∞∑
n=1

λf (n)(− log n)m

ns
ϕ

(
n

y1

)

+

m∑
r=0

(−1)r
(
m

r

)
χ

(m−r)
f (s)

∞∑
n=1

λf (n)(− log n)r

n1−s ϕ0

(
n

y2

)
+Rϕ(s),

(1.7)

where Rϕ(s) is given by

Rϕ(s) =

∞∑
n=1

λf (n)(− log n)m

ns

l∑
j=1

ϕ(j)

(
n

y1

)(
− n

y1

)j
γ

(0)
j

(
s,

1

|t|

)

+ χf (s)

m∑
r=0

(−1)j
(
m

r

) ∞∑
n=1

λf (n)(− log n)r

n1−s

×
l∑

j=1

ϕ
(j)
0

(
n

y2

)(
− n

y2

)j
γ

(m−r)
j

(
1− s, 1

|t|

)
+O

(
y1−σ

1 (log y1)m|t|− l
2 ‖ϕ(l+1)‖1

)
+O

(
yσ2

(
m∑
r=0

(log y2)r(log |t|)m−r
)
|t|1−2σ− l

2 ‖ϕ(l+1)
0 ‖1

)
.
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Introducing new functions ξ 6∈ R and ψα ∈ R for making the main term
of without characteristic function and the error term depending on α ∈ R>0 of
the approximate functional equation, replacing ϕ to ϕα in Theorem 1.1, using
Deligne’s result (see [2]): |λf (n)| 6 d(n) and choosing α to minimize the error
term, we obtain the approximate functional equation for L(m)

f (s):

Theorem 1.2. For any m ∈ Z>0 and s = σ + it such that σ ∈ [0, 1] and |t| � 1,
we have

L
(m)
f (s) =

∑
n6 |t|2π

λf (n)(− log n)m

ns

+

m∑
r=0

(−1)r
(
m

r

)
χ

(m−r)
f (s)

∑
n6 |t|2π

λf (n)(− log n)r

n1−s +O(|t|1/2−σ+ε),

(1.8)

where ε is an arbitrary positive number.

Using Rankin’s result (see [5, (4.2.3), p.364]):∑
n6x

|λf (n)|2 = Cfx+O(x
3
5 ) (1.9)

where Cf is a positive constant depending on f , the approximate formula of χ(r)
f (s)

and the generalizations of Lemmas 6, 7 of [3] to estimate a double sum containing
(log n1)r1(log n2)r2 where r1 + r2 = r, we obtain the mean square for L(m)

f (s).

Theorem 1.3. For any m ∈ Z>0 and large T ∈ R>0, we have∫ T

0

|L(m)
f (σ + it)|2dt

=



Af,mT (log T )2m+1 +O(T (log T )2m), σ = 1/2,

T

∞∑
n=1

|λf (n)|2(log n)2m

n2σ
+O(T 2(1−σ)(log T )2m), 1/2 < σ < 1,

T

∞∑
n=1

|λf (n)|2(log n)2m

n2σ
+O((log T )2m+2), σ = 1,

(1.10)

where Af,m is given by

Af,m =

(
1

2m+ 1
+

2m∑
r=0

(−2)2m−r

r + 1

∑
r1+r2=r

(
m

r1

)(
m

r2

))
Cf .

Theorems 1.1–1.3 is applied to the study of zero-density estimate for L(m)
f (s)

in [7]. In order to prove Theorems 1.1–1.3, we shall show preliminary lemmas in
Section 2. Using these lemmas we shall give proof of Theorems 1.1–1.3 in Sections
3–5 respectively.
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2. Preliminary lemmas

To prove Theorem 1.1, we introduce a new function. For ϕ ∈ R, let Kϕ(w) be the
function

Kϕ(w) = w

∫ ∞
0

ϕ(ρ)ρw−1dρ (Re w > 0).

Then the following fact is known:

Lemma 2.1 ([3, p.335, Lemma 3]). The function Kϕ(w) is analytically con-
tinued for to the whole w-plane, and has the functional equation

Kϕ(w) = Kϕ0
(−w). (2.1)

Furthermore we have the integral representation

Kϕ(w)

w
=

(−1)l+1

w(w + 1) · · · (w + l)

∫ ∞
0

ϕ(l+1)(ρ)ρw+ldρ (2.2)

for l ∈ Z>0. Especially Kϕ(0) = 1.

Next the following fact is useful for estimating the integrals (3.1), I ′1 and I ′2 in
Section 1.1:

Lemma 2.2 ([3, p.334, Lemma 2]). Put s = σ + it and w = u + iv. For
c1, c2 ∈ R let D1 be the strip such that σ ∈ [c1, c2] and t ∈ R in s-plane, and
D2 a half-strip such that σ ∈ (−∞,−1/2 − (k − 1)/2) and t ∈ (−1, 1). For fixed
c3, c4 ∈ R>0, there exist c5 ∈ R>0 and c6 ∈ R>0 such that∣∣∣∣∣Γ(s+ w + k−1

2 )

Γ(s+ k−1
2 )

(e−i
π
2 sgn(t))w

∣∣∣∣∣
6

c5
(1 + |t+ v|)σ+u− 1

2 + k−1
2

|t|σ− 1
2 + k−1

2

, s ∈ D1, s+ w ∈ D1 \D2, |t| > c3,

c6|t|u, s ∈ D1, |w| 6 c4|t|1/2.
(2.3)

The following fact is required to obtain the approximate formula for (χ
(r)
f /χf )(s):

Lemma 2.3. Let F and G be holomorphic function in the region D such that
F (s) 6= 0 and logF (s) = G(s) for s ∈ D. Then for any fixed r ∈ Z>1, there exist
l1, · · · , lr ∈ Z>0 and C(l1,··· ,lr) ∈ Z>0 such that

F (r)

F
(s) =

∑
1l1+···+rlr=r

C(l1,··· ,lr)(G
(1)(s))l1 · · · (G(r)(s))lr (2.4)

for s ∈ D. Especially C(r,0,··· ,0) = 1.
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Proof. The case r = 1 is true because of (F ′/F )(s) = G′(s) for s ∈ D. If we
assume (2.4) and C(r,0··· ,0) = 1, then we have

F (r+1)(s) =
∑

1l1+···+rlr=r

C(l1,··· ,lr)

(
(F ′G(1)l1 · · ·G(r)lr )(s)

+ l1(FG(1)l1−1G(2)l2+1 · · ·G(r)lr )(s) + · · ·
+ lr−1(FG(1)l1 · · ·G(r−1)lr−1−1G(r)lr+1)(s)

+ lr(FG
(1)l1 · · ·G(r)lr−1G(r+1))(s)

)
= F (s)

∑
1l′1+···+(r+1)lr+1=r+1

C ′(l′1,··· ,l′r+1)(G
(1)l′1 · · ·G(r+1)l′r+1)(s)

and C ′(r+1,0,··· ,0) = 1 · C(r, 0, · · · , 0) = 1. Hence (2.4) is true for all r ∈ Z>1. �

Using Lemma 2.3, we can get the approximate formula for (χ
(r)
f /χf )(s) as

follows:

Lemma 2.4. For any r ∈ Z>1, the function (χ
(r)
f /χf )(s) is holomorphic in D =

C \ {z ∈ C | |σ| > k/2− 1, |t| 6 1/2}. For any s ∈ D we have

χ
(r)
f

χf
(s) =


(
−2 log

|t|
2π

)r
+O

(
(log |t|)r−1

|t|

)
, |t| � 1,

O(1), |t| � 1.

Proof. Apply Lemma 2.3 with F (s) = χf (s) and G(s) = k log i+(2s−1) log 2π+
log Γ(1− s+ k−1

2 )− log Γ(s+ k−1
2 ). Then we have

G(1)(s)

= 2 log 2π − Γ′

Γ
(1− s+ k−1

2 )− Γ′

Γ
(s+ k−1

2 )

= − log(s+ k−1
2 )− log(1− s+ k−1

2 ) +
1

2(s+ k−1
2 )

+
1

2(1− s+ k−1
2 )

(2.5)

+ 2 log 2π +

∫ ∞
0

1/2− {u}
(u+ s+ k−1

2 )2
du+

∫ ∞
0

1/2− {u}
(u+ 1− s+ k−1

2 )2
du

=

{
−2 log |t|+ 2 log 2π +O

(
|t|−1

)
, |t| � 1,

O(1), |t| � 1

for s ∈ D where we used the following formula obtained by Stirling’s formula (see
[4, p.342, Theorem A.3.5]):

Γ′

Γ
(s) = log s− 1

2s
−
∫ ∞

0

1/2− {u}
(u+ s)2

du
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and the following the approximate formula (see [3, p.335]):

log s = log |t|+ i
π

2
sgn t+O

(
1

|t|

)
,

1

s
= − i

t
+O

(
1

|t|2

)
.

By differentiating both sides of (2.5), for any j ∈ Z>2 and s ∈ D, G(j)(s)
is approximated as G(j)(s) � 1/|t|j−1 when |t| � 1 or G(j)(s) � 1 when
|t| � 1. Since C(r,0,··· ,0) = 1, it follows that the main term of (χ

(r)
f /χf )(s) becomes

(G(1)(s))r. �

In order to prove Theorem 1.3, that is, to obtain the approximate formula
of the mean square for L(m)

f (s) as sharp as possible, we divide the characteristic
function ϕ as a sum of ϕ1 and ϕ2. For ϕ ∈ R, δ, δ1 ∈ (0, 1/2) such that δ < δ1 < δ2
where δ2 = 2, ϕ1 and ϕ2 are defined by

ϕ1(ρ) =

{
1, ρ ∈ [0, δ],

0, ρ ∈ [δ1,∞),
ϕ2(ρ) =


0, ρ ∈ [0, δ],

1, ρ ∈ [δ1, 1/2],

ϕ(ρ) ρ ∈ [1/2, δ2],

0, ρ ∈ [δ2,∞),

(2.6)

satisfying (ϕ1 + ϕ2)(ρ) = 1 for ρ ∈ [δ, δ1]. Similarly for ϕ0 ∈ R, ϕ01 and ϕ02

are defined by the above, where δ01 = δ1 and δ02 = δ2 = 2. We shall generalize
Lemma 7 of p.351 in [3]:

Lemma 2.5. Fix α ∈ Z>0 and β ∈ R>0.
(a) For X ∈ {1, 01}, we have∫ T

1

ϕX

(
2πn

t

)
ϕX

(
2πn

t

) (
log t

2π

)α
tβ

dt

=



T 1−β(log T )α/(1− β) +O
(
(n1−β log n+ T 1−β)(log T )α−1

)
,

n ∈ [1, δT/2π), β ∈ [0, 1), α ∈ Z>1,

T 1−β/(1− β) +O(n1−β), n ∈ [1, δT/2π), β ∈ [0, 1), α = 0,

O (| log(T/n)|(log T )α) , n ∈ [1, δT/2π), β = 1,

O((log n)α/nβ−1), n ∈ [1, δT/2π), β ∈ (1,∞),

O(n1−β(log n)α), n ∈ [δT/2π, δ1T/2π),

0, n ∈ [δ1T/2π,∞),

(b) For X ∈ {1, 2} and Y ∈ {2, 02}, we have∫ T

1

ϕX

(
2πn

t

)
ϕY

(
2πn

t

) (
log t

2π

)α
tβ

dt

=

{
O(n1−β(log n)α), n ∈ [1, δXT/2π),

0, n ∈ [δXT/2π,∞),
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(c) For X,Y ∈ {1, 2, 01, 02} and n1 6= n2, we have∫ T

1

ϕX

(
2πn1

t

)
ϕY

(
2πn2

t

)(
n1

n2

)it (log t
2π

)α
tβ

dt

=



0, n1 ∈ [δXT/2π,∞),

0, n2 ∈ [δY T/2π,∞),(
log T

2π

)α
iT β

ϕX

(
2πn1

T

)
ϕY

(
2πn2

T

)
(n1/n2)iT

log(n1/n2)

+O

(
(log(max{n1, n2}))α

(max{n1, n2})1+β((log(n1/n2))2

)
, n1, n2: otherwise,

(d) If there exist α ∈ Z>0 and β ∈ R>0 such that M(t) = O((log t)α/tβ), then for
X,Y ∈ {1, 2, 01, 02} we have∫ T

1

ϕX

(
2πn1

t

)
ϕY

(
2πn2

t

)(
n1

n2

)it
M(t)dt

=



0, n1 ∈ [δXT/2π,∞),

0, n2 ∈ [δY T/2π,∞),

O(T 1−β(log T )α), n1, n2: otherwise, β ∈ [0, 1),

O (| log(T/max{n1, n2})|(log T )α) , n1, n2: otherwise, β = 1,

O
(
(log(max{n1, n2}))α/(max{n1, n2})β−1

)
, n1, n2: otherwise, β ∈ R>1.

(e) For X ∈ {1, 01}, Y ∈ {1, 2, 01, 02}, we have∫ T

1

ϕX

(
2πn1

t

)
ϕY

(
2πn2

t

)
(n1n2)itχ

(α)
f (σ + it)dt

=


0, n1 ∈ [δXT/2π,∞),

0, n2 ∈ [δY T/2π,∞),

O (| log(T/max{n1, n2})|(log T )α) , n1, n2: otherwise, σ = 1
2 ,

O
(
(log(max{n1, n2}))α/(max{n1, n2})2σ−1

)
, n1, n2: otherwise, σ ∈ ( 1

2 , 1].

Proof. First we consider the case n1 ∈ [δXT/2π,∞) or n2 ∈ [δY T/2π,∞). It
is clear that ϕX(2πn1/t) = 0 or ϕY (2πn2/t) = 0 for t ∈ [1, T ]. Hence, (a)–(e)
are true for the above n1, n2. Next we consider the case of n1 ∈ [1, δXT/2π)
and n2 ∈ [1, δY T/2π). Then it is clear that 2πn1/δX , 2πn2/δY ∈ [1, T ]. For
t ∈ [1, 2πmax(n1/δX , n2/δY )), we see that ϕX(2πn1/t) = 0 (if n1/δX > n2/δY )
or ϕY (2πn2/t) = 0 (if n1/δX 6 n2/δY ). Hence,∫ T

1

· · · dt =

∫ T

2πmax(
n1
δX

,
n2
δY

)

· · · dt. (2.7)

Later, we shall approximate the right-hand side of (2.7).
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First we consider the condition of (a), that is, X,Y ∈ {1, 01} and n1 = n2 =: n.
When n ∈ [δT/2π, δ1T/2π), we see that 2πn/δ > T . Then the right-hand side of
(2.7) is estimated as

6
∫ 2πn

δ

2πn
δ1

∣∣∣∣ϕX (2πn

t

)∣∣∣∣2 (log t
2π )α

tβ
dt� n1−β(log n)α. (2.8)

When n ∈ [1, δT/2π), we find that 2πn/δ ∈ [2πn/δ1, T ] and ϕX(2πn/t) = 1 for
t ∈ [2πn/δ, T ]. Hence the right-hand side of (2.7) is

=

∫ 2πn
δ

2πn
δ1

∣∣∣∣ϕX (2πn

t

)∣∣∣∣2 (log t
2π )α

tβ
dt+

∫ T

2πn
δ

(log t
2π )α

tβ
dt. (2.9)

Here the first term of the right-hand side on (2.9) is estimated as

� n1−β(log n)α, (2.10)

the second term of the right-hand side on (2.9) is

=


O (| log(T/n)|(log T )α) , β = 1,

T 1−β(log T )α +O(T 1−β(log T )α−1) +O(n1−β(log n)α), β ∈ [0, 1),

O((log n)α/nβ−1) +O((log T )α/T β−1), β ∈ R>1.

(2.11)

where the following formula was used:∫ N

M

(log t
2π )α

tβ
dt

=


(log N

M )
(
(log N

2π )α + (log N
2π )α−1(log M

2π ) + · · ·+ (log M
2π )α

)
α+ 1

, β = 1,

α∑
r=0

(−1)r

(1− β)r+1

α!

(α− r)!

(
(log N

2π )α−r

Nβ−1
−

(log M
2π )α−r

Mβ−1

)
, β 6= 1.

(2.12)

Therefore combining (2.7)–(2.11), we obtain (a).
Next we consider the condition (b), that is, Y ∈ {2, 02} and n1 = n2 = n.

When n ∈ [1, δXT/2π)∩[1, δY T/2π), that is, n ∈ [1, δXT/2π), we see that 2πn/δ ∈
[2πn/δX , T ] and ϕY (2πn/t) = 0 for t ∈ [2πn/δ, T ]. Then the right-hand side
of (2.7) is

=

∫ 2πn
δ

2πn
δX

ϕX

(
2πn

t

)
ϕY

(
2πn

t

)
(log t

2π )α

tβ
dt� n1−β(log n)α. (2.13)

From (2.7) and (2.13), (b) is obtained.
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We consider the condition of (c), that is, n1 6= n2, n1 ∈ [1, δXT/2π) and
n2 ∈ [1, δY T/2π). By integral by parts, the right-hand side of (2.7) is

= ϕX

(
2πn1

T

)
ϕY

(
2πn1

T

)
(log T )α

T β
(n1/n2)iT

i log(n1/n2)

+

(
ϕX

(
2πn1

t

)
ϕY

(
2πn2

t

)
(log t)α

tβ

)′
t=T

(n1/n2)iT

(log(n1/n2))2

− 1

(log(n1/n2))2

∫ T

2πmax(
n1
δX

,
n2
δY

)

(
ϕX

(
2πn1

t

)
ϕY

(
2πn2

t

)
(log t)α

tβ

)′′

×
(
n1

n2

)it
dt. (2.14)

Since (ϕX(2πn/t))′ = O(n/t2) and (ϕX(2πn/t))′′ = O(n/t3) + O(n2/t4) for X ∈
{1, 2, 01, 02}, it follows that

(· · · )′t=T � (n1 + n2)
(log T )α

T β+2
+

(log T )α−1

T β+1
+

(log T )α

T β+1
� (log T )α

T β+1
,

(· · · )′′ � (n1 + n2)
(log t)α

tβ+3
+ (n2

1 + n2
2)

(log t)α

tβ+4
+ n1n2

(log t)α

tβ+4
� (log t)α

tβ+2
.

Hence the second term of the right-hand side of (2.14) is estimated as

� (log T )α

T β+1(log(n1/n2))2
� (log max(n1, n2))α

(max(n1, n2))β+1(log(n1/n2))2
, (2.15)

and the third term of the right-hand side of (2.14) is estimated as

� 1

(log(n1/n2))2

∫ T

2πmax(
n1
δX

,
n2
δY

)

(log t)α

tβ+2
dt� (log max(n1, n2))α

(max(n1, n2))β+1(log(n1/n2))2
.

(2.16)

Combining (2.7) and (2.14)–(2.16), we obtain (c).
Next we consider the condition of (d), that is, n1 ∈ [1, δXT/2π) and n2 ∈

[1, δY T/2π). Then (2.12) gives that the right-hand side of (2.7) is estimated as

�
∫ T

2πmax(
n1
δX

,
n2
δY

)

(log t)α

tβ
dt

�


T 1−β(log T )α, β ∈ [0, 1),

| log(T/max(n1, n2))|(log T )α, β = 1,

(log max(n1, n2)α)/(max(n1, n2))β−1, β ∈ R>1.

Thus (d) is obtained.
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Finally we consider the condition of (e), that is, X ∈ {1, 01}, n1 ∈ [1, δXT/2π)
and n2 ∈ [1, δY T/2π). Using (1.4) and Lemma 2.4, we have

(n1n2)itχ
(α)
f (s) = (−1)−

k
2 (−2)α(2π)2σ−1ei

π
2 (1−k)sgn(t)

× e−2t log
|t|

2πe
√
n1n2 |t|1−2σ

(
log
|t|
2π

)α
+M1(t) (2.17)

where M1(t) = O((log |t|)α/|t|2σ). Since we have δXδY < 1, it follows that

2πmax(n1/δX , n2/δY ) > 2π
√

(n1n2)/(δXδY ) > 2π
√
n1n2.

Therefore we see that | log(2π
√
n1n2/t)| > − log(

√
δXδY ) > 0 and

e
−i2t log t

2πe
√
n1n2 =

(
e
−i2t log t

2πe
√
n1n2

2i log
2π
√
n1n2

t

)′
− e

−i2t log t
2πe
√
n1n2

2it(log
2π
√
n1n2

t )2
(2.18)

for t ∈ [2πmax(n1/δX , n2/δY ), T ]. By (2.17) and (2.18), the right-hand side of
(2.7) is estimated as

= (−1)−
k
2 (−2)α(2π)2σ−1ei

π
2 (1−k)

×
∫ T

2πmax(
n1
δX

,
n2
δY

)

ϕX

(
2πn

t

)
ϕY

(
2πn

t

)
(log t

2π )α

t2σ−1

(
e
−i2t log t

2πe
√
n1n2

2i log
2π
√
n1n2

t

)′
dt

+O

(∫ T

2πmax(
n1
δX

,
n2
δY

)

ϕX

(
2πn

t

)
ϕY

(
2πn

t

)
M2(t)dt

)
, (2.19)

where M2(t) = O((log t)α/t2σ). From (d), the second term of the right-hand side
of (2.19) is estimated as

�

{
| log(T/max(n1, n2))|(log T )α, σ = 1/2,

(log max(n1, n2))α/(max(n1, n2))2σ−1, σ ∈ (1/2, 1].
(2.20)

Integration by parts and (2.12) give that the first term of the right-hand side of
(2.19) is

=
(−2)α(2π)2σ−1

(−1)
k
2 ei

π
2 (k−1)

(
ϕX

(
2πn

T

)
ϕY

(
2πn

T

)
(log T

2π )α

T 2σ−1

e
−i2t log T

2πe
√
n1n2

2i log
2π
√
n1n2

T

−
∫ T

2πmax(
n1
δX

,
n2
δY

)

(
ϕX

(
2πn

t

)
ϕY

(
2πn

t

)
(log t

2π )α

t2σ−1

)′
e
−i2t log t

2πe
√
n1n2

2i log
2π
√
n1n2

t

dt

)

� (log T )α

T 2σ−1
+

∫ T

2πmax(
n1
δX

,
n2
δY

)

(log t)α

t2σ
dt

�

{
| log(T/max(n1, n2))|(log T )α, σ = 1/2,

(log max(n1, n2))α/(max(n1, n2))2σ−1, σ ∈ (1/2, 1],
(2.21)
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where the following estimate was used:

(· · · )′ � (n1 + n2)
(log t)α

t2σ+1
+

(log t)α

t2σ
+

(log t)α−1

t2σ
� (log t)α

t2σ
.

Combining (2.7) and (2.19)–(2.21), we get (e). �

After using Lemma 2.5, we shall estimate the following sums:

Lemma 2.6. For x ∈ R>2, r1, r2 ∈ Z>0 and complex valued arithmetic functions
α, β such that α(n)� |λf (n)|, β(n)� |λf (n)|, we have

(a)
∑

n16n26x

|λf (n1)λf (n2)|(log n1)r1(log n2)r2

(n1n2)σ

�

{
x2(1−σ)(log x)r1+r2 , σ ∈ [1/2, 1),

(log x)r1+r2+2, σ = 1,

(b)
∑

n16n26x

|λf (n1)λf (n2)|(log n1)r1(log n2)r2

(n1n2)σ

∣∣∣∣log
x

n2

∣∣∣∣� (log x)r1+r2

x2(σ−1)

for σ ∈ [1/2, 1),

(c)
∑

n1<n26x

|α(n1)β(n2)|(log n1)r1(log n2)r2

(n1n2)σn2(log(n1/n2))2

�

{
x2(1−σ)(log x)r1+r2 , σ ∈ [1/2, 1),

(log x)r1+r2+2, σ = 1,

(d)
∑

n1,n26x,
n1 6=n2

α(n1)β(n2)(log n1)r1(log n2)r2

(n1n2)σ log(n1/n2)

�

{
x2(1−σ)(log x)r1+r2 , σ ∈ [1/2, 1),

(log x)r1+r2+2, σ = 1.

Proof. Using the fact (log n1)r1(log n2)r2 � (log x)r1+r2 for n1, n2 6 x and
the estimates of Rσ(x) and Sσ(x) in [3, p.348, Lemma 6], we obtain (a) and
(b). By the same discussion for Tσ(x) and Uσ(x) with αn1 = α(n1)(log n1)r1 ,
βn2

= β(n2)(log n2)r2 , an1
= λf (n1)(log n2)r1 , bn2

= λf (n2)(log n2)r2 in [3, p.348,
Lemma 6], (c) and (d) are obtained. �

3. Proof of Theorem 1.1

First we shall show the following formula:

Proposition 3.1. For s = σ+it such that σ ∈ [0, 1] and |t| � 1, ϕ ∈ R, x ∈ R>0,
and fixed l ∈ Z>(l+1)/2, we have

L
(m)
f (s) = Gm(s, x;ϕ) + χf (s)

m∑
r=0

(−1)r
(
m

r

)
Gr

(
1− s, 1

x
;ϕ0

)
,
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where Gr(s, x;ϕ) (r ∈ {0, . . . ,m}) are given by

Gr(s, x;ϕ) =
1

2πi

∫
( 3
2−σ)

χ
(m−r)
f

χf
(1− s− w)L

(r)
f (s+ w)

Kϕ(w)

w

×
Γ(s+ w + k−1

2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w
dw.

Proof. First we shall show that the integral

1

2πi

∫ 3
2−σ±iv

− 1
2−σ±iv

L
(m)
f (s+ w)

Kϕ(w)

w

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w
dw (3.1)

vanishes as |v| → ∞ for l ∈ Z>(k+1)/2. Write w = u+ iv and choose |v| � |t|+ 1,
then |s+ w| � |t+ v| � 1. Using (1.4), (1.6) and Lemma 2.4 we have

L
(m)
f (s)�

m∑
r=0

|t|1−2σ(log |t|)m−r|L(r)
f (1− s)| � |t|1−2σ(log |t|)m (|t| → ∞)

for Re s < 0. Hence the Phragmén-Lindelöf theorem gives

L
(m)
f (s+ w)� |t+ v| 32−(σ+u)(log |t+ v|)m

� |v| 32−(σ+u)(log |v|)m (|v| → ∞) (3.2)

uniformly for σ + u ∈ [−1/2, 3/2]. Using (2.2) and (2.3) we see that

Kϕ(w)

w
×

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w
� ‖ϕ

(l+1)‖1
|v|l+1

× (1 + |t+ v|)σ+u− 1
2 + k−1

2

|t|σ− 1
2 + k−1

2

� |v|σ+u− 3
2 + k−1

2 −l (|v| → ∞) (3.3)

uniformly for σ + u ∈ [−1/2, 3/2]. From (3.2) and (3.3), the integral (3.1) is
� |v| k−1

2 −l(log |v|)m, that is, (3.1) tends to 0 as |v| → ∞ when l ∈ Z>(k+1)/2.
Using the above fact, Kϕ(0) = 1 and applying Cauchy’s residue theorem, we

have

L
(m)
f (s) =

1

2πi

(∫
( 3
2−σ)

−
∫

(− 1
2−σ)

)
L

(m)
f (s+ w)

Kϕ(w)

w

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

×
( x

2π
e−i

π
2 sgn t

)w
dw. (3.4)

for l ∈ Z>(k+1)/2. Clearly, the first term of the right-hand side of (3.4) is

= Gm(s, x;ϕ). (3.5)
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We consider the second term of the right-hand side of (3.4). Now we can calculate

L
(m)
f (s+ w)

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

=
Γ(s+ w + k−1

2 )

Γ(s+ k−1
2 )

χf (s+ w)

m∑
r=0

(−1)r
(
m

r

)
χ

(m−r)
f

χf
(s+ w)L

(r)
f (1− s− w)

= χf (s)(2π)2w Γ(1− s+ w + k−1
2 )

Γ(1− s+ k−1
2 )

m∑
r=0

(−1)r
(
m

r

)
χ

(m−r)
f

χf
(s+ w) (3.6)

× L(r)
f (1− s− w)

where we used (1.3) and (1.6) which give that

χf (s+ w)

χf (s)
= (2π)2w Γ(s+ w)

Γ(s+ w + k−1
2 )

Γ(1− s− w + k−1
2 )

Γ(1− s+ k−1
2 )

.

Using (2.1), (3.6) and transforming w 7→ −w, we see that the second term of the
right-hand side of (3.4) is

= −χf (s)

2πi

∫
−( 1

2 +σ)

Kϕ(−w)

−w
Γ(1− s+ w + k−1

2 )

Γ(1− s+ k−1
2 )

(
2πxe−i

π
2 sgn(t)

)−w
×

m∑
r=0

(−1)r
(
m

r

)
χ

(m−r)
f

χf
(s− w)L

(r)
f (1− s+ w)(−dw)

= χf (s)

m∑
r=0

(−1)r
(
m

r

)
Gr

(
1− s, 1

x
;ϕ0

)
. (3.7)

By (3.4)–(3.7) Proposition 3.1 is showed. �

Next, the approximate formula of Gr(s, x;ϕ) is written as follows:

Proposition 3.2. For s = σ + it such that σ ∈ [0, 1] and |t| � 1, ϕ ∈ R,
x, y ∈ R>0 satisfying x/(2πy) = 1/|t|, fixed r ∈ {0, · · · ,m} and l ∈ Z>(k+1)/2, we
have

Gr(s, x;ϕ) =

∞∑
n=1

λf (n)(− log n)r

ns

l∑
j=0

ϕ(j)

(
n

y

)(
−n
y

)j
γ

(m−r)
j

(
s,

1

|t|

)
+O(y1−σ(log y)r(log |t|)m−r|t|− l

2 ‖ϕ(l+1)‖1).

Proof. First using (2.2) and dividing the series L(r)
f (s + w) into two path at ρy,

we can write

Gr(s, x;ϕ) = I1 + I2, (3.8)
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where I1 and I2 are given by

I1 =
1

2πi

∫
( 3
2−σ)

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w (−1)l

w(w + 1) · · · (w + l)

×
χ

(m−r)
f

χf
(1− s− w)

∫ ∞
0

ϕ(l+1)(ρ)ρw+l
∑
n6ρy

λf (n)(− log n)r

ns+w
dρ

 dw,

I2 =
1

2πi

∫
( 3
2−σ)

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w (−1)l

w(w + 1) · · · (w + l)

×
χ

(m−r)
f

χf
(1− s− w)

(∫ ∞
0

ϕ(l+1)(ρ)ρw+l
∑
n>ρy

λf (n)(− log n)r

ns+w
dρ

)
dw.

Let L±1, L±2, C1, C2 be paths of integration defined by

L±1 = {−1/2− σ ± iv | v ∈ (
√
|t|,∞)},

L±2 = {3/2− σ ± iv | v ∈ (
√
|t|,∞)},

C1 = {−1/2− σ +
√
|t|e−iπθ | θ ∈ (1/2, 3/2)},

C2 = {3/2− σ +
√
|t|eiπθ | θ ∈ (−1/2, 1/2)}.

Then by the residue theorem, we have

I1 = I ′1 + Res F , I2 = I ′2, (3.9)

where I ′1, I ′2,Res F are given by

I ′1 =
1

2πi

∫
L−1+C1+L+1

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w
× (−1)l

w(w + 1) · · · (w + l)

χ
(m−r)
f

χf
(1− s− w)

×

∫ ∞
0

ϕ(l+1)(ρ)ρw+l
∑
n6ρy

λf (n)(− log n)r

ns+w
dρ

 dw,

I ′2 =
1

2πi

∫
L−2+C2+L+2

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w
× (−1)l

w(w + 1) · · · (w + l)

χ
(m−r)
f

χf
(1− s− w)

×

(∫ ∞
0

ϕ(l+1)(ρ)ρw+l
∑
n>ρy

λf (n)(− log n)r

ns+w
dρ

)
dw,
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and

Res F =
∑

w=0,−1,...,−l

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w (−1)l

w(w + 1) · · · (w + l)

×
χ

(m−r)
f

χf
(1− s− w)

∫ ∞
0

ϕ(l+1)(ρ)ρw+l
∑
n6ρy

λf (n)(− log n)r

ns+w
dρ


By the same way to [3, p.337, Lemma 4 (ii)], Res F is written by

Res F =
∑
n62y

λf (n)(− log n)r

ns

l∑
j=0

ϕ(j)

(
n

y

)(
−n
y

)j
γ

(m−r)
j

(
s,

1

|t|

)
(3.10)

under the condition x/(2πy) = 1/|t|.
Next to estimate I ′1 and I ′2, we consider these integral. Clearly (2.3) gives

Γ(s+ w + k−1
2 )

Γ(s+ k−1
2 )

( x
2π
e−i

π
2 sgn t

)w
�

{
|t| 12−σ− k−1

2 (1 + |t+ v|)σ+u− 1
2 + k−1

2 (x/2π)u, w ∈ L±1,±2,

|t|u(x/2π)u, w ∈ F
(3.11)

as |t| → ∞. Using Cauchy’s inequality and (1.9), we have

∑
n6ρy

λf (n)(− log n)r

ns+w
�
√∑
n6ρy

|λf (n)|2
√√√√∑
n6ρy

(log n)2r

n2(σ+u)

� (ρy)1−(σ+u)(log ρy)r, w ∈ L±1 ∪ C1,∑
n>ρy

λf (n)(− log n)r

ns+w
�
∫ ∞
ρy

(
(logµ)r

µσ+u

)′∑
n6µ

|λf (n)|dµ

� (ρy)1−(σ+u)(log ρy)r, w ∈ L±2 ∪ C2.

Hence we obtain∫ ∞
0

ϕ(l+1)(ρ)ρw+l
∑
n6ρy

λf (n)(− log n)r

ns+w
dρ� y1−(σ+u)(log y)r‖ϕ(l+1)‖1,

w ∈ L±1 ∪ C1, (3.12)∫ ∞
0

ϕ(l+1)(ρ)ρw+l
∑
n>ρy

λf (n)(− log n)r

ns+w
dρ� y1−(σ+u)(log y)r‖ϕ(l+1)‖1,

w ∈ L±2 ∪ C2. (3.13)

Therefore Lemma 2.4 gives

(−1)l

w · · · (w + l)

χ
(m−r)
f

χf
(1− s− w)�

{
|v|−(l+1)(log |v|)m−r, w ∈ L±1,±2,

|t|− l+1
2 (log |t|)m−r, w ∈ F .

(3.14)
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Remark 3.3. Note that

γ
(r)
j (s, 1/|t|)

=



O

(
(log |t|)r

|t|j/2

)
, j ∈ Z>0,

χ
(r)
f

χf
(1− s) =

(
−2 log

|t|
2π

)r
+O

(
(log |t|)r−1

|t|

)
, j = 0,

χ
(r)
f

χf
(1− s)−

χ
(r)
f

χf
(−s) it

s+ k−1
2

= O

(
(log |t|)r

|t|

)
, j = 1,

by using (3.14), the residue theorem and Lemma 2.4.

Finally combining (3.11)–(3.14) and using the same way to [3, p.343–344], we
find that I ′1, I ′2 are estimated as

I ′1 � y1−σ(log y)r‖ϕ(l+1)‖1

×
∫
L±1

|t| 12−(σ+u)− k−1
2 (1 + |t+ v|)σ+u− 1

2 + k−1
2

(log |v|)m−r

|v|l+1
dv

+ y1−σ(log y)r(log |t|)m−r‖ϕ(l+1)‖1|t|−
l+1
2

∫
C1

|t|u
(

x

2πy

)u
|dw|

� y1−σ(log y)r(log |t|)m−r|t|− l
2 ‖ϕ(l+1)‖1, (3.15)

I ′2 � y1−σ(log y)r(log |t|)m−r|t|− l
2 ‖ϕ(l+1)‖1, (3.16)

under the condition x/(2πy) = 1/|t|. From (3.8)–(3.10), (3.15) and (3.16), the
proof of Proposition 3.2 is completed. �

We use (1.4) and combine the result Propositions 3.1 and 3.2. Let y1, y2 be the
positive numbers satisfying x/(2πy2) = 1/|t|, (1/x)/(2πy2) = 1/|t| respectively.
Using Remark 3.3, the main term of (1.7) is obtained. Then under the condition
(2π)2y1y2 = |t|2, the proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.2

To get the approximate functional equation for L(m)
f (s) without characteristic

functions, we introduce new functions ξ, ψα and ψ0α. Let ξ be the function
defined by ξ(ρ) = 1 when ρ ∈ [0, 1] and ξ(ρ) = 0 when ρ ∈ [1,∞). For α ∈ R>0

and ϕ ∈ R, let ψα be the function defined by

ψα(ρ) =


1, ρ ∈ [0, 1− 1/(2|t|α)],

ϕ(1 + (ρ− 1)|t|α), ρ ∈ [1− 1/(2|t|α), 1 + 1/|t|α],

0, ρ ∈ [1 + 1/|t|α,∞),

and ψ0α is defined by ψ0α(ρ) = 1− ψα(1/ρ).
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Remark 4.1. From [3, (12)–(15)], we see that ψα, ψ0α ∈ R, ξ 6∈ R,

(ψα − ξ)(ρ) = 0, (ψ0α − ξ)(ρ) = 0, ψ(j)
α (ρ) = 0, ψ

(j)
0α (ρ) = 0.

for j ∈ Z>1 and ρ ∈ [0, 1− 1/(2|t|α)] ∪ [1 + 1/|t|α,∞), and

ψ(j)
α (ρ)� |t|αj , ψ

(j)
0α (ρ)� |t|αj , ‖ψ(j)

α ‖1 � |t|α(j−1), ‖ψ(j)
0α ‖1 � |t|α(j−1)

for j ∈ Z>0 and ρ ∈ [0,∞).

Let Mϕ(s) be the first sum on the right-hand side of (1.7). Setting y1 = y2 =
|t|/(2π) and replacing ϕ 7→ ψα in Theorem 1.1, we can write

L
(m)
f (s) = Mξ(s) +O(Mψα−ξ(s) +Rψα(s)). (4.1)

Then we have

Mξ(s) =
∑
n6 |t|2π

λf (n)(− log n)m

ns

+

m∑
r=0

(−1)m−r
(
m

r

)
χ

(m−r)
f (s)

∑
n6 |t|2π

λf (n)(− log n)r

n1−s (4.2)

and

Mψα−ξ(s) +Rψα(s)

�
∑

|t|
2π

1

1+ 1
|t|α

6n6 |t|2π (1+ 1
|t|α )

|λf (n)|(log n)m

nσ
|S(0)
ψα

(s)|

+

m∑
r=0

∑
|t|
2π

1

1+ 1
|t|α

6n6 |t|2π (1+ 1
|t|α )

|λf (n)|(log n)r

nσ
|S(m−r)
ψ0α

(1− s)|

+ |t|1−σ+(α− 1
2 )l(log |t|)m. (4.3)

where S(r)
ψα

(s) is given by

S
(r)
ψα

(s) = (ψα − ξ)
(

2πn

|t|

)
χ

(r)
f

χf
(1− s)

+

l∑
j=1

ψ(j)
α

(
2πn

|t|

)(
−2πn

|t|

)j
γ

(r)
j

(
s,

1

|t|

)
,

and we used Remarks 3.3, 4.1, (1.4) and the fact 1 − 1/(2|t|α) > 1/(1 + 1/|t|α)
for α ∈ R>0. Using Remarks 3.3 and 4.1, in the case of n ∈ [|t|/(2π(1 + |t|−α)),
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(1 + |t|−α)|t|/(2π)] the sum S
(r)
ψα

(s) is estimated as follows under the condition
α 6 1/2:

S
(r)
ψα

(s)� (log |t|)r +

l∑
j=1

|t|(α− 1
2 )j(log |t|)r � (log |t|)r � |t|ε. (4.4)

Deligne’s estimate |λf (n)| 6 d(n)� nε (see [2]) gives∑
|t|
2π

1

1+ 1
|t|α

6n6 |t|2π (1+ 1
|t|α )

|λf (n)|(log n)r

nσ
� |t|1−σ−α+ε. (4.5)

Therefore combining (4.3)–(4.5), we obtain the following estimate:

Mψα−ξ(s) +Rψα(s) = O(|t|1−σ−α+ε) +O(|t|1−σ+(α− 1
2 )l+ε) = O(|t| 12−σ+ε), (4.6)

where we put α = 1/2− ε and take l > 1/(2ε). Combining (4.1), (4.2) and (4.6),
we obtain the assertion of Theorem 1.2.

5. Proof of Theorem 1.3

Putting y1 = y2 = |t|/(2π) in Theorem 1.1 and writing ϕ = ϕ1+ϕ2, ϕ0 = ϕ01+ϕ02

where ϕ1, ϕ2, ϕ01, ϕ02 are defined by (2.6), we obtain the following formula:∫ T

0

|L(m)
f (s)|2dt =

∫ T

1

∣∣∣∣∣
5∑
r=1

Sr(s)

∣∣∣∣∣
2

dt+O(1) =
∑

16µ,ν65

Iµ,ν +O(1), (5.1)

where Sr(s) are given by

S1(s) =

∞∑
n=1

λf (n)(− log n)m

ns
ϕ1

(
2πn

t

)
,

S2(s) =

∞∑
n=1

λf (n)(− log n)m

n1−s ϕ2

(
2πn

t

)
,

S3(s) =

m∑
r=0

(−1)r
(
m

r

)
χ

(m−r)
f (s)

∞∑
n=1

λf (n)(− log n)r

n1−s ϕ01

(
2πn

t

)
,

S4(s) =

m∑
r=0

(−1)r
(
m

r

)
χ

(m−r)
f (s)

∞∑
n=1

λf (n)(− log n)r

n1−s ϕ02

(
2πn

t

)
,

S5(s) = Rϕ(s),

and Iµ,ν (µ, ν ∈ {1, . . . , 5}) are given by

Iµ,ν =

∫ T

1

Sµ(s)Sν(s)dt.
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First we consider the integral Iµ,ν in the case of µ = ν. In the case of (µ, ν) =
(1, 1), applying (a), (c) of Lemma 2.5, we get

I1,1 =

∞∑
n1,n2=1

λf (n1)λf (n2)(log n1 log n2)m

(n1n2)σ

×
∫ T

1

ϕ1

(
2πn1

t

)
ϕ1

(
2πn2

t

)(
n1

n2

)it
dt

= T
∑

n6 δ1
2πT

|λf (n)|2(log n)2m

n2σ
+O

 ∑
n6 δ1

2πT

|λf (n)|2(log n)2m

n2σ−1


+

1

i

∑
n1,n2<

δ1
2πT,

n1 6=n2

λf (n1)ϕ1(2πn1/T )n−iT1 λf (n2)ϕ1(2πn2/T )n−iT2

(n1n2)σ

× log(n1/n2)

(log n1 log n2)m
+O

 ∑
n1<n26

δ1
2πT

|λf (n1)λf (n2)|(log n1 log n2)m

(n1n2)σn2(log(n1/n2))2


=: U1 +O(U2) + U3 +O(U4). (5.2)

Here we shall calculate the right-hand side of (5.2). Using partial summation and
(1.9), we obtain the approximate formula for U1 as

U1 =


Cf

2m+ 1
T (log T )2m+1 +O(T ), σ = 1/2,

T

∞∑
n=1

|λf (n)|2(log n)2m

n2σ
+O(T 2(1−σ)(log T )2m), σ ∈ (1/2, 1].

(5.3)

The result (1.9), the estimates (d), (c) of Lemma 2.6 imply that

Uj =

{
O(T 2(1−σ)(log T )2m), σ ∈ [1/2, 1),

O((log T )2m+2), σ = 1
(5.4)

for j = 2, 3, 4 respectively. From (5.2)–(5.4), the error term and the main term
of I1,1 correspond to those of the right-hand side of (1.10) when σ ∈ (1/2, 1].
However, the main term of the right-hand side of (1.10) is not obtained completely
when σ = 1/2. In the case of (µ, ν) = (2, 2), applying (b), (c) of Lemma 2.5 and
(a), (c), (d) of Lemma 2.6, we obtain
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I2,2 =
1

i

∑
n1,n2<

T
π ,

n1 6=n2

λf (n1)ϕ2(2πn1/T )n−iT1 λf (n2)ϕ2(2πn2/T )n−iT2

(n1n2)σ

× (log n1 log n2)m

log(n1/n2)
+O

 ∑
n1<n26T

π

|λf (n1)λf (n2)|(log n1 log n2)m

(n1n2)σn2(log(n1/n2))2


+O

∑
n6T

π

|λf (n)|2(log n)2m

n2σ−1


=

{
O(T 2(1−σ)(log T )2m), σ ∈ [1/2, 1),

O((log T )2m+1), σ = 1.
(5.5)

Next we consider the case (µ, ν) = (3, 3). Using (2.17) and the condition
r1 + r2 = r, we obtain the following formula:

(χ
(m−r1)
f χ

(m−r2)
f )(s) = (2π)4σ−2(−2)2m−r

(
log t

2π

)2m−r
t4σ−2

+M(t).

where M(t) is given by M(t) = O((log t)2m−r/t4σ−1). Then I3,3 is written as

I3,3 =

2m∑
r=0

∑
r1+r2=r

(−1)r
(
m

r1

)(
m

r2

) ∞∑
n1,n2=1

λf (n1)λf (n2)(log n1)r1(log n2)r2

(n1n2)1−σ

×
∫ T

1

ϕ01

(
2πn1

t

)
ϕ01

(
2πn2

t

)(
n1

n2

)it
(χ

(m−r1)
f χ

(m−r2)
f )(s)dt

= I+
3,3 + I−3,3, (5.6)

where I+
3,3, I

−
3,3 are defined by

I+
3,3 := (2π)4σ−2

2m∑
r=0

(−2)2m−r
∑

r1+r2=r

(
m

r1

)(
m

r2

)

×
∞∑

n1,n2=1

λf (n1)λf (n2)(log n1)r1(log n2)r2

(n1n2)1−σ

×
∫ T

1

ϕ01

(
2πn1

t

)
ϕ01

(
2πn2

t

)(
n1

n2

)it (log t
2π

)2m−r
t4σ−2

dt,

I−3,3 :=

2m∑
r=0

∑
r1+r2=r

(
m

r1

)(
m

r2

) ∞∑
n1,n2=1

λf (n1)λf (n2)

(n1n2)1−σ

× (log n1)r1(log n2)r2
∫ T

1

ϕ01

(
2πn1

t

)
ϕ01

(
2πn2

t

)(
n1

n2

)it
M(t)dt.

respectively. Here we shall approximate I+
3,3 and I−3,3.In order to estimate I−3,3, we
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use the fact that (n1n2)1−σn4σ−2
2 = (n1n2)σ(n2/n1)2σ−1 � (n1n2)σ for σ ∈ R>1/2

and n1 6 n2. Then using (d) of Lemma 2.5 and (a), (b) of Lemma 2.6, we see that

I−3,3 �
2m∑
r=0

∑
r1+r2=r

∑
n16n26

δ1
2πT

|λf (n1)λf (n2)|(log n1)r1(log n2)r2

(n1n2)1−σ

×

{
| log(T/n2)|(log T )2m−r, σ = 1/2,

(log n2)2m−r/n4σ−2
2 , σ ∈ (1/2, 1]

�

{
T 2(1−σ)(log T )2m, σ ∈ [1/2, 1),

(log T )2m+2, σ = 1.

(5.7)

The formula (a), (c) of Lemma 2.5 imply that

I+
3,3 =



(2π)4σ−2

3− 4σ
T 3−4σ

2m∑
r=0

(
2 log T

2π

)2m−r ×
×

∑
r1+r2=r

(
m

r1

)(
m

r2

) ∑
n6 δ1

2πT

|λf (n)|2(log n)r

n2(1−σ)
, σ ∈ [1/2, 4/3),

0, σ ∈ [3/4, 1],

+O


2m∑
r=0

∑
n6 δ1

2πT

|λf (n)|2(log n)r

n2(1−σ)
×



T 3−4σ(log T )2m−r,
σ ∈ [1/2, 3/4),

| log(T/n)|(log T )2m−r,
σ = 3/4,

(log T )2m−r/n4σ−3,
σ ∈ (3/4, 1].


+O

 2m∑
r=0

∑
δ
2πT<n6

δ1
2πT

|λf (n)|2(log n)r

n2(1−σ)

(log T )2m−r

n4σ−3


+

(2π)4−2σ

i

2m∑
r=0

(
2 log T

2π

)2m−r ∑
r1+r2=r

(
m

r1

)(
m

r2

)
×

∑
n1,n26

δ1
2πT,

n1 6=n2

(log n1)r1(log n2)r2

(n1n2)σ log(n1/n2)

× λf (n1)ϕ01(2πn1/T )(n1/T )2σ−1

niT1

λf (n2)ϕ01(2πn2/T )(n2/T )2σ−1

niT2

+O

 2m∑
r=0

∑
r1+r2=r

∑
n1<n26

δ1T
2π

|λf (n1)λf (n2)|(log n1)r1(log n2)r2

(n1n2)1−σ ×

× (log n2)2m−r

n4σ−1
2 (log(n1/n2))2

)
= : V1 +O(V2) +O(V3) + V4 +O(V5), (5.8)
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A similar discussion to U3 gives that V1 is approximated as

V1 =

{
(Af,m − Cf/(2m+ 1))T (log T )2m+1 +O(T (log T )2m), σ = 1/2,

O(T 2(1−σ)(log T )2m), σ ∈ (1/2, 1].

(5.9)

To estimate V4 and V5, we use the fact that

(n1n2)1−σn4σ−1
2 = (n1n2)σ n2(n2/n1)2σ−1 � (n1n2)σn2

for σ ∈ R>1/2 and n1 6 n2. Then the estimates (d), (c) of Lemma 2.6 give that

Vj =

{
O(T 2(1−σ)(log T )2m), σ ∈ [1/2, 1),

O((log T )2m+2), σ = 1
(5.10)

for j = 4, 5 respectively. By the fact that

n2(1−σ) � n2(1−σ)n4σ−3 = n2σ−1

for σ ∈ R63/4, the estimate (b) of Lemma 2.6 when σ = 3/4 and the formula (1.9),
the sum V2 and V3 are estimated as

Vj =

{
O(T 2(1−σ)(log T )2m), σ ∈ [1/2, 1),

O((log T )2m+1), σ = 1
(5.11)

for j = 2, 3. Therefore, from (5.6)–(5.11) the approximate formula for I3,3 is
obtained. In the case of (µ, ν) = (4, 4), by a similar discussion to the case of
(µ, ν) = (3, 3) the integral I4,4 is approximated as
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I4,4 = O

 2m∑
r=0

∑
r1+r2=r

∑
n6T

π

|λf (n)|2(log n)2m

n2σ−1


+

(2π)4−2σ

i

2m∑
r=0

(
2 log T

2π

)2m−r ∑
r1+r2=r

(
m

r1

)(
m

r2

)
×

∑
n1,n26T

π ,
n1 6=n2

(log n1)r1(log n2)r2

(n1n2)σ log(n1/n2)

× λf (n1)ϕ02(2πn1/T )(n1/T )2σ−1

niT1

λf (n2)ϕ02(2πn2/T )(n2/T )2σ−1

niT2

+O

 2m∑
r=0

∑
r1+r2=r

∑
n1<n26T

π

|λf (n1)λf (n2)|(log n1)r1(log n2)r2

(n1n2)1−σ

× (log n2)2m−r

n4σ−1
2 (log(n1/n2))2

)

+O

 2m∑
r=0

∑
r1+r2=r

∑
n16n26T

π

|λf (n1)λf (n2)|2(log n1)r1(log n2)r2

(n1n2)1−σ

×

{
| log(T/n)|(log T )2m−r, σ = 1/2,

(log n2)2m−r/n4σ−2
2 , σ ∈ (1/2, 1]

)

=

{
O(T 2(1−σ)(log T )2m), σ ∈ [1/2, 1),

O((log T )2m+2), σ = 1,
(5.12)

where (b)–(d) of Lemma 2.5, the formla (1.9) and (b)–(d) of Lemma 2.6 were used.
Finally we consider the case (µ, ν) = (5, 5). Remarks 3.3, 4.1 and the formula (1.4)
imply that

Rϕ(s)�
∑

t
4π6n6

t
π

|λf (n)|(log n)m

nσ

 1

|t|
+

l∑
j=2

1

|t| j2

+ |χf (s)|
m∑
r=0

∑
t
4π6n6

t
π

1

× |λf (n)|(log n)r

n1−σ

 (log |t|)m−r

|t|
+

l∑
j=2

(log |t|)m−r

|t| j2

+
(log |t|)m

|t|σ−1+ l
2

� (log t)m

tσ
. (5.13)

Hence we get

I5,5 �
∫ T

1

(log t)2m

t2σ
dt�

{
(log T )2m+1, σ = 1/2,

1, σ ∈ (1/2, 1].
(5.14)
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Lastly we consider Iµ,ν in the case of µ 6= ν. Since I1,1 contains the main
term of the mean value formula for L(m)

f (s), and Cauchy’s inequality implies that
|Iµ,ν | 6 Iµ,µIν,ν for µ, ν ∈ {1, . . . , 5}, it follows that it is enough to consider Iµ,ν
in the case of (µ, ν) = (1, 2), (1, 3), (1, 4), (1, 5). First in the case of (µ, ν) = (1, 2),
using (b), (c) of Lemma 2.5, (c), (d) of Lemma 2.6 and the estimate (5.3), we
obtain

I1,2 =

∞∑
n1,n2=1

λf (n1)λf (n2)(log n1)m(log n2)m

(n1n2)σ

×
∫ T

1

ϕ1

(
2πn1

t

)
ϕ2

(
2πn2

t

)(
n1

n2

)it
dt

=
1

i

∑
n1,n2<

T
π ,

n1 6=n2

λf (n1)ϕ1(2πn1/T )n−iT1 λf (n2)ϕ2(2πn2/T )n−iT2

(n1n2)σ

× (log n1 log n2)m

log(n1/n2)
+O

 ∑
n1<n26T

π

|λf (n1)λf (n2)|(log n1 log n2)m

(n1n2)σn2(log(n1/n2))2


+O

∑
n<T

π

|λf (n)|2(log n)2m

n2σ−1


=

{
O(T 2(1−σ)(log T )2m), σ ∈ [1/2, 1),

O((log T )2m+2), σ = 1.
(5.15)

Next we consider the case (µ, ν) = (1, 3). From (e) of Lemma 2.5 and (a), (b) of
Lemma 2.6, the integral I1,3 is estimated as

I1,3 =

m∑
r=0

(−1)m
(
m

r

) ∞∑
n1,n2=1

λf (n1)λf (n2)(log n1)m(log n2)m

nσ1n
1−σ
2

×
∫ T

1

ϕ1

(
2πn1

t

)
ϕ01

(
2πn2

t

)
(n1n2)itχ

(m−r)
f (s)dt

= O

 2m∑
r=0

∑
r1+r2=r

∑
n16n26

δ1
2πT

|λf (n1)λf (n2)|(log n1)r1(log n2)r2

nσ1n
1−σ
2

×

{
| log(T/n2)|(log T )2m−r, σ = 1/2,

(log n2)2m−r/n2σ−1
2 , σ ∈ (1/2, 1]

)

=

{
O(T 2(1−σ)(log T )2m), σ ∈ [1/2, 1),

O((log T )2m+2), σ = 1.
(5.16)

In the case of (µ, ν) = (1, 4), a similar discussion to the case of (µ, ν) = (1, 3) gives
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that

I1,4 =

{
O(T 2(1−σ)(log T )2m), σ ∈ [1/2, 1),

O((log T )2m+2), σ = 1.
(5.17)

Finally we consider the case (µ, ν) = (1, 5). The formula (1.9) and Cauchy’s
inequality imply that

∑
n6x |λf (n)| = O(x). Then using the estimate (5.13) and

partial summation we get

I1,5 �
∫ T

1

(log t)m

tσ

∑
n6 δ1

2π t

|λf (n)|(log n)m

nσ
dt

�
∫ T

1

(log t)m

tσ

{
t1−σ(log t)m, σ ∈ [1/2, 1),

(log t)m+1, σ = 1
dt

�

{
T 2(1−σ)(log T )2m, σ ∈ [1/2, 1),

(log T )2m+2, σ = 1.
(5.18)

Therefore combining (5.1)–(5.18), we complete the proof of Theorem 1.3.
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