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APPROXIMATE FUNCTIONAL EQUATION AND MEAN VALUE
FORMULA FOR THE DERIVATIVES OF L-FUNCTIONS
ATTACHED TO CUSP FORMS

Y OSHIKATSU YASHIRO

Abstract: Let f be a holomorphic cusp form of weight k& with respect to the full modular
group SL2(Z). We suppose that f is a normalized Hecke eigenform. Let Ly (s) be the L-function
attached to the form f. Good gave the approximate functional equation and mean square formula
of Ly (s). In this paper, we shall generalize these formulas for the derivatives of L (s).
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1. Introduction

Let S, be the space of cusp forms of even weight k € Z>12 with respect to the full
modular group SL2(Z). Let f € Sk be a normalized Hecke eigenform, and ay(n)
the n-th Fourier coefficient of f. Set Af(n) = as(n)/n*~1/2. The L-function
attached to f is defined by

Lf(s):i”(s”) = 11 (1_‘”@)_1 (1_51‘@)_1 (Re s > 1), (L.1)
n=1

n s s
p: prime p p

where ay(p) and Sy (p) satisfy ar(p) + B¢(p) = A\f(p) and a¢(p)Bs(p) = 1. Then
it is well-known that the function L;(s) is analytically continued to the whole

s-plane by

k=1 Ry
(2m) 7 T S50 = [ iy, (12)
and has a functional equation

Lg(s) =xy(s)Ls(1—s)
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where x7(s) is given by

D(1—s+ 451
I(s+ 551
k o— o —k)sgn — o, Lt —
= (~1)% (2m)2 V| 2 (BA— R =2tloe 35 ) (1 L O(|¢]7Y)) (1.4)

Xf(s) = (—1)% (2m) 2! (1.3)

where sgn(¢) is defined by sgn(t) = 1 for t € Ry and sgn(t) = —1 for ¢ € Ry,
and (1.4) is obtained by Stirling’s formula (see [3, (19)]).
Good [3| gave the approximate functional equation for L¢(s):

>\ n 1l _o4e
o+ it) X:f (s) ;%}+mm2+)

n<x nxy

where ¢ € Rsg, s = o + it such that ¢ € [0,1] and |t| > 1, and z,y € Ryg
satisfying (27)2xy = [t|?. The feature of his proof of this equation is to introduce
characteristic function and use the residue theorem. Moreover, he gave the mean
square formula for L(s) using the above equation:

AleogTJrO( ), o=1/2,
}:Mf +Ouﬂ1®) 1/2<0 <1,

T
/|Mw+ﬁWﬁ:
1 ‘)\
Z f O(log’T), o=1,

(1.5)

where Ay is a positive constant depending on f.

Let {(s) be the Riemann zeta function and {’(s) be its first derivative. Since
Speiser [6] proved that the Riemann Hypothesis (for short RH) is equivalent to the
non-existence of zeros of ¢'(s) in 0 < Re s < 1/2, zeros of ¢’(s) have been interested
by many researchers. Recently Aoki and Minamide [1] studied the density of zeros
of ¢(™)(s) in the right hand side of critical line Re s = 1/2 by using Littlewood’s
method. However there is no result concerning zeros of derivatives of L-functions
attached to cusp forms. The m-th derivative of L;(s) is given by

= logn)™
L(m :Z—g (Re s > 1).
Differentiating both sides of (1.2), we find

Lgcm) (5) _ Z <m> (71)1~X50m—?”) (S)L(fr)(l — S). (16)

r
r=0

In this paper, we shall show the approximate functional equation and the mean
value formula for L;m) (s) for the purpose of studying the zero-density for Lgcm)(s).
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Following [3], we shall introduce characteristic functions. Let ¢ be the real
valued C'*° function on [0, 00) satisfying ¢(p) =1 for p € [0,1/2] and ¢(p) = 0 for
p € [2,00). Let R be the set of these characteristic functions ¢. Write ¢q(p) =

—¢(1/p). Tt is clear to show that if ¢ € R then @y € R. Let V) be the j-th
derivative function of ¢ € R. Then ¢U) becomes absolutely integrable function
on [0,00). Let ||¢)|; be Li-norm of @) that is, ||¢W)]|; = I l©U)(p)|dp. For
re{0,...,m}, j € Zxo, p € Ry and s = o+ it such that [t| > 1, let (T)( ,p) be

(r) k-1
1 l1—s—w)T k=2 .
(T)(S, ) / (Xf /Xf)( ) (S tw+ 75 ) (pe—zfsgn(t))wdw
f

2mi Jr ww+ 1) (w+j7)  T(s+ k1)

where F is given by F = {~1/2—0+/]t|e"™ | 6 € (1/2,3/2)}U{3/2—0+/|t|]e"? |
€(=1/2,1/2)} Ud{u+ VIt |u € [-1/2 — 0,3/2 — o]}
Then using (1.6) and the approximate formula for X( )( ) as |t| — oo where

r € {0,...,m}, we obtain the approximate functional equation for L}m)(s) with
characteristic functions.

Theorem 1.1. For any m € Zxo, | € Zxy1)/2, ¢ € R, s = o + it such that
o €[0,1] and [t| > 1, and y1,y2 € Rsq satisfying (27)>y1y2 = |t|?, we have

i Af(n log n)™ , (n)
hn

:_é < ) (m— 7')(5)7§:1W<P0 (;2>+Rw(s),
(1.7)

where R, (s) is given by

X
hS)

°Q
I/~ °
N
N—
/T\
N
N——— 3

<
R

3

3
VRS

—_

|

fla
=]
N—

1
+0 (417" (log yo)™ [t |+ )

<y (Z (log y2)" (log £~ >|t|1 i ||1).
r=0

+
S
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Introducing new functions £ ¢ R and v, € R for making the main term
of without characteristic function and the error term depending on o € R of
the approximate functional equation, replacing ¢ to ¢, in Theorem 1.1, using
Deligne’s result (see [2]): |[Af(n)| < d(n) and choosing a to minimize the error

term, we obtain the approximate functional equation for Lgcm)(s):

Theorem 1.2. For any m € Zso and s = o + it such that o € [0,1] and |t| > 1,
we have

L(fnL) (5) _ z )‘f(n)(i IOg n)m

né
né%
m
e (M (s Ag(n)(—logn) .
# (T 3 MR o),
r=0 ngm
(1.8)
where € is an arbitrary positive number.
Using Rankin’s result (see [5, (4.2.3), p.364]):
> ) = Cpz + O (1.9)

n<

where C is a positive constant depending on f, the approximate formula of ng) (s)
and the generalizations of Lemmas 6, 7 of [3] to estimate a double sum containing

(lognq)"™ (logmna)™ where r1 + ro = 7, we obtain the mean square for Lgfm)(s).

Theorem 1.3. For any m € Zxo and large T € R+, we have

T
/ L™ (o + it)|2dt
0 ’

Ag T (10g T 4 O(T(log T)*™), °o=1/2
Ti |)\f(n)|2(10gn)2m n O(Tg(lfg)(longm) 12<0<1
= n=1 n2o 7 - (1.10)
] 2 2m
TZ |/\f(n)|n(21:gn) + O((lOgT)2m+2), o=1,
n=1

where Ag,r, is given by

Af’m<2m1+1+i)(_3inl” 2 (Z)(Z))Cf

r= r1+ro=r

Theorems 1.1-1.3 is applied to the study of zero-density estimate for Lgcm)(s)
in [7]. In order to prove Theorems 1.1-1.3, we shall show preliminary lemmas in
Section 2. Using these lemmas we shall give proof of Theorems 1.1-1.3 in Sections
3-5 respectively.
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2. Preliminary lemmas

To prove Theorem 1.1, we introduce a new function. For ¢ € R, let K, (w) be the
function

Kotw) =w [ o)y (Rew>0),

Then the following fact is known:

Lemma 2.1 ([3, p.335, Lemma 3]). The function K,(w) is analytically con-
tinued for to the whole w-plane, and has the functional equation

Ko(w) = Ky, (—w). (2.1)
Furthermore we have the integral representation

Kp(w) (=ptt

w wwt1)(w+1) /ooo e (p)p*Hdp (2.2)

forl € Zq. Especially K,(0) = 1.

Next the following fact is useful for estimating the integrals (3.1), I7 and I} in
Section 1.1:

Lemma 2.2 ([3, p.334, Lemma 2|). Put s = 0 + it and w = u + iv. For
c1,co € R let Dy be the strip such that o € [c1,¢2] and t € R in s-plane, and
Dy a half-strip such that o € (—o0,—1/2 — (k—1)/2) and t € (—1,1). For fized
c3,cq € Ry, there exist cs € Rsg and cg € R~ such that

k—1
F(S +w + T) (e—i%sgn(t))w

(s + 554
k—1
(Lt +op)tematTs
c , €Dy, s+we D1\ Dy, |t| >cs,
<l pEmsE= 1, s+ 1\ D2, [t| >c3 (2.3)
colt]", s € Dy, |w| < eqlt|'/2.

The following fact is required to obtain the approximate formula for (ng) /xr)(s):

Lemma 2.3. Let F and G be holomorphic function in the region D such that
F(s) # 0 and log F(s) = G(s) for s € D. Then for any fived r € Z>1, there exist

li,--,lp € Zzo and Cy, ... 1) € Lo such that
Fr) RIS ) [ )\
7 (8) = Yo Clran (@) (G (s)) (2.4)
1 +-+rl.=r

for s € D. Especially C,p.,... o) = 1.
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Proof. The case r = 1 is true because of (F'/F)(s) = G'(s) for s € D. If we
assume (2.4) and C(; ... gy = 1, then we have

F(T+1) (8) = Z C(ll,m o) ((FIG(I)ll L G(T)l,)(s)
Ui ++rl.=r
+ ll(Fg(1)11—1G(2)12+1 o G(’r')lr)(s) T
o (FGWh . Q=D =141y o)

+I.(FGWh .. .G(T)lr—lg(rﬂ))(s))

= F(s) > Cly oy (G GO )
W44 (r+1) g1 =r+1

and C/

(r41,0,0) =1 C(r,0,---,0) = 1. Hence (2.4) is truc for all r € Z>,. W

Using Lemma 2.3, we can get the approximate formula for (X}T) /xf)(s) as
follows:

Lemma 2.4. For any r € Zx1, the function (X;T)/Xf)(s) is holomorphic in D =
C\{ze€C|lo| =2 k/2—1,|t| <1/2}. For any s € D we have

(r) |t] (log [¢])"!
21 o) =akivin t>1
X (s) = ( 8 o ) * < |t] MU

XJ o(1), It < 1.

) = xf(s) and G(s) = klogi+ (2s—1)log 27+

Proof. Apply Lemma 2.3 with F(s
k=LY, Then we have

logT(1— s+ 551) —logT'(s + &5

G(l)(s)

T’ T’
:2log2ﬂ—?(1—s+%)—f kol

1 1
+
2s+551) 21 —s+ 45

*_1/2-H{u} o2 -{y
+2lo 27r+/ —du+/ du
& o (u+s+51)2 0o (u+1—s+551)2

—log(s + 551) —log(1 — s + 551) + (2.5)

_J—2log|t| +2log2r + O (|t|7"), [|t|>1,
0(1), It < 1

for s € D where we used the following formula obtained by Stirling’s formula (see
[4, p.342, Theorem A.3.5]):

I 1 / 12— fu}
0

?(s):logsf?sf NOESER
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and the following the approximate formula (see [3, p.335]):

1 1 1
logs-logt|+zsgnt+0<|t|) 5 +O<|t|2)'

By differentiating both sides of (2.5), for any j € Zsy and s € D, GU)(s)
is approximated as GU)(s) < 1/[t}/=' when [t| > 1 or GYU)(s) < 1 when
[t| > 1. Since C(,.9,... o) = 1, it follows that the main term of (X;T)/Xf)(s) becomes
(GW(s))". =

In order to prove Theorem 1.3, that is, to obtain the approximate formula
of the mean square for Lgcm)(s) as sharp as possible, we divide the characteristic
function ¢ as a sum of 1 and 2. For ¢ € R, 4,01 € (0,1/2) such that § < 61 < Jo
where d2 = 2, o1 and 4 are defined by

0, € (0,4,
_ 17 pG[O,(ﬂ, _ 17 [51a1/2]
W’){O, e, PO = 20
0, € [02,00),

satisfying (o1 + w2)(p) = 1 for p € [§,01]. Similarly for ¢g € R, wo1 and @ga
are defined by the above, where §p; = d; and dg2 = 2 = 2. We shall generalize
Lemma 7 of p.351 in [3]:

Lemma 2.5. Fiz a € Zxq and § € Rxg.

(a) For X € {1,01}, we have

T t «
2mn 2mn (logy)
il L) Yo em) g
/ﬁpx(t)(”(t) 8

T'F(log T)*/(1 = B) + O ((n'~F# logn +T'P)(log T)* 1),
1,6T/2m), B €(0,1), o € Z31,

T'=F/(1 = B) + O(n'~?), 1,0T/27), € [0,1), a =0,

€
€
= 4 O (|log(T'/n)|(log T)*) , €[L,0T/2m), B =1,
O((logn)®/n=1), € [1,0T/27), B € (1,00),
O(n'=#(logn)®), € [0T/2m,6,T/27),
0, € [T /27, 00),

(b) For X € {1,2} and Y € {2,02}, we have

T t (e}
2mn 2mn (IOgT)
i ntiAAdn I 2P 7' VA M
/1@X<t>w<t) Z

_ JO(n'"Plogn)*), nel,6xT/2m),
o, n € [0xT/2m, o),
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(¢) For X,Y € {1,2,01,02} and ny # na, we have

T 75 it t @
2mny 27no ny (10g 7)
My YPeer) g
/1 S0X< t )wy( t )(n2> th

0, ny € [5}(T/27T,OO),
0, Ny € [(SyT/Q’/T,OO),
_J (log %)a 2mn, 210\ (nyg/ng)T
g PX Y
iT T T ) log(ni/n2)
40 ( (log(max{ny,n2}))*
( b

max{ni,n2})*8((log(ni/n2))?

(d) If there exist a € Zso and B € Rsq such that M(t) = O((logt)®/t?), then for
X,Y €{1,2,01,02} we have

[ on (o (52) () o

n1,no: otherwise,

0, ny € [0xT /27, 00),
0, ng € [0y T/2m, 00),

=< O(T* B (log T)%), ny, ng: otherwise, 5 € [0,1),
O (|log(T/ max{ny,na})|(log T)*), ny, no: otherwise, =1,

O ((log(max{ni,n2}))*/(max{ni,n2})?~1), ni,ns: otherwise, 8 € Rs;.

(e) For X € {1,01},Y € {1,2,01,02}, we have

T 7o N
2mn 2mn it (a .
/ Px ( . 1><PY <t2> (nlng)”xgc (o + it)dt
1

0, ny € [5xT/27T, OO)7
)0, ng € [0y T/27, 00),
) O (|log(T/ max{ni,ny})|(log T)*), ni,ns: otherwise, o = 3,

O ((log(max{n1,n2}))*/(max{ni,n2})?**=1), ny,ny: otherwise, o € (3, 1].

Proof. First we consider the case ny € [6xT/2m,00) or ng € [dyT/2m, 00). It
is clear that ¢x(27mny/t) = 0 or py(2mng/t) = 0 for ¢ € [1,T]. Hence, (a)-(e)
are true for the above nj,ng. Next we consider the case of ny € [1,6xT/2m)
and ng € [1,6yT/27). Then it is clear that 2mn,/dx, 2mns/dy € [1,T]. For
t € [1,2rmax(ny/dx,n2/dy)), we see that px(27ny/t) = 0 (if n1/dx = na2/dy)
or py(2mng/t) =0 (if n1/dx < m2/dy). Hence,

T T
/ ~-~dt:/ . (2.7)
1 Qﬂmax("—}l(,g%)

8

Later, we shall approximate the right-hand side of (2.7).
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First we consider the condition of (a), that is, X, Y € {1,01} and n; = ng =: n.
When n € [0T/2n,6:T/27), we see that 2rn/d > T. Then the right-hand side of

(2.7) is estimated as
2mn
ex =

When n € [1,07/27), we find that 2mn/d € [27n/01,T] and px(27n/t) = 1 for
t € [2mn/d, T)]. Hence the right-hand side of (2.7) is

2 t T t
log 2 )° log 57)®
o (%tm) (o8 52) 4y / o8 50" . (2:9)

% 2nn th
)
Here the first term of the right-hand side on (2.9) is estimated as

2wn

5
< /
27n

51

? (log &)™

i dt < n'~P(logn)®. (2.8)

2mn

E}
2mn

51

< n'7P(logn)*, (2.10)

the second term of the right-hand side on (2.9) is

O (| log(T'/n)|(log T)*), B=1,
=T BlogT)® + O(T P (log T)*~1) + O(n*~P(logn)®), B€[0,1), (2.11)
O((logn)®/n”~1) + O((log T)* /T~ 1), BERS.

where the following formula was used:

N (log )
/M Tdt
(log %) ((log %)a + (log %)a—l(log %) + -+ (log %)a) 5o
= 04"‘]\]]. o ’ -
TISe D ar ((os)er (s g
7;) (1—=p)*t (a—r)! ( N2z3—1 - Afﬁ_l ) ; B #1.
(2.12)

Therefore combining (2.7)—(2.11), we obtain (a).

Next we consider the condition (b), that is, Y € {2,02} and ny = ng2 = n.
Whenn € [1,0xT/2m)N[1,0yT/27), that is, n € [1,dxT/27), we see that 27n/d €
[2mn/dx,T] and ¢y (27n/t) = 0 for t € [27n/6,T]). Then the right-hand side
of (2.7) is

=5 2 2 log )@
= / ox (T)w (Z”) %dt < B (logn)®. (2.13)

ox

M

From (2.7) and (2.13), (b) is obtained.
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We consider the condition of (c), that is, n1 # na, n1 € [1,0xT/27) and
ny € [1,0yT/2m). By integral by parts, the right-hand side of (2.7) is

o (B Yo () e g

(o () () ) it
~ g L 2 (“"X(zt)@ () (loif)a)

it
x (”1> dt. (2.14)
no

Since (px(27n/t)) = O(n/t?) and (¢x(2mn/t))" = O(n/t3) + O(n?/t*) for X €
{1,2,01,02}, it follows that

(log 7)™ | (logT)*~'  (logT)* _ (logT)®
TB+2 TB+1 TB+1 TB+1

(log t)« (log?)~ i (logt)* _ (logt)®
tB+3 tB+4 Y2+ 1612

(- )imr < (1 +12)

(--)" < (n1 +ng2) + (nf +n3)

Hence the second term of the right-hand side of (2.14) is estimated as

< (logT)~ (log max(ny,ng))® (2.15)
TB8+1(log(ny/n9))? (max(n1,n2))B+1(log(n /n9))2’ '
and the third term of the right-hand side of (2.14) is estimated as
1 r logt)® 1 ,M2))®
T i s B G e
(log(m/ng)) 27 max(;—;{,;—i) t (max(nb n?)) (1Og<n1/n2))
(2.16)

Combining (2.7) and (2.14)—(2.16), we obtain (c).
Next we consider the condition of (d), that is, ny € [1,0xT/2x) and ny €
[1,0yT/2m). Then (2.12) gives that the right-hand side of (2.7) is estimated as

T
logt)“
<</ (Ogﬂ) dt
2wmax(%,% t
' (log T)*, Belo,1),
< < |log(T/ max(ny, ng))|(log T)*, B=1,

(log max(ny,n9)®)/(max(ny,n2))?~1, B € Rsy.

Thus (d) is obtained.
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Finally we consider the condition of (e), that is, X € {1,01}, ny € [1,dxT/2n)
and ng € [1,0yT/27). Using (1.4) and Lemma 2.4, we have

(nana) X (s) = (—1)~

[t] “
x ¢ 2108 Treya | ¢ 120 <log g) + M(t) (2.17)
s

k
2

(72)04(2,”)20 1 17‘(1 k)sgn(t)

where M;(t) = O((log [t])*/]t|?). Since we have dxdy < 1, it follows that

2 max(ny/dx,n2/dy) = 21/ (nin2)/(0xdy) > 27 /nins.
Therefore we see that |log(27\/ning/t)| > —log(v/dxdy) > 0 and

— ot N\ —i ot

i2tlog . i2t log Tweyms e i2t log Tweymg
e Smeyming — o — D (2.18)

2ilog =52 21t(log )2

for t € [2r max(ny1/dx,n2/dy),T]. By (2.17) and (2.18), the right-hand side of
(2.7) is estimated as

— (1)

T o\ ; t !
y /T 2n 2n. (log %)a e—th log TreyaTR dt
sz g2y \ £ )TTNTE ) T\ Ty g 2/

dx "oy

T 2 2
+ 0 </ ox <7;n>s0y ( :n) My (t )dt> ) (2.19)
2m max(yL, 52

Sx '8y

E
2

(72)a(27r)20 1 12(1 k)

where M(t) = O((logt)*/t?). From (d), the second term of the right-hand side
of (2.19) is estimated as

- {| log(T/ max(n1, n))|(log T)*, o=1/2,

(log max(ny,n2))®/(max(ny,n))2° 1, o e (1/2,1]. (2.20)

Integration by parts and (2.12) give that the first term of the right-hand side of
(2.19) is

7(72)a(271')2071 - /2mn)\ 2mn (log%)o‘ _12“0327@\/@
(Drerte )T ) e 2i log 212

T a N /
/T 2mn 27‘_7” (log %)a ef’LQt log W dt
sz gy \ O\t )T ) T | Ty 2/

'3y

(log T)* /T (logt)™
+ dt
2

< T20—1 ng t2(7

7 max( 5L 5X ¥

- {|log(T/ max(n1,n2))|(log ), o=1/2, (2.21)

(logmax(ny,ng))®/(max(ny,ne))?° =1, o€ (1/2,1],



108 Yoshikatsu Yashiro

where the following estimate was used:

(logt)* | (logt)*  (logt)*~*  (logt)
t2o+1 t20 t20 t2(r :

Combining (2.7) and (2.19)—(2.21), we get (e). |

() < (nm1+n2)

After using Lemma 2.5, we shall estimate the following sums:

Lemma 2.6. For z € Ry, 71,72 € Z>o and complex valued arithmetic functions
a, B such that a(n) < |Af(n)|, B(n) < |Af(n)|, we have
@ 3 |Af(n1)Ar(n2)[(log nq)™ (log na)"™

(n1n2)”

n1<na2<x

{xQ(l")(logx)”*’"?, o€1/2,1),

(logx)rl+r2+2v g = ]-a
[Af(n1) A (n2)](log ni)"™ (log ng)™ x (loga)m+tr
®) Z (n1n2)” logniz € D

n1<n2 <

foro € [1/2,1),

(c) Z |a(n1)B(nz2)|(logn1)" (log na)™

(n1n2)7nz(log(n1/n2))?

ni <n2<x

229 (logx)"1*72 o € [1/2,1),
(logx)?”1+7’2+27 o =1,

a(n1)B(n2)(logni)"™ (lognz)"
(d) m;‘)gz’ (n1n2)? log(ny/n2)
ni#ng

229 (logz)"1*72, o € [1/2,1),
<
(log z)"1Fr2+2) o=1.

Proof. Using the fact (logni)™ (logns)™ < (logz)™ "2 for ni,ny < z and
the estimates of R,(z) and S,(z) in [3, p.348, Lemma 6], we obtain (a) and
(b). By the same discussion for T,(x) and U,(z) with a,, = a(ni)(logny)™,
Br, = B(n2)(logna)", an, = Ag(n1)(logn2)™, by, = Ar(n2)(lognz)™ in [3, p.348,
Lemma 6], (c) and (d) are obtained. [ |

3. Proof of Theorem 1.1

First we shall show the following formula:

Proposition 3.1. For s = o+it such thato € [0,1] and [t| > 1, p € R, € Ry,
and fized | € Z(141)/2, we have

L (5) = Gn(s,:0) + x4(5) i(-nr <T) G, (1 — s, %; <Po> :

r=0
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where G.(s,x;¢) (r € {0,...,m}) are given by

(m—r)

1 Xf (r) Ksa(w)
Gols,70) = o 1—s—w)L
(s,259) 2m/(§ o) Xf (1=e—w)ly(etw) w
Tr k-1 . w
« (5+w:_12 )<2x efzgsgnt) dw.
(s +%5) m

Proof. First we shall show that the integral

3 .
12775 o Ko(w)Ts+w+ 51 ra o
Lm ¥ 2 ( —1§sgnt) d 3.1
2mi J 1 gnin ! (s+w)=, T(s+551) \2n° w o (31)

vanishes as |v| — oo for [ € Zx (j41)/2. Write w = u + iv and choose [v] > [t| + 1,
then |s + w| > |t +v| > 1. Using (1.4), (1.6) and Lemma 2.4 we have

m

LY (s) < 3 I log [t)™ T (1= s)| < ' log )™ (Jt] = o0)

r=0

for Re s < 0. Hence the Phragmén-Lindel6f theorem gives
L (s +w) < [t + 0|2~ log [t + o)™
< (log o)™ (Jv] — 00) (3:2)

uniformly for o +u € [-1/2,3/2]. Using (2.2) and (2.3) we see that

k—

K%’(w) % F(S +w+ ?1) (iefi%sgn t)w
w I(s+ 51 \2r

[ R R M A
|+ |t|07%+%

< < |7 (o] = 00) (3.3)

uniformly for o + u € [—1/2,3/2]. From (3.2) and (3.3), the integral (3.1) is
< |v]"= ~!(log |v])™, that is, (3.1) tends to 0 as |v] — oo when [ € L (k41))2-

Using the above fact, K,(0) = 1 and applying Cauchy’s residue theorem, we
have

£0) (/ ) / )) LA >r<s(x:§ )

< (Zes sgnt) . 1

for I € Z(x41)/2. Clearly, the first term of the right-hand side of (3.4) is

= G (s,z;0). (3.5)
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We consider the second term of the right-hand side of (3.4). Now we can calculate

T _A'_ﬂ
Lgcm)(erw)—(s—i—w 7)

F(s—i—%)
s+ w k=1 m m (m—r)
= e Pt o (1) e s
o I'(1— s+w+u m X(m )
= xR T () e 60)

r=

X L;T)(l —s5—w)
where we used (1.3) and (1.6) which give that

T(s+w) T(1l-s—w+52L)
L(s+w+52) I(1-s+ 5L

X7(s+w)
Xy (s)

_ (27T)2w

Using (2.1), (3.6) and transforming w — —w, we see that the second term of the
right-hand side of (3.4) is

_ 7Xf(8)/ K(p(—w) ra- s+w+k 2 ) (27m:efi%sgn(t))_w
(3+0) w

2mi (1—s+51)
m NG
x> (1) ( ) I (s —w)L{ (1 — s + w)(~dw)
r=0 r Xf l
= r{m 1
9 ()6 (10 Jiw). (3.7
By (3.4)—(3.7) Proposition 3.1 is showed. |

Next, the approximate formula of G,.(s, z; ) is written as follows:

Proposition 3.2. For s = o + it such that o € [0,1] and |t| > 1, ¢ € R,
z,y € Rog satisfying x/(2my) = 1/[t], fized v € {0,--- ,m} and | € Ly (41)/2, we
have

Gr(s,w50) = i W Zl:%"(” (Z) (_Z)j " (S’ |1|)

n=1 =0
—0 T m—r i
+O(y' 7 (log )" (log [¢)) ™" [t| =2 [ T||1).

Proof. First using (2.2) and dividing the series L (s + w) into two path at py,
& f
we can write

Gr(s,x50) = I + I, (3.8)
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where I; and I, are given by

. L/ I(s+w+ 551) (ieﬂ-gsgnt)w (—1)!
L= on 3oy D(s+55Y) \orm ww+1) - (w4+1)
(m—r) 0o
1
Xf (1—5—w) / (l+1) Pt Z Ag(n Sﬂ?gn) dp | dw,
Xf 0 n<py n
I, = L/ F(S +w+ 5 ) (ie—i%sgn t)w (_1)l
> 2 3 q) S+T 27 ww+1)--(w+1)
(m—r) 00
Ag( 1
Xf 1 s </ SO(l-‘rl ’w-H Z f ns+5gn) dp> dw.
Xf 0 n>py

Let L1, Lis,Cy,Cs be paths of integration defined by

Liy={-1/2—0+xiv|ve (]t],00)},
Lis={3/2—0+iv|ve (V]too)}
Cy={=1/2—c+/Jtle7™ | 6 € (1/2,3/2)},
Cy={3/2—0c+ \/meme |0€(-1/2,1/2)}.

Then by the residue theorem, we have
11:I{+RGS./_'., Ingé, (39)

where I7, I}, Res F are given by

k—1 w
I{ _ L F(s+w:71?) (ie—i%sgn t)
2mi L_1+Ci+L4y F(S + 7) 2m
(m—r)
—1)!
( ) Xy (1 s ’LU)
ww+1)---(w+1) xy
e g Ar(n)(—logn
X / SO(ZJFI +1 Z f ns+w ) dp dw,
0 n<py
1 Ds+w+52) ro .. w
Ié = k_12 (767155gn t)
2mi L_24C2+L;2 F(S + T) 2m
(m—r)
—1)!

ww+1)---(w+1l) xy

> Ar(n)(—logn)”
1+1) w+l Z f g
) </0 nsﬂu dp) e

n>py
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and
k=1 w 1\l
Res F = Z F(S—HU——,LQ) (ie*igsg“t) (1)
w=0,—1,..., ! I(s+%5) 2 w(w+ 1) (w+1)
(m—r) oo
1
X Xy (I1-s—w) / (l+1) puH Z Ar(n S+5g”) dp
Xs 0 n<py n

By the same way to [3, p.337, Lemma 4 (ii)], Res F is written by
)\ _1 r 5 j m—r 1
n<2y " j=0 y Y [t]

under the condition x/(2my) = 1/|t|.
Next to estimate I] and I}, we consider these integral. Clearly (2.3) gives

F(S tw+ %) (ie—igsgn t)w

D(s+ 551 \2m
[HE0 = (L [+ o) (2/20)", w € Livga, g
Sz, weF (31

as [t| = oo. Using Cauchy’s inequality and (1.9), we have

Af(n)(—logn)" (logn)?r
Z nstw Z |)\f Z n2(oc+u)

n<py n<py n<py

< (py)' =) (log py)T, w € Ly UCY,

> MO hsn)” o [ QRS i

n>py PY n<pu
< (py) " (log py)’,  w € Ly U .
Hence we obtain
|t 3 AR g, e tog 0
0 n<py "
w e L:I:l @] Cl, (312)
> A — log n) —(o T
| et 3 MR ) e tog gy,
0 n>py

w € LioUC(Cy. (3.13)

Therefore Lemma 2.4 gives

(m—r)

D" Xy
w-(w+1)  xr

lo| =+ (log [v])™ ", w € Liq o,
I+1
t|=% (log [t)™ ", weF.

1-s—w)< { (3.14)



Approximate functional equation and mean value formula 113
Remark 3.3. Note that

77 (s,1/1t))

(log [t])" :
O <t|7/2 s J € Z}Ov
(r) T 1
t log |t])"
_ %(175): <2log£ﬂ> +o((°g|t:)), j=0,
!
(r) (r) .
X X it log [t])" .
e - oyt o (R -,
Xf Xf 5+ 5 |t]

by using (3.14), the residue theorem and Lemma 2.4.

Finally combining (3.11)—(3.14) and using the same way to [3, p.343-344], we
find that Iy, I, are estimated as

I <y (log y) [l |1y

x/ o055 (1 g 4 gfyrrombeig Qo8I
L

T dv

—0 T m—r 7H>71 u x “
' (ogy) g )™ e+ a5 [ 1 () du
o 2my

—o r m—r—+

< y' =" (logy)" (log [t))™ " |t| = | V1, (3.15)
-0 T m—r|y—+

I < '~ (log y)" (log [¢) ™[]~ = (|0 V], (3.16)

under the condition z/(27y) = 1/|t|. From (3.8)—(3.10), (3.15) and (3.16), the
proof of Proposition 3.2 is completed. |

We use (1.4) and combine the result Propositions 3.1 and 3.2. Let y1, y2 be the
positive numbers satisfying x/(2my2) = 1/|t|, (1/x)/(2my2) = 1/|t| respectively.
Using Remark 3.3, the main term of (1.7) is obtained. Then under the condition
(27)2y1y2 = [t|?, the proof of Theorem 1.1 is completed.

4. Proof of Theorem 1.2

To get the approximate functional equation for Lgcm)(s) without characteristic
functions, we introduce new functions &, 1, and vg,. Let & be the function
defined by &(p) = 1 when p € [0,1] and £(p) = 0 when p € [1,00). For a € Ry
and ¢ € R, let ¥, be the function defined by

; p € (0,1 —1/(2[t}*)],
(L4 (p = D), pet=1/C[), 1+ 1/[t]%],
; p € [L+1/[t]*,00),

S =

1/)a(ﬂ) =

=}

and 1o, is defined by Yo (p) =1 — ¥a(1/p).
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Remark 4.1. From [3, (12)—(15)], we see that ¥, %0a € R, £ € R,
(Wa—8)P) =0,  Woa—) =0, vP(p)=0, oi(p)=0.
for j € Z>y and p € [0,1 —1/(2]¢|*)] U [1 + 1/[t|*, 00), and
R AL O R [ 10 P e A (A PR

for j € Z>p and p € [0, 00).

Let M,(s) be the first sum on the right-hand side of (1.7). Setting y1 = y2 =
|t|/(27) and replacing ¢ +— 1), in Theorem 1.1, we can write

L™ (5) = Me(s) + O(My, —¢(s) + Ry, (5)). (4.1)

Then we have

As(n) (— log n)™

M p—
e(s) —
ng%
m
m—r T m—r A (n)(—logn)r
+Z(_1) (T)ch )(S) fT (42)
r=0 ngm
and
My, —¢(s) + Ry, (s)
As(m)logn)™ (0
h ' ne |Sz(ba)( )|
%1+%<n<%(1+#)
3 A0 n)” | s
+Z : no |St(boa )(1—8)|
r:()l%lpr%gng%(lﬂ'ﬁ)
+ [t 7o 2 log )™ (4.3)

where ng (s) is given by
r 2t \ X
5020 = o -0 () - )

o (2 (_2mN o (1
*ZW <|t|)< |t)”j (8’|t|>’

and we used Remarks 3.3, 4.1, (1.4) and the fact 1 — 1/(2]t|%) > 1/(1 + 1/[t|%)
for @ € Rxg. Using Remarks 3.3 and 4.1, in the case of n € [[¢|/(2n(1 + [t]|%)),
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(1 4 |¢]=)|¢tl/(27)] the sum Sga)(s) is estimated as follows under the condition
a<1/2:

1
S (s) < (log t) + Y [H@~ ) (log [t])" < (log [t])" < [¢]°. (4.4)

j=1
Deligne’s estimate |\ f(n)| < d(n) < n® (see [2]) gives
[As(n)|(logn)"

nU

< |t|tromete, (4.5)

Therefore combining (4.3)—(4.5), we obtain the following estimate:
My, —¢(5) + Ry, (s) = O(t]'777%%) + O(t]' =7 20) = O(jt]77*), (4.6)

where we put & = 1/2 — € and take [ > 1/(2¢). Combining (4.1), (4.2) and (4.6),
we obtain the assertion of Theorem 1.2.

5. Proof of Theorem 1.3

Putting y; = y2 = |¢|/(27) in Theorem 1.1 and writing ¢ = v1+v2, Yo = o1+ P02
where @1, @2, po1, @o2 are defined by (2.6), we obtain the following formula:

2

/OT|L;m>(s)|2dt=/lT gST(S) dt +0(1) = 1<MZV<5I“’V+O(1)’ (5.1)
where S, (s) are given by
Si(s) = g Mwl (27;”) :
So(s) = i A (5,
i m\  (m_r X (n)(—logn)" 2mn
5y(s) = %(—1)’”@»& ) % AR (2.
16) = 30 ()0 3 A g ().

95(5) = Ry (s),

and I, (u,v € {1,...,5}) are given by

T
Iu,y:/1 S,.(s)S,(s)dt.
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First we consider the integral I, ,, in the case of ;1 = v. In the case of (u,v) =
(1,1), applying (a), (c) of Lemma 2.5, we get

Af(n1)Af(n2)(log ni log ng)™
I =
1,1 Z (n1m2)

n17n2:1

r 27TTL1 27'('712 ny i
X prl—— el — | dt
1 n2

-7y A ()Plogn)®™ 3 [Af(n)[*(log n)>™

n20’ n2071

n< kT n<ghT

L > A (n1)@1 (2mna /T)ny ™ A (ng) 1 (2mng /T)ny "
7 g (n1n2)”

ny,ne<z:T,

ni#ng

 _Jog(m/na) $ A (n1)Af(n2)|(log ny log na)™

(logny logng)™ <na< LT (n1n2)7n2(log(ny/n2))?
ni<n2x gy

= U1 + O(UQ) + U3 + O(U4) (52)

Here we shall calculate the right-hand side of (5.2). Using partial summation and
(1.9), we obtain the approximate formula for Uy as

277?1 1T(1OgT)2m+1 + O(T)’ o= 1/2,
Ij1 = sl 2 2m (53)
n=1

The result (1.9), the estimates (d), (c) of Lemma 2.6 imply that

- {0<T2<”> (log T)>™), o € [1/2,1), o)

O((log T)*m+2), oc=1

for j = 2,3,4 respectively. From (5.2)—(5.4), the error term and the main term
of I ;1 correspond to those of the right-hand side of (1.10) when o € (1/2,1].
However, the main term of the right-hand side of (1.10) is not obtained completely
when o = 1/2. In the case of (u,v) = (2,2), applying (b), (c) of Lemma 2.5 and
(a), (c), (d) of Lemma 2.6, we obtain
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1 3 A (n1)ga(2mn /T)ny T A g (n2)pa(2mns /T)ny ™"

Iy = - =
nl;n2<%’ (n1n2)
ni#ng
(logny log ng)™ [Af(n1)Af(n2)|(log ny logng)™
B L DY 2
log(n/n2) s (n1n2)7nz(log(n1/n2))
ni<n2x
[Ap(n)]?(log n)>™
+ O Z n20'71
ngl
o(T**=2)(log T)*™), o €[1/2,1),
= (5.5)
O((log T)?m+1), o=1.

Next we consider the case (u,v) = (3,3). Using (2.17) and the condition
r1 + 19 = r, we obtain the following formula:
logﬁ)meT’

(X;m—m)x;m—rz))(s) _ (27T)4U—2(_2)2m—r( it

+ M(1).

where M (t) is given by M (t) = O((logt)*™~"/t*~1). Then I3 3 is written as

weE 5 () 5 e

r=07r1+ro=r ni,nz=1

T 27TTL1 27‘(’!7,2 ny i ( ) ( )
% s m—ry m—rg s)dt
/1 $o1 ( 7 >8001 ( 7 ) <n2> (Xf Xt )(s)

= I35+ I3, (5.6)

where 1973, I; 5 are defined by

2m
o— m—r m m
iy = e e ¥ (1)(0)
r=0 r14re=r 1 2
3 M) (og )" logma)
nl,n2:1 (’I’LI’I’LQ):[*O’

T 21N, 27T ny\ (log %)%%r
X/1 9001( " )9001( n )(712) Tdt’
2m [e’e]
_ m m )\f(nl)/\f(ng)
Ioo = IO TNTE)
s X (0)(1) X M

r=0ri+ro=r ni,na=1

A ——— it
. . 2mn 2mn n
X (lognl)“(logw)”/ Po1 ( n 1)@01 ( " 2> (1) M (t)dt.
1 T2

respectively. Here we shall approximate 1. j 3 and I3 5.In order to estimate I 5, we
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use the fact that (n1n2)' =713 "2 = (n1n2)7 (na/n1)27 =1 > (n1ny)? for o € R>1/2
and n; < ng. Then using (d) of Lemma 2.5 and (a), (b) of Lemma 2.6, we see that

<y Y Y Armlmallosn) (logna)

l1—0o
r=07ri+ro=r nlgnz\%T (n1n2)
|log(T/ny)|(log T)?>™~", o =1/2, T20=9) (log T)?>™, o € [1/2,1),
(log n)>™ " /5"~ 2, o€ (1/2,1] (log T)?™m+2, o=1.

(5.7)
The formula (a), (¢) of Lemma 2.5 imply that

or)do—2 2m S
7( 371) i T340 Z (2 log %)2 X

Iy = « 3 <m>(z) 3 MZ&E—(_I??”)T, o€ [1/2,4/3),

b AT S
0. o€ [3/4,1],
T3—4a (log T)?m—r’
o e [1/2,3/4),
|)\f 1og n)" |log(T/n)|(log T)?™T,
+0 Z Z n2(1 o) x o= 3/4,
r=0 n< 5 1 T (IOg T)mer/nélaffi’
o€ (3/4,1].
2m
[As(n)[*(logn)" (log T)*™—"
+0 Z Z n2(1-o) ndo—3

r=0 & 91
L T<n< LT

S S gy Y (M)()

r
r=0 r14re=r 1

logny)" (log no )"
Z (logny)™ (logna)

X
 (ning)? log(n1/na)
ny,na<5ET,
ni#na
oo Ar(n)@or (2mna /T) (m /T~ U\ (n2)po1 (2mng /T) (ng/T)%7 !
T ’LT
n Ng

2m r r
oS % Z [As(n1)As(n2)|(log n1)™ (log )™
(nlnz)l—a
r=0ri+ro= =T 1 <na< 52173“

y (logn2)2m r )
ny” " (log(n1 /n2))?

=:Vi+0(Va)+0(Vz)+ Vi+O(Vs), (5.8)
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A similar discussion to Us gives that V; is approximated as

Vi — (Afpm — C¢/(2m +1))T(log T)?>™ 1 + O(T(log T)*™), o =1/2,
O(T?*"' =) (log T)?™), o€ (1/2,1].
(5.9)

To estimate V, and V5, we use the fact that

(n1n2)'~7n3 ! = (n1no)° na(na/n1)? =1 > (ning)7ns

for o € R31/2 and ny < no. Then the estimates (d), (c) of Lemma 2.6 give that

(5.10)

~Jom* = (log T)*™), o €[1/2,1),
7 1 0((log T)?™+2), c=1

for j = 4,5 respectively. By the fact that

n2(170) > n2(170)n40'73 _ n20'71

for o € R¢g/4, the estimate (b) of Lemma 2.6 when o = 3/4 and the formula (1.9),
the sum V5 and V3 are estimated as

_Jo@?*=2)(logT)*™), o€ [1/2,1),
Vi = {0((1ogT)2m+l), o=1 (5:11)

for j = 2,3. Therefore, from (5.6)-(5.11) the approximate formula for I3 3 is
obtained. In the case of (u,v) = (4,4), by a similar discussion to the case of
(1, v) = (3,3) the integral I, 4 is approximated as
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Ar(n)?(logn
Iis=0 Zzz|f (logn)*™

20—1
r= 07‘1+7‘2_rn<, n
2m
(271')4720 T\ 2m—r m m
+ i Z( 0g 27r) Z ry r9
r=0 T1+7r2="
logn1)" (log na)"
« 3 (logmny)™ (log n2)

< o (mn2)7log(ni/no)
ni,n2

X7

n1#ng

oo Ar(n1)poa(2mna /T) (1 /T)27~ L\ (n2)@o2(2mna /T) (ng/T)*

ni” ny'
oSy oy Pems(m)logn) logna)
— 5, . (ning)t—7
r=0U7T1TTr2="r n1<n2<?
(lognz)Qm—r )
15" (log(n1/n2))?
2m
[As(n1)As(n2)|?(log 1) (log mo) "™
A DD =
el - (n1n)
r=0T1472=7 1y <np< T
5 |log(T/n)|(logT)*™=", o=1/2,
(logno)®™~7/ny" 2, o€ (1/2,1]
_Jo@? =) (logT)*™), o€ [1/2,1), (5.12)
| O((log T)?m+2), o=1, '
where (b)—(d) of Lemma 2.5, the formla (1.9) and (b)—(d) of Lemma 2.6 were used.
Finally we consider the case (u,v) = (5,5). Remarks 3.3, 4.1 and the formula (1.4)
imply that
l m
[Ar(n)|(logn)™ [ 1 1
Ry(s)< > fT m*ZT +xs(s) Y 1
L<n<t =2 [t r=0 L <n<t
1
A logn)” [ (log|t|)™—" (log |t))y™ " log |t|)™
LY )J(Ug) (log |¢]) +Z gtl) +(g|\)l
n =T 71+
i=
logt)™
< logd)” Ofg) (5.13)
Hence we get

T 2m 2m—+1 _
log t logT =1/2
I5 5 <</ (og )7 dt < (log T) o o=1/2, (5.14)
’ 1 t=e 1, o€ (1/2,1].
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Lastly we consider I, , in the case of u # v. Since I;,; contains the main

term of the mean value formula for L(fm) (s), and Cauchy’s inequality implies that
ol < Iyply, for pov e {1,...,5}, it follows that it is enough to consider I, ,
in the case of (p,v) = (1,2), (1,3), (1,4), (1,5). First in the case of (u,v) = (1,2),
using (b), (¢) of Lemma 2.5, (c), (d) of Lemma 2.6 and the estimate (5.3), we
obtain

[ i Ap(n1)As(n2)(logny )™ (log na)™
v ni,ne=1 (n1n2)0

T 27T7L1 2’/TTL2 ny i
X vl = Jv2 | — | dt
1 n2

1 Ar(n1)e1(2mny /T)ny ™ A (na)pa(2mny /T)ny ™"
Z (nan)O'

T
ny,n2<i,
ni#ng

(lognq log ng)™ [Af(n1)Af(n2)|(log ni log ng)™
Togmm) O\ 2 T e nalioglm/ma)?

ni<na<Z

oy Prlltosn?r

n2o—1
n<%
2(1—0o) 2m
_Jow (logT)*™), o€ [1/2,1), (5.15)
O((lOgT)2m+2)7 o=1.

Next we consider the case (u,v) = (1,3). From (e) of Lemma 2.5 and (a), (b) of
Lemma 2.6, the integral I; 3 is estimated as

—71,3=i(—1)m<7:> i Ar(n1)Af(n2)(log ny)™ (log na)™

r=0 ™ ’I’Lé ’
TT’I”Ll 21Ny it (m—r)

X por | —— (nin2) Xy (s)dt
1

2m Ar(n)Ar(n2)|(logni)™ (logng )™
0|y T T If()f(ill(n%gg)(g)

’nl,’nzzl

r=0ri+ro= rn1<n2< T

|log T/n2)|(logT)?>™=", o =1/2,
(10gn2)2m T o e(1/2,1]
O(T*1=9) (log T)*™), o € [1/2,1),
- 2m+2 (5.16)
O((log T)?™m*2), o=1.

In the case of (u,v) = (1,4), a similar discussion to the case of (u,v) = (1, 3) gives
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that

L {O(TQ(l_”)(logT)QmL o€ [1/2,1), 5.17)

O((log T)*™+2), o=1

Finally we consider the case (u,v) = (1,5). The formula (1.9) and Cauchy’s
inequality imply that »° . [Af(n)] = O(z). Then using the estimate (5.13) and
partial summation we get

T m m
o [ s ()l logn)™
1

to ne
51
n<oxt

T m l1—0o m
1
< / ( Ogt) t (logt) , 0€ [1/27 1)a dt
1 to (logt)m+1, c=1

{T2(1”)(logT)2m, o€[1/2,1), (5.18)

(log T)?m+2, o=1.

Therefore combining (5.1)—(5.18), we complete the proof of Theorem 1.3.
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