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ON THE ZEROS OF THE k-TH DERIVATIVE OF THE RIEMANN
ZETA FUNCTION UNDER THE RIEMANN HYPOTHESIS

Ade Irma Suriajaya

Abstract: The number of zeros and the distribution of the real part of non-real zeros of the
derivatives of the Riemann zeta function have been investigated by Berndt, Levinson, Mont-
gomery, and Akatsuka. Berndt, Levinson, and Montgomery studied the general case, meanwhile
Akatsuka gave sharper estimates for the first derivative of the Riemann zeta function under the
truth of the Riemann hypothesis. In this paper, we generalize the results of Akatsuka to the k-th
derivative (for positive integer k) of the Riemann zeta function.
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1. Introduction

The theory of the Riemann zeta function ζ(s) has been studied for over 150 years.
Among the topics of research, the study of its zeros has been one of the main
subject of interest, in particular, the study of the zeros of its derivatives. In fact,
in 1970, Berndt [2, Theorem] proved that

Nk(T ) =
T

2π
log

T

4π
− T

2π
+O(log T ) (1.1)

where Nk(T ) denotes the number of zeros of the k-th derivative of the Riemann
zeta function ζ(k)(s), with 0 < Im (s) 6 T , counted with multiplicity, for any
positive integer k. In 1974, Levinson and Montgomery [7, Theorem 10] showed
that for any positive integer k,
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∑
ρ(k)=β(k)+iγ(k),

ζ(k)(ρ(k))=0, 0<γ(k)6T

(
β(k) − 1

2

)
=
kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2− k log log 2

)
T

− kLi
(
T

2π

)
+O(log T ) (1.2)

where the sum is counted with multiplicity and

Li(x) :=

∫ x

2

dt

log t
.

In addition to the above result (1.2), Levinson and Montgomery [7] also studied
the location of the zeros of ζ(k)(s). There are many other papers on the zeros of
ζ(k)(s); for example, Conrey and Ghosh [4, Theorem 1] in 1989, studied the zeros
of ζ(k)(s) near the critical line.

In 2012, Akatsuka [1, Theorems 1 and 3] improved each of the error term of the
results obtained by Berndt and by Levinson and Montgomery mentioned above
(see (1.1) and (1.2)) for the case k = 1 under the assumption of the truth of the
Riemann hypothesis. More precisely, he showed that∑

ρ′=β′+iγ′,
ζ′(ρ′)=0, 0<γ′6T

(
β′ − 1

2

)
=

T

2π
log log

T

2π
+

1

2π

(
1

2
log 2− log log 2

)
T

− Li
(
T

2π

)
+O((log log T )2)

and
N1(T ) =

T

2π
log

T

4π
− T

2π
+O

(
log T

(log log T )1/2

)
if the Riemann hypothesis is true. In this paper, we generalize these two results
of Akatsuka for any positive integer k. Before we introduce our results, we define
some notation.

We denote by Z, R, and C the set of all rational integers, the set of all real
numbers, and the set of all complex numbers, respectively. Throughout this paper,
the letter k is used as a fixed positive integer, unless otherwise specified. Next,
let ρ = β + iγ and ρ(k) = β(k) + iγ(k) be the nontrivial zeros of the Riemann
zeta function and the non-real zeros of the k-th derivative of the Riemann zeta
function, respectively. Then we define N(T ) and Nk(T ) as follows:

Definition 1.1. For T > 0, we define

N(T ) := ]′{ρ = β + iγ | 0 < γ 6 T}

and
Nk(T ) := ]′{ρ(k) = β(k) + iγ(k) | 0 < γ(k) 6 T}

where ]′ means the number of elements counted with multiplicity.
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The following results generalize Theorem 1, Corollary 2, and Theorem 3 of [1],
respectively. Note that each sum counts the non-real zeros of ζ(k)(s) with multi-
plicity and that the implicit constant in Ok(·) depends only on k.

Theorem 1. Assume that the Riemann hypothesis is true. Then for any T > 2n,
we have ∑

ρ(k)=β(k)+iγ(k),

0<γ(k)6T

(
β(k) − 1

2

)
=
kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2− k log log 2

)
T

− kLi
(
T

2π

)
+Ok((log log T )2),

where the sum is counted with multiplicity.

Corollary 2 (cf. [7, Theorem 3]). Assume that the Riemann hypothesis is
true. Then for 0 < U < T (where T is restricted to satisfy T > 2π), we have∑

ρ(k)=β(k)+iγ(k),

T<γ(k)6T+U

(
β(k) − 1

2

)
=
kU

2π
log log

T

2π
+

1

2π

(
1

2
log 2− k log log 2

)
U

+O

(
U2

T log T

)
+Ok((log log T )2),

where the sum is counted with multiplicity and the implicit constant in the error
term O

(
U2

T log T

)
does not depend on any parameter.

Theorem 3. Assume that the Riemann hypothesis is true. Then for T > 2, we
have

Nk(T ) =
T

2π
log

T

4π
− T

2π
+Ok

(
log T

(log log T )1/2

)
.

We write Re(s) and Im(s) (for any s ∈ C) as σ and t, respectively. We ab-
breviate the Riemann hypothesis as RH, and finally, we define two functions F (s)
and Gk(s) as follows:

Definition 1.2.

F (s) := 2sπs−1 sin
(πs

2

)
Γ(1− s), Gk(s) := (−1)k

2s

(log 2)k
ζ(k)(s).

By the above definition of F (s), we can check easily that the functional equation
for ζ(s) states

ζ(s) = F (s)ζ(1− s). (1.3)

Remark 1. The function F (s) appeared in [1] and [7, Section 3], and the function
Gk(s) is the ζ(k)-version of the function G(s) in [1], which is denoted by Zk(s) in
[7, Section 3]. Most of the symbols used in this paper follow those used in [1].
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Before we move to the next section, we intend to give a brief outline of the
proofs. Nevertheless, since the steps of our proofs basically follow those given in
[1] with a few crucial modifications, instead of the outline of the proofs, we present
only the main needed modifications related to the proofs.

First of all, condition 2 of Lemma 2.1 of [1] is related to the functional equation
for ζ ′(s). In our case, we need to consider ζ(k)(s) for any positive integer k. Thus,
we obtain a function which consists of terms that are not logarithmic derivatives
of some functions, so we cannot easily follow the case of ζ ′(s). In the present
paper, we take care of these terms in a way that does not involve any calculation
on logarithmic derivatives.

Secondly, similarly to condition 2, in condition 3 of Lemma 2.1 of [1], the factor
to be estimated was F

′

F (s) which is just the logarithmic derivative of F (s), whereas
in the present paper, we need to take care of F (k)

F (s) which is not a logarithmic
derivative of any function. Thus, as in condition 2, we estimate this term for any
k in a way which does not require any calculation on logarithmic derivatives, and
hence we need to take a suitable logarithmic branch of the function log F (k)

F (s).

The next is condition 4 of Lemma 2.1 of [1]. For ζ ′(s), the term we need to
estimate was ζ′

ζ (s) which is just the logarithmic derivative of ζ(s). In [1], the in-

equality Re
(
ζ′

ζ (s)
)
< 0 was obtained, however for ζ(k)(s), the sign of Re

(
ζ(k)

ζ (s)
)

does not seem to stay unchanged in any region defined by x 6 σ < 1
2 , t > y for

some x 6 −1 and large y > 0. Nevertheless, since it is sufficient to show that
ζ(k)

ζ (s) is holomorphic and non-zero, and has bounded argument in some region of
the above kind, we shall modify the condition in such a way.

Furthermore, with the modifications of these conditions of the first lemma, the

choice of logarithmic branch of the function log

(
1

F (k)

F (s)

ζ(k)

ζ (s)

)
in the proof of

Proposition 2.2 (which generalizes Proposition 2.2 in [1]) must be taken more care-
fully so that these conditions can be used in our calculations. In order to evaluate

the function log

(
1

F (k)

F (s)

ζ(k)

ζ (s)

)
, we first define the functions log

(
1

F (k)

F (s)

ζ(k)

ζ (s)

)
,

log F (k)

F (s), and log ζ(k)

ζ (s) independently. Then using the continuities of

arg

(
1

F (k)

F (s)

ζ(k)

ζ (s)

)
, arg F (k)

F (s), and arg ζ(k)

ζ (s), we observe the difference

arg

(
1

F (k)

F (s0)

ζ(k)

ζ (s)

)
−
(
− arg F (k)

F (s) + arg ζ(k)

ζ (s)
)

in the region under evalu-

ation (see the evaluation of I15 in Proposition 2.2).

Finally, the region 1
2 < σ 6 a considered in Lemma 2.3 of [1] does not work

well for ζ(k)

ζ (s). The reason is that the current best estimate of ζ(k)

ζ (s) depends
on the usage of Cauchy’s integral formula, and hence we need to keep a certain
distance between 1

2 and the infimum of σ in the region. Therefore, we put here
a small distance ε0 > 0 (see the statement of our Lemma 2.3).
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2. Proof of Theorem 1 and Corollary 2

In this section we give the proofs of Theorem 1 and Corollary 2. For that purpose,
we need a few lemmas and a proposition which are analogues of those in [1].

The following lemma is a generalization of Lemma 2.1 of [1] for the case
of ζ(k)(s).

Lemma 2.1. Assume RH. Then there exist ak > 10, σk 6 −1, and tk >
max {a2

k,−σk} such that the following conditions are satisfied:

1. |Gk(s)− 1| 6 1
2

(
2
3

)σ/2, for any σ > ak;

2.
∣∣∣∣∑k

j=1

(
k
j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ (1− s)
∣∣∣∣ 6 2σ, for σ 6 σk and t > 2;

3.
∣∣∣F (k)

F (s)
∣∣∣ > 1 holds in the region σk 6 σ 6 1

2 , t > tk − 1. Furthermore, we

can take the logarithmic branch of log F (k)

F (s) in that region such that it is
holomorphic there and αkπ

6 < arg F (k)

F (s) < βkπ
6 holds, where

(αk, βk) =

{
(5, 7) if k is odd,
(−1, 1) if k is even;

4. ζ(k)

ζ (s) 6= 0 holds in the region σk 6 σ < 1
2 , t > tk − 1. Furthermore, we

can take the logarithmic branch of log ζ(k)

ζ (s) in that region such that it is

holomorphic there and kπ
2 < arg ζ(k)

ζ (s) < 3kπ
2 holds;

5. ζ(σ + itk) 6= 0, ζ(k)(σ + itk) 6= 0, for all σ ∈ R.

Proof. 1. See [7, (3.2) (p. 54)].
2. We start by estimating F (k)

F (k−j) (s) (j = 1, 2, · · · , k) in the region σ < 1, t > 2.
We set f(s) :=

(
1
2 − s

) (
log (1− s)− log (2π) + πi

2

)
+ s + O(1), where f(s) is an

analytic function and

f ′(s) = − log (1− s) +O(1), f (j)(s) = O(1) (j > 2).

As in [7, pp. 54–55], we can write

F (s) = exp(f(s)).

Using methods similar to [6, Lemma 6 (p. 133)] and [7, pp. 54–55], we can show
that

F (j)(s) = F (s)(f ′(s))j
(

1 +O

(
1

| log s|2

))
(2.1)

holds for any positive integer j. In consequence, for j = 1, 2, · · · , k, we have∣∣∣∣ F (k)

F (k−j) (s)

∣∣∣∣ =

∣∣∣∣(f ′(s))j (1 +O

(
1

| log s|2

))∣∣∣∣
> (log |1− s|)j −

∣∣O ((log |1− s|)j−1
)∣∣ .
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Certainly, this also holds in the region σ 6 −1, t > 2, so for any positive integer k,
we can take σk1 6 −1 sufficiently small (i.e. sufficiently large in the negative
direction) so that for any s with σ 6 σk1 and t > 2, we have∣∣∣∣ F (k)

F (k−j) (s)

∣∣∣∣ > 1

2k
(log |1− s|)j > 1

2k
(log (1− σ))j . (2.2)

Next we estimate ζ(j)

ζ (1− s) (j = 1, 2, · · · , k). In the region σ 6 −1, t > 2, we
have∣∣∣ζ(j)(1− s)

∣∣∣ 6 ∣∣∣∣ (log 2)j

21−s

∣∣∣∣+

∣∣∣∣∣
∞∑
n=3

(log n)j

n1−s

∣∣∣∣∣ 6 1

2
(log 2)j2σ +

∫ ∞
2

(log x)j

x1−σ dx

= 2σ

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)

and

|ζ(1− s)| > 1−

∣∣∣∣∣
∞∑
n=2

1

n1−s

∣∣∣∣∣ > 1−
∞∑
n=2

1

n2
= 2− π2

6
.

Thus, ∣∣∣∣ζ(j)

ζ
(1− s)

∣∣∣∣ 6 2σ

2− π2

6

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
. (2.3)

Now combining (2.2) and (2.3), for σ 6 σk1 and t > 2, we have∣∣∣∣∣∣
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)

∣∣∣∣∣∣
6

k∑
j=1

(
k

j

)
1∣∣∣ F (k)

F (k−j) (s)
∣∣∣
∣∣∣∣ζ(j)

ζ
(1− s)

∣∣∣∣
6 2σ

2k

2− π2

6

k∑
j=1

(
k

j

)
1

(log (1− σ))j

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
.

Since for any positive integer k,

lim
σ→−∞

2k

2− π2

6

k∑
j=1

(
k

j

)
1

(log (1− σ))j

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
= 0,

we can take σk 6 σk1 (6 −1) so that

2k

2− π2

6

k∑
j=1

(
k

j

)
1

(log (1− σ))j

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
6 1
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holds for any σ 6 σk. This implies that∣∣∣∣∣∣
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)

∣∣∣∣∣∣ 6 2σ

holds for σ 6 σk, t > 2.
Now with the above σk, we are going to find tk > max {a2

k,−σk} for which
conditions 3 to 5 hold.

3. We start by examining condition 3. We first consider the region σk 6 σ 6 1
2 ,

t > 99. It follows from (2.1) that in this region,

F (k)(s) = F (s)(− log (1− s) +O(1))k
(

1 +O

(
1

| log s|2

))
(2.4)

holds. This gives us,∣∣∣∣F (k)

F
(s)

∣∣∣∣ > |(log (1− s))k| −
∣∣Oσk((log t)k−1)

∣∣ > (log t)k −
∣∣Oσk((log t)k−1)

∣∣
for σk 6 σ 6 1

2 and t > 99. Thus, for any integer k > 1, we can take tk1 > 100
such that ∣∣∣∣F (k)

F
(s)

∣∣∣∣ > 1 (2.5)

for σk 6 σ 6 1
2 and t > tk1 − 1.

We note from (2.4) that F (k)

F (s) = (−1)k(log t)k + O((log t)k−1) when σk 6
σ 6 1

2 and t > 99. Consequently, for odd integer k > 1, we can find sufficiently
large t′k2 > 100 such that

5π

6
< arg

F (k)

F
(s) <

7π

6

holds for σk 6 σ 6 1
2 and t > t′k2 − 1. Similarly, when k is even, we can also find

sufficiently large t′′k2 > 100 such that

−π
6
< arg

F (k)

F
(s) <

π

6

holds for σk 6 σ 6 1
2 and t > t′′k2 − 1. Since all zeros and poles of F (s) lie on R,

F (k)

F (s) has no poles for t > 0. This along with (2.5) implies that log F (k)

F (s) is
holomorphic in the region with this branch. Thus setting

(αk, βk) :=

{
(5, 7), if k is odd,
(−1, 1), if k is even;
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and

tk2 :=

{
t′k2 , if k is odd,
t′′k2 , if k is even;

we find that log F (k)

F (s) is holomorphic and that

αkπ

6
< arg

F (k)

F
(s) <

βkπ

6

holds in the region σk 6 σ 6 1
2 , t > tk2 − 1.

By the above calculations, we see that max {tk1 , tk2 , a2
k,−σk} is a candidate

for tk. Thus we have proven that tk > max {a2
k,−σk} for which condition 3 holds

exists. Since we want tk to also satisfy conditions 4 and 5, we need to examine
those conditions to completely prove the existence of tk.

4. Referring to [7, Corollary of Theorem 7 (p. 51)], we know that RH implies
that for any positive integer j, ζ(j)(s) has at most a finite number of non-real
zeros in σ < 1

2 . Hence we can count all the non-real zeros of ζ(j)(s) in σ < 1
2 as

ρ
(j)
1 , ρ

(j)
2 , ρ

(j)
3 , · · · , ρ(j)

mj (ρ(j)
l = β

(j)
l + iγ

(j)
l ) for some integer mj > 2 (note that if

ζ(j)
(
ρ(j)
)

= 0, then ζ(j)
(
ρ(j)
)

= 0, so mj > 2) in the order such that γ(j)
l 6 γ

(j)
l+1

for all 1 6 l 6 mj − 1. Therefore, ζ(j)(s) 6= 0 when σ < 1
2 and t > γ

(j)
mj + 1. We

set tk3 := max
16j6k

(γ(j)
mj + 2), then for all j = 1, 2, · · · , k, we have

ζ(j)(s) 6= 0 (2.6)

in the region σ < 1
2 , t > tk3 − 1.

Next we show that we can take the logarithmic branch of log ζ(k)

ζ (s) in the
region σk 6 σ < 1

2 , t > tk4 − 1 for some tk4 > 100, so that it is holomorphic there
and

kπ

2
< arg

ζ(k)

ζ
(s) <

3kπ

2

holds there by first claiming that we can find some tk4 > tk3 for which

Re
(

ζ(j)

ζ(j−1)
(s)

)
< 0 (σk 6 σ <

1

2
, t > tk4 − 1) (2.7)

holds for all j = 1, 2, · · · , k. We first note that for any j = 1, 2, · · · , k, ζ(j)

ζ(j−1) (s) is
holomorphic and has no zeros in the region defined by σ < 1

2 and t > tk3 − 1.
To show this, we refer to [7, pp. 64–65] and we can show that for any

j = 1, 2, · · · , k,

Re
(

ζ(j)

ζ(j−1)
(s)

)
6 −2

9
log |s|+Oσk(1)

holds when σk 6 σ < 1
2 , and t > tk3 − 1. Thus, we can take tk4 > tk3 such that

(2.7) holds for all j = 1, 2, · · · , k.
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The above immediately implies that for each j = 1, 2, · · · , k, there exists an
integer lj such that

π

2
+ 2ljπ < arg

ζ(j)

ζ(j−1)
(s) <

3π

2
+ 2ljπ (2.8)

holds for σk 6 σ < 1
2 , t > tk4 − 1. We then choose the logarithmic branch of each

of log ζ(j)

ζ(j−1) (s) such that each lj in (2.8) is zero and take the logarithmic branch

of log ζ(k)

ζ (s) so that

arg
ζ(k)

ζ
(s) =

k∑
j=1

arg
ζ(j)

ζ(j−1)
(s)

holds in the region σk 6 σ < 1
2 , t > tk4 − 1. Note that from (2.6) and the

analyticity of ζ(k)(s) in σ < 1
2 (also note that we are assuming RH thus ζ(s) 6= 0

when σ < 1
2 and t > tk4 − 1), log ζ(k)

ζ (s) is holomorphic in this region with this

branch. We then obtain a holomorphic function log ζ(k)

ζ (s) with inequalities

kπ

2
< arg

ζ(k)

ζ
(s) <

3kπ

2

in the region σk 6 σ < 1
2 , t > tk4 − 1.

Combining the proof of condition 3 and the above calculations, we find that
max {tk1 , tk2 , tk4 , a2

k,−σk} is a candidate for tk. Therefore we have proven that
tk > max {a2

k,−σk} for which conditions 3 and 4 hold exists.
5. Now we set tk5 := max {tk1 , tk2 , tk4 , a2

k,−σk}.
• Since we are assuming RH, ζ(σ + it) 6= 0 for any t > 0 if σ 6= 1

2 .
• According to [10, Table 1 (p. 678)], ζ ′(σ + it) 6= 0 for any t ∈ R if σ > 3

and ζ ′′(σ + it) 6= 0 for any t ∈ R if σ > 5. According to [10, Theorem 1], for
k > 3, ζ(k)(σ + it) 6= 0 for any t ∈ R if σ > 7

4k + 2. Indeed, we can check
that for k = 1, 7

4 + 2 > 3 and for k = 2, 7
2 + 2 > 5, thus for any positive

integer k,

ζ(k)(σ + it) 6= 0 (σ >
7

4
k + 2, t ∈ R).

• Since tk5 > tk3 , from (2.6), we have ζ(k)(σ + it) 6= 0 for σ < 1
2 and t > tk5 .

Hence, for any positive integer k, we only need to find tk ∈ [tk5 + 1, tk5 + 2] for
which

ζ

(
1

2
+ itk

)
6= 0 and ζ(k)(σ + itk) 6= 0 for

1

2
6 σ 6

7

4
k + 2

hold. Note that this is possible by the identity theorem for complex analytic
functions. Thus, we have shown that tk defined above satisfies tk > max {a2

k,−σk}
and also conditions 3 to 5. �
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Remark 2. For k = 1 and k = 2, more precise results are known. Refer to [1]
and [12], respectively. These results are obtained based on the works of Speiser
[8], Spira [11], and Yildirim [15] (also [16]) on the zeros of ζ ′(s) and ζ ′′(s).

Proposition 2.2. Assume RH. Take ak and tk which satisfy all conditions of
Lemma 2.1. Then for T > tk which satisfies ζ(k)(σ + iT ) 6= 0 and ζ(σ + iT ) 6= 0
for any σ ∈ R, we have∑
ρ(k)=β(k)+iγ(k),

0<γ(k)6T

(
β(k) − 1

2

)
=
kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2− k log log 2

)
T

− kLi
(
T

2π

)
+

1

2π

∫ ak

1/2

(− arg ζ(σ + iT ) + argGk(σ + iT )) dσ +Ok(1),

where the logarithmic branches are taken so that log ζ(s) and logGk(s) tend to
0 as σ → ∞ and are holomorphic in C\{ρ + λ | ζ(ρ) = 0 or ∞, λ 6 0} and
C\{ρ(k) + λ | ζ(k)(ρ(k)) = 0 or ∞, λ 6 0}, respectively.

Proof. The steps of the proof generally follow the proof of Proposition 2.2 of [1].
We first take ak, σk, and tk as in Lemma 2.1 and fix them. Then, we take T > tk
such that ζ(k)(σ + iT ) 6= 0 and ζ(σ + iT ) 6= 0 (∀σ ∈ R). We also let δ ∈ (0, 1/2]
and put b := 1

2 − δ. We consider the rectangle with vertices b + itk, ak + itk,
ak + iT , and b+ iT , and then we apply Littlewood’s lemma (cf. [13, pp. 132–133])
to Gk(s) there. By taking the imaginary part, we obtain

2π
∑

ρ(k)=β(k)+iγ(k),

tk<γ
(k)6T

(β(k) − b) =

∫ T

tk

log |Gk(b+ it)|dt−
∫ T

tk

log |Gk(ak + it)|dt

−
∫ ak

b

argGk(σ + itk)dσ +

∫ ak

b

argGk(σ + iT )dσ

=: I1 + I2 + I3 +

∫ ak

b

argGk(σ + iT )dσ

(2.9)
where the sum is counted with multiplicity. By the same reasoning as in
[1, p. 2246], we have

I2 = Oak(1), I3 = Oak,tk(1).

Now we only need to estimate I1. From the functional equation (1.3) for ζ(s),
we can deduce that

ζ(k)(s) = F (k)(s)ζ(1− s)

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)


= F (s)

F (k)

F
(s)ζ(1− s)

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)

 .
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Hence,

I1 =

∫ T

tk

log |Gk(b+ it)|dt =

∫ T

tk

log
2b

(log 2)k
|ζ(k)(b+ it)|dt

=

∫ T

tk

log
2b

(log 2)k
dt+

∫ T

tk

log |ζ(k)(b+ it)|dt

= (b log 2− k log log 2)(T − tk) +

∫ T

tk

log |F (b+ it)|dt

+

∫ T

tk

log

∣∣∣∣F (k)

F
(b+ it)

∣∣∣∣dt+

∫ T

tk

log |ζ(1− b− it)|dt

+

∫ T

tk

log

∣∣∣∣∣∣1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (b+ it)

ζ(j)

ζ
(1− b− it)

∣∣∣∣∣∣dt
=: ((b log 2− k log log 2)T +Otk(1)) + I12 + I13 + I14 + I15. (2.10)

As shown in [1, pp. 2247–2249],

I12 =

(
1

2
− b
)(

T log
T

2π
− T

)
+Otk(1),

I14 = −
∫ ak

1−b
arg ζ(σ + iT )dσ +Oak,tk(1).

Below we estimate I13 and I15.
We begin with the estimation of I13. We consider for 0 < σ < 1

2 and t > 100.
We first show that

F (k)(s) = F (s)(f ′(s))k
(

1 +O

(
e−t

| log s|2

)
+O

(
1

|s|| log s|2

))
(2.11)

holds in the region σ < 1, t > 100. It is obvious that the above error estimate is
more precise than that in (2.1). The proof is similar to the proof of condition 2 of
Lemma 2.1. We begin by taking the logarithmic branch of log

(
sin πs

2

)
as

log
(

sin
πs

2

)
= −πis

2
− log 2 +

πi

2
−
∞∑
n=1

eπins

n
(2.12)

in the region 0 < σ < 1, t > 2 and analytically continue it to the region
σ < 1, t > 2. Next, we apply Stirling’s formula to Γ(1 − s) in the region
−π2 < arg (1− s) < π

2 . Substituting these into F (s), we obtain

F (s) = exp

(
πi

4
− 1 +

(
1

2
− s
)

log
(1− s)i

2π
+ s+O(e−t) +O

(
1

|s|

))
for σ < 1 and t > 100, where the term O(e−t) comes from the term

∑∞
n=1

eπins

n in

(2.12) and the term O
(

1
|s|

)
originates from the Stirling’s formula.
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We now write f(s) :=
(

1
2 − s

)
log (1−s)i

2π +s+O(e−t)+O
(

1
|s|

)
and differentiate

it with respect to s to obtain

f ′(s) = − log
(1− s)i

2π
+

1

2(1− s)
+O(e−t) +O

(
1

|s|2

)

and

f (j)(s) = O(e−t) +O

(
1

|s|j−1

)

for j > 2. (2.11) immediately follows. As a consequence to (2.11),

F (k)

F
(b+ it) =

(
− log

t+ (1− b)i
2π

+
1

2(1− b− it)
+O

(
1

t2

))k
×
(

1 +O

(
1

t(log t)2

))
=

(
− log

t

2π
+
t2 − 2(1− b)((1− b)2 + t2)

2((1− b)2 + t2)t
i+O

(
1

t2

))k
×
(

1 +O

(
1

t(log t)2

))
.

This gives us

log
F (k)

F
(b+ it) = k log log

t

2π
+ k log (−1)

+ k log

(
1− t2 − 2(1− b)((1− b)2 + t2)

2((1− b)2 + t2)t log t
2π

i+O

(
1

t2 log t

))

+O

(
1

t(log t)2

)
= k log log

t

2π
+ k log (−1)− k t

2 − 2(1− b)((1− b)2 + t2)

2((1− b)2 + t2)t log t
2π

i

+O

(
1

t(log t)2

)
.

Consequently we have

Re
(

log
F (k)

F
(b+ it)

)
= k log log

t

2π
+O

(
1

t(log t)2

)
.
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Hence,

I13 =

∫ T

tk

log

∣∣∣∣F (k)

F
(b+ it)

∣∣∣∣dt =

∫ T

tk

Re
(

log
F (k)

F
(b+ it)

)
dt

= k

∫ T

tk

log log
t

2π
dt+O

(∫ T

tk

dt

t(log t)2

)

= kT log log
T

2π
− 2πkLi

(
T

2π

)
+Otk(1).

Finally, we estimate I15. Again from the functional equation (1.3) for ζ(s), we
have

ζ(k)(s) = F (k)(s)ζ(1− s)

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)


=
F (k)

F
(s)ζ(s)

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)


which gives us

1
F (k)

F (s)

ζ(k)

ζ
(s) = 1−

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s). (2.13)

It follows from condition 2 of Lemma 2.1 that the right hand side of (2.13) is
holomorphic and has no zeros in the region defined by σ 6 σk and t > 2. Moreover
from conditions 3 and 4 of Lemma 2.1, the left hand side of (2.13) is holomorphic
and has no zeros in the region defined by σk 6 σ < 1

2 and t > tk − 1. Thus, we

can determine log

(
1−

∑k
j=1

(
k
j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ (1− s)
)

so that it tends to

0 as σ → −∞ which follows from condition 2 of Lemma 2.1, and is holomorphic
in the region σ < 1

2 , t > tk − 1.
Now we consider the trapezoid C with vertices b + itk, b + iT , −T + iT , and

−tk + itk (as in [1, p. 2247]). Then by Cauchy’s integral theorem,∫
C

log

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)

ds = 0. (2.14)

By using condition 2 of Lemma 2.1, we can also show that (cf. [1, p. 2248])(∫ −T+iT

σk+iT

+

∫ −tk+itk

−T+iT

+

∫ σk+itk

−tk+itk

)

log

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)

ds = O(1).
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Next we estimate the integral from σk + itk to b+ itk trivially and we obtain

∫ b+itk

σk+itk

log

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)

ds = Otk(1).

Substituting the above two equations into (2.14) and taking the imaginary
part, we obtain

I15 =

∫ T

tk

log

∣∣∣∣∣∣1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (b+ it)

ζ(j)

ζ
(1− b− it)

∣∣∣∣∣∣dt
=

∫ b

σk

arg

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (σ + iT )

ζ(j)

ζ
(1− σ − iT )

dσ +Otk(1)

(2.13)
=

∫ b

σk

arg

(
1

F (k)

F (σ + iT )

ζ(k)

ζ
(σ + iT )

)
dσ +Otk(1).

Now we determine the logarithmic branch of log F (k)

F (s) and log ζ(k)

ζ (s) in the
region σk 6 σ < 1

2 , t > tk−1 as in conditions 3 and 4, respectively, of Lemma 2.1.
Note that

log

∣∣∣∣∣ 1
F (k)

F (s)

ζ(k)

ζ
(s)

∣∣∣∣∣ = − log

∣∣∣∣F (k)

F
(s)

∣∣∣∣+ log

∣∣∣∣ζ(k)

ζ
(s)

∣∣∣∣
holds in the region σk 6 σ < 1

2 , t > tk−1. Furthermore, since log

(
1

F (k)

F (s)

ζ(k)

ζ (s)

)
(= log

(
1−

∑k
j=1

(
k
j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ (1− s)
)
), log F (k)

F (s), and log ζ(k)

ζ (s) are

holomorphic in this region, we know that arg

(
1

F (k)

F (s)

ζ(k)

ζ (s)

)
, arg F (k)

F (s), and

arg ζ(k)

ζ (s) are continuous there. Since the region σk 6 σ < 1
2 , t > tk − 1 is

connected, there exists a constant n ∈ Z such that

arg

(
1

F (k)

F (s)

ζ(k)

ζ
(s)

)
= − arg

F (k)

F
(s) + arg

ζ(k)

ζ
(s) + 2nπ

holds in σk 6 σ < 1
2 , t > tk − 1.

From this choice of logarithmic branch, we have

(3k − βk)

6
π + 2nπ < arg

(
1

F (k)

F (σ + iT )

ζ(k)

ζ
(σ + iT )

)
<

(9k − αk)

6
π + 2nπ

(2.15)
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for σk 6 σ < 1
2 . Here, αk and βk are the constants given in Lemma 2.1, that is,

(αk, βk) =

{
(5, 7), if k is odd,
(−1, 1), if k is even.

Since n does not depend on s, n = Ok(1). Therefore

arg

(
1

F (k)

F (σ + iT )

ζ(k)

ζ
(σ + iT )

)
= Ok(1).

From this, we can easily show that

I15 = Ok(1),

for σk and tk are fixed constants that depend only on k.
Inserting the estimates of I12, I13, I14, and I15 into (2.10), we obtain

I1 = (b log 2− k log log 2)T +

(
1

2
− b
)(

T log
T

2π
− T

)
+ kT log log

T

2π

− 2kπLi
(
T

2π

)
−
∫ ak

1−b
arg ζ(σ + iT )dσ +Ok(1),

since ak and tk are fixed constants that depend only on k.
To finalize the proof of Proposition 2.2, we insert the estimates of I1, I2, and

I3 into (2.9) to obtain

2π
∑

ρ(k)=β(k)+iγ(k),

0<γ(k)6T

(β(k) − b) = kT log log
T

2π
+ (b log 2− k log log 2)T − 2kπLi

(
T

2π

)

+

(
1

2
− b
)(

T log
T

2π
− T

)
−
∫ ak

1−b
arg ζ(σ + iT )dσ

+

∫ ak

b

argGk(σ + iT )dσ +Ok(1).

Taking the limit δ → 0, we have b→ 1
2 , thus∑

ρ(k)=β(k)+iγ(k),

0<γ(k)6T

(
β(k) − 1

2

)
=
kT

2π
log log

T

2π

+
1

2π

(
1

2
log 2− k log log 2

)
T − kLi

(
T

2π

)
+

1

2π

∫ ak

1
2

(− arg ζ(σ + iT ) + argGk(σ + iT ))dσ

+Ok(1). �



84 Ade Irma Suriajaya

Remark 3. The proof of Proposition 2.2 (and thus of Proposition 2.2 of [1])
actually, more or less, follows the proof of Theorem 10 given in [7, Section 3].
One obvious difference is that we did not estimate the fourth integral in (2.9)
while Levinson and Montgomery estimated the corresponding integral (the fourth
integral in (3.1) of [7, Section 3]) as O(log T ). As in Akatsuka [1], it turns out that
this term contributes to the integral appearing in Proposition 2.2 which will be
estimated in the following few lemmas. This integral will contribute to the error
term to Theorem 1 and in the proofs of the following lemmas, we shall use the
assumption of RH to reduce the upper bound of this integral.

Remark 4. In contrast to the proof of Theorem 10 of [7], in this paper (and
in [1] as well), we describe some important estimates, such as those on Gk(s),
F (k)

F (s), and ζ(k)

ζ (s), which are related to the existence of fixed constants ak, σk,
and tk in Lemma 2.1 for the sake of clarity. Furthermore, we also explicitly state
Proposition 2.2 since it clearly points out the main terms of Theorem 1 and thus
this gives the readers clear information of the term that in the current research
contributes to the error term which is to be possibly improved in future research.

To complete the proof of Theorem 1, we need to estimate∫ ak

1
2

(− arg ζ(σ + iT ) + argGk(σ + iT ))dσ

in Proposition 2.2. For that purpose, similar to the method taken in [1], below we
give two bounds for − arg ζ(σ + iT ) + argGk(σ + iT ). We write

− arg ζ(σ + iT ) + argGk(σ + iT ) = arg
Gk
ζ

(σ + iT )

where the argument on the right hand side is taken so that log Gk
ζ (s) tends to 0

as σ →∞ and is holomorphic in C\{z + λ | (ζ(k)/ζ)(z) = 0 or ∞, λ 6 0}.

Lemma 2.3. Assume RH and let T > tk. Then for any ε0 > 0 satisfying ε0 <
1

2 log T (since T > tk > 100, ε0 < 1
8), we have for 1

2 + ε0 < σ 6 ak,

arg
Gk
ζ

(σ + iT ) = Oak,tk

(
log log T

ε0

σ − 1
2 − ε0

)
.

Proof. To begin with, we note that Gk
ζ (s) is uniformly convergent to 1 as σ →∞

for t ∈ R, so we can take a number ck ∈ R satisfying ak + 1 6 ck 6
tk
2 and

1
2 6 Re

(
Gk
ζ (s)

)
6 3

2 (when σ > ck). In fact, we can check that taking ck = 10+k2

is enough.
The proof also proceeds similarly to the proof of Lemma 2.3 of [1]. We

let σ ∈ (1/2 + ε0, ak] and let qGk/ζ = qGk/ζ(σ, T ) denote the number of times

Re
(
Gk
ζ (u+ iT )

)
vanishes in u ∈ [σ, ck]. Then,

∣∣∣arg Gk
ζ (σ + iT )

∣∣∣ 6 (qGk/ζ + 1
)
π.
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Now we estimate qGk/ζ . For that purpose, we set

Hk(z) = HkT (z) :=

Gk
ζ (z + iT ) + Gk

ζ (z − iT )

2
(z ∈ C)

and nHk(r) := ]{z ∈ C |Hk(z) = 0, |z − ck| 6 r}. Then, we have qGk/ζ 6
nHk(ck − σ) for 1

2 + ε0 < σ 6 ak. For each σ ∈ (1/2 + ε0, ak], we take ε = εσ,T
satisfying 0 < ε < σ − 1

2 − ε0, then Hk(z) is holomorphic in the region {z ∈
C | |z − ck| 6 ck − σ + ε}. As in [1, p. 2250], by using Jensen’s theorem (cf. [13,
pp. 125–126]), we can show that

nHk(ck − σ) 6
1

C1ε

∫ ck−σ+ε

0

nHk(r)

r
dr

=
1

C1ε

1

2π

∫ 2π

0

log |Hk(ck + (ck − σ + ε)eiθ)|dθ − 1

C1ε
log |Hk(ck)|

for some constant C1 > 0, which by our choice of ck gives us

nHk(ck − σ) 6
1

C1ε

1

2π

∫ 2π

0

log |Hk(ck + (ck − σ + ε)eiθ)|dθ +
1

ε
Oak,tk(1). (2.16)

Finally we estimate 1
2π

∫ 2π

0
log |Hk(ck + (ck − σ + ε)eiθ)|dθ. From [14, Theo-

rems 9.2 and 9.6(A)] (similar to what stated in [1, p. 2250]),

ζ ′

ζ
(σ ± it) = O

(
log T

σ − 1
2

)
holds for 1

2 < σ 6 2ck and T
2 6 t 6 2T . Thus, for 1

2 + ε0 < σ 6 2ck and
T
2 6 t 6 2T , we have

ζ ′

ζ
(σ ± it) = O

(
log T

ε0

)
. (2.17)

With this estimate, we show that

ζ(k)

ζ
(s) = O

(
(log T )k

εk0

)
holds for 1

2 + ε0 < σ < 2ck and T
2 6 |t| 6 2T . We use induction on k in the

equation. For k = 1, ζ′

ζ (σ ± it) = O
(

log T
ε0

)
follows from (2.17). Suppose that

ζ(n)

ζ (s) = O
(

(log T )n

εn0

)
hold in the region 1

2 + ε0 < σ < 2ck,
T
2 6 |t| 6 2T for a

positive integer n, then

(
ζ(n)

ζ
(s)

)′
=

1

2πi

∫
|z−s|=ε0

ζ(n)

ζ (z)

(z − s)2
dz = O

(
(log T )n

εn+1
0

)
. (2.18)
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Meanwhile, (
ζ(n)

ζ
(s)

)′
=
ζ(n+1)

ζ
(s)− ζ(n)

ζ
(s)

ζ ′

ζ
(s)

holds in the region.
Therefore, by (2.18) and by the induction hypothesis,

ζ(n+1)

ζ
(s) =

(
ζ(n)

ζ
(s)

)′
+
ζ(n)

ζ
(s)

ζ ′

ζ
(s) = O

(
(log T )n

εn+1
0

)
+O

(
(log T )n+1

εn+1
0

)
= O

(
(log T )n+1

εn+1
0

)
holds for 1

2 < σ 6 2ck and T
2 6 |t| 6 2T . Hence, by induction, we find that

ζ(k)

ζ
(s) = O

(
(log T )k

εk0

)
holds in the region defined by 1

2+ε0 < σ < 2ck and T
2 6 |t| 6 2T . This immediately

gives us

|Hk(ck + (ck − σ + ε)eiθ)| �ak,tk

(log T )k

εk0
,

and so

|Hk(ck + (ck − σ + ε)eiθ)| 6 C2(ak, tk)
(log T )k

εk0

for some constant C2 > 0 which depends only on ak and tk. Thus,

1

2π

∫ 2π

0

log |Hk(ck + (ck − σ + ε)eiθ)|dθ 6 logC2(ak, tk) + k log
log T

ε0

�ak,tk log
log T

ε0
.

Applying this to (2.16), we obtain

nHk(ck − σ) =
1

ε
Oak,tk

(
log

log T

ε0

)
which implies

arg
Gk
ζ

(σ + iT ) =
1

ε
Oak,tk

(
log

log T

ε0

)
.

Taking ε = 1
2

(
σ − 1

2 − ε0
) (

< σ − 1
2 − ε0

)
, we obtain

arg
Gk
ζ

(σ + iT ) = Oak,tk

(
log log T

ε0

σ − 1
2 − ε0

)
. �
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Lemma 2.4. Assume RH and let A > 2 be fixed. Then there exists a constant
C0 > 0 such that∣∣∣ζ(k)(σ + it)

∣∣∣ 6 exp

(
C0

(
(log T )2(1−σ)

log log T
+ (log T )1/10

))
holds for T > tk, T2 6 t 6 2T , 1

2 −
1

log log T 6 σ 6 A.

Proof. Referring to [14, (14.14.2), (14.14.5), and the first equation on p. 384] (cf.
[1, pp. 2251–2252]), we know that

|ζ(σ + it)| 6 exp

(
C3

(
(log T )2(1−σ)

log log T

)
+ (log T )1/10

)
(2.19)

holds for 1
2 −

2
log log T 6 σ 6 A+ 1, T3 6 t 6 3T for some constant C3 > 0.

Applying Cauchy’s integral formula, we see that

ζ(k)(s) =
k!

2πi

∫
|z−s|=ε

ζ(z)

(z − s)k+1
dz for 0 < ε <

1

2

holds in the region defined by 1
2 −

1
log log T 6 σ 6 A and T

2 6 t 6 2T . Applying
(2.19) and by taking ε = 1

2(log log T )1/k
(< 1

2 ), we obtain Lemma 2.4. �

Lemma 2.5. Assume RH and let T > tk. Then for any 1
2 6 σ 6

3
4 , we have

argGk(σ + iT ) = Oak

(
(log T )2(1−σ)

(log log T )1/2

)
.

Proof. The proof proceeds in the same way as the proof of Lemma 2.4 of [1].
Refer to [1, pp. 2252–2253] for the detailed proof and use Lemma 2.4 above in
place of Lemma 2.6 of [1]. �

Remark 5. The restrictions of the lower bound of T we gave in Lemmas 2.3, 2.4,
and 2.5 are not essential, but they are sufficient for our purpose. We may let T be
any positive number in Lemmas 2.3, 2.4, and 2.5, however in that case, we need
to modify some calculations in the proofs. Thus we used these restrictions for our
convenience.

Proof of Theorem 1. First of all, we consider for T > tk which satisfies ζ(k)(σ+
iT ) 6= 0 and ζ(σ + iT ) 6= 0 for any σ ∈ R. By Lemma 2.3, we have∫ ak

1
2 +2ε0

arg
Gk
ζ

(σ + iT )dσ �ak,tk

∫ ak

1
2 +2ε0

log log T
ε0

σ − 1
2 − ε0

dσ �ak log
log T

ε0
log

1

ε0
.

Next, by Lemma 2.5,

argGk(σ + iT ) = Oak

(
(log T )2(1−σ)

(log log T )1/2

)
for

1

2
6 σ 6

3

4
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and from (2.23) of [1, p. 2251] (cf. [14, (14.14.3) and (14.14.5)]), RH implies that

arg ζ(σ + iT ) = O

(
(log T )2(1−σ)

log log T

)
holds uniformly for 1

2 6 σ 6
3
4 . Thus,∫ 1

2 +2ε0

1
2

arg
Gk
ζ

(σ + iT )dσ �ak

log T

(log log T )1/2
ε0.

Now we take ε0 = 1
4 log T

(
< 1

2
1

log T

)
, then we have∫ ak

1
2

arg
Gk
ζ

(σ + iT )dσ �ak,tk (log log T )2.

Applying this to Proposition 2.2 and noting that ak and tk are fixed constants
that depend only on k, we have∑

ρ(k)=β(k)+iγ(k),

0<γ(k)6T

(
β(k) − 1

2

)
=
kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2− k log log 2

)
T

− kLi
(
T

2π

)
+Ok((log log T )2). (2.20)

Secondly, for 4π < T < tk, we are adding some finite number of terms which
depend on tk, and thus depend only on k so this can be included in the error term.

Thirdly, for T > tk such that ζ(k)(σ+ iT ) = 0 or ζ(σ+ iT ) = 0 for some σ ∈ R,
there is some increment in the value of

∑
ρ(k)=β(k)+iγ(k),

0<γ(k)6T

(
β(k) − 1

2

)
as much as

∑
ρ(k)=β(k)+iγ(k),

γ(k)=T

(
β(k) − 1

2

)
.

Now we estimate this and we show that this can be included in the error term
of (2.20). We start by taking a small 0 < ε < 1 such that ζ(k)(σ + i(T ± ε)) 6= 0
and ζ(σ + i(T ± ε)) 6= 0 for any σ ∈ R. According to (2.20),∑
ρ(k)=β(k)+iγ(k),

0<γ(k)6T+ε

(
β(k) − 1

2

)
=
k(T + ε)

2π
log log

T + ε

2π

+
1

2π

(
1

2
log 2− k log log 2

)
(T + ε)− kLi

(
T + ε

2π

)
+Ok((log log T )2),
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∑
ρ(k)=β(k)+iγ(k),

0<γ(k)6T−ε

(
β(k) − 1

2

)
=
k(T − ε)

2π
log log

T − ε
2π

+
1

2π

(
1

2
log 2− k log log 2

)
(T − ε)− kLi

(
T − ε

2π

)
+Ok((log log T )2).

Thus,∑
ρ(k)=β(k)+iγ(k),

T−ε<γ(k)6T+ε

(
β(k) − 1

2

)
=
k(T + ε)

2π
log log

T + ε

2π
− k(T − ε)

2π
log log

T − ε
2π

+
ε

π

(
1

2
log 2− k log log 2

)
− k

(
Li
(
T + ε

2π

)
− Li

(
T − ε

2π

))
+Ok((log log T )2)

=
kε

π
log log

T

2π
+

kε

π log T
2π

+
ε

π

(
1

2
log 2− k log log 2

)
− kε

π log T
2π

+O

(
ε2

T log T

)
+Ok((log log T )2)

=
kε

π
log log

T

2π
+
ε

π

(
1

2
log 2− k log log 2

)
+Ok((log log T )2).

This gives us ∑
ρ(k)=β(k)+iγ(k),

T−ε<γ(k)6T+ε

(
β(k) − 1

2

)
= Ok((log log T )2)

which implies ∑
ρ(k)=β(k)+iγ(k),

γ(k)=T

(
β(k) − 1

2

)
= Ok((log log T )2).

Therefore, this increment can also be included in the error term.

Hence,∑
ρ(k)=β(k)+iγ(k),

0<γ(k)6T

(
β(k) − 1

2

)
=
kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2− k log log 2

)
T

− kLi
(
T

2π

)
+Ok((log log T )2)

holds for any T > 2n. �
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Proof of Corollary 2. This is an immediate consequence of Theorem 1. For the
proof, refer to [7, p. 58 (the ending part of Section 3)]. �

3. Proof of Theorem 3

In this section we give the proof of Theorem 3. We first show the following propo-
sition.

Proposition 3.1. Assume RH. Take tk which satisfies all conditions of Lemma
2.1. Then for T > 2 which satisfies ζ(σ + iT ) 6= 0 and ζ(k)(σ + iT ) 6= 0 for all
σ ∈ R, we have

Nk(T ) =
T

2π
log

T

4π
− T

2π
+

1

2π
argGk

(
1

2
+ iT

)
+

1

2π
arg ζ

(
1

2
+ iT

)
+Ok(1)

where the arguments are taken as in Proposition 2.2.

Proof. The steps of the proof also follow those of the proof of Proposition 3.1
of [1]. We take ak, σk, tk, T , δ, and b as in the beginning of the proof of Proposition
2.2. We let b′ := 1

2 −
δ
2 . Replacing b by b

′ in (2.9), we have

2π
∑

ρ(k)=β(k)+iγ(k),

0<γ(k)6T

(β(k) − b′) =

∫ T

tk

log |Gk(b′ + it)|dt−
∫ T

tk

log |Gk(ak + it)|dt

−
∫ ak

b′
argGk(σ + itk)dσ +

∫ ak

b′
argGk(σ + iT )dσ.

Subtracting this from (2.9), we have

πδ(Nk(T )−Nk(tk)) =

∫ T

tk

log |Gk(b+ it)|dt−
∫ T

tk

log |Gk(b′ + it)|dt

−
∫ b′

b

argGk(σ + itk)dσ +

∫ b′

b

argGk(σ + iT )dσ

=: J1 + J2 + J3 +

∫ b′

b

argGk(σ + iT )dσ.

(3.1)

Referring to the estimate of I3 in the proof of Proposition 2.2 (cf. [1, p. 2246]),
we can easily show that

J3 = Otk(δ).
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Now we estimate J1 + J2. From (2.10), we have

J1 + J2 =

∫ T

tk

log |Gk(b+ it)|dt−
∫ T

tk

log |Gk(b′ + it)|dt

= ((b− b′) log 2)(T − tk) +

∫ T

tk

(log |F (b+ it)| − log |F (b′ + it)|)dt

+

∫ T

tk

(
log

∣∣∣∣F (k)

F
(b+ it)

∣∣∣∣− log

∣∣∣∣F (k)

F
(b′ + it)

∣∣∣∣) dt
+

∫ T

tk

(log |ζ(1− b− it)| − log |ζ(1− b′ − it)|)dt

+

∫ T

tk

(
log

∣∣∣∣∣∣1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (b+ it)

ζ(j)

ζ
(1− b− it)

∣∣∣∣∣∣
− log

∣∣∣∣∣∣1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (b′ + it)

ζ(j)

ζ
(1− b′ − it)

∣∣∣∣∣∣
)
dt

=:

((
−δ

2
log 2

)
T +Otk(δ)

)
+ J12 + J13 + J14 + J15.

Referring to [1, pp. 2255–2256], we have

J12 =
δ

2

(
T log

T

2π
− T

)
+Otk(δ),

J14 =

∫ 1−b

1−b′
arg ζ(σ + iT )dσ +Otk(δ).

We only need to estimate J13 and J15. We begin with the estimation of J13.
We determine the logarithmic branch of log F (k)

F (s) for 0 < σ < 1
2 and t > tk−1 as

in condition 3 of Lemma 2.1. We then have arg F (k)

F (s) ∈ (αkπ/6, βkπ/6), where
the pair (αk, βk) is defined as in Lemma 2.1.

As in [1, p. 2255], we apply Cauchy’s integral theorem to log F (k)

F (s) on the
rectangle with vertices b+ itk, b′+ itk, b′+ iT , and b+ iT and take the imaginary
part, then we obtain

J13 =

∫ b′

b

arg
F (k)

F
(σ + itk)dσ −

∫ b′

b

arg
F (k)

F
(σ + iT )dσ = Ok(δ).

Finally, we estimate J15. We determine the logarithmic branch of

log

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1− s)
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in the same manner as that in the estimation of I15 in the proof of Proposition 2.2,
then it is holomorphic in the region 0 < σ < 1

2 , t > tk − 1. Applying Cauchy’s
integral theorem to it on the path taken for estimating J13, we have

J15 =

∫ b′

b

arg

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (σ + itk)

ζ(j)

ζ
(1− σ − itk)


−
∫ b′

b

arg

1−
k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (σ + iT )

ζ(j)

ζ
(1− σ − iT )

dσ.
Again using (2.13),

J15 =

∫ b′

b

arg

(
1

F (k)

F (σ + itk)

ζ(k)

ζ
(σ + itk)

)
dσ

−
∫ b′

b

arg

(
1

F (k)

F (σ + iT )

ζ(k)

ζ
(σ + iT )

)
dσ.

Applying (2.15), we obtain

J15 = Ok(δ).

Hence, since tk is a fixed constant that depends only on k,

J1 + J2 =
δ

2

(
T log

T

4π
− T

)
+

∫ 1−b

1−b′
arg ζ(σ + iT )dσ +Ok(δ).

Inserting the estimates of J1 + J2 and J3 into (3.1), we have

Nk(T ) =
T

2π
log

T

4π
− T

2π

+
1

πδ

(∫ 1−b

1−b′
arg ζ(σ + iT )dσ +

∫ b′

b

argGk(σ + iT )dσ

)
+Ok(1).

(3.2)

Taking the limit δ → 0 and applying the mean value theorem,

lim
δ→0

1

πδ

∫ 1−b

1−b′
arg ζ(σ + iT )dσ =

1

2π
arg ζ

(
1

2
+ iT

)
by noting that b = 1

2 − δ and b′ = 1
2 −

δ
2 . And similarly,

lim
δ→0

1

πδ

∫ b′

b

argGk(σ + iT )dσ =
1

2π
argGk

(
1

2
+ iT

)
.
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Substituting these into (3.2), we have

Nk(T ) =
T

2π
log

T

4π
− T

2π
+

1

2π
argGk

(
1

2
+ iT

)
+

1

2π
arg ζ

(
1

2
+ iT

)
+Ok(1).

If 2 6 T < tk, then Nk(T ) 6 Nk(tk) = Otk(1) = Ok(1). Hence the above equation
holds for any T > 2 which satisfies the conditions of Proposition 3.1. �

Proof of Theorem 3. Firstly we consider for T > 2 which satisfies ζ(k)(σ+iT ) 6=
0 and ζ(σ + iT ) 6= 0 for any σ ∈ R. By Lemma 2.5,

argGk

(
1

2
+ iT

)
= Oak

(
log T

(log log T )1/2

)
and again from (2.23) of [1, p. 2251], we have

arg ζ

(
1

2
+ iT

)
= O

(
log T

log log T

)
.

Substituting these into Proposition 3.1, we obtain

Nk(T ) =
T

2π
log

T

4π
− T

2π
+Ok

(
log T

(log log T )1/2

)
.

Next, if ζ(σ + iT ) = 0 or ζ(k)(σ + iT ) = 0 for some σ ∈ R (T > 2), then we
again take a small 0 < ε < 1 such that ζ(k)(σ+i(T±ε)) 6= 0 and ζ(σ+i(T±ε)) 6= 0
for any σ ∈ R as in the proof of Theorem 1. Then similarly, we can show that the
increment of the value of Nk(T ) can be included in the error term of the above
equation.

Therefore

Nk(T ) =
T

2π
log

T

4π
− T

2π
+Ok

(
log T

(log log T )1/2

)
holds for any T > 2. �

Remark 6. It is well-known that in the case of the Riemann zeta function ζ(s),
the number N(T ) of zeros of ζ(s) is estimated as

N(T ) =
T

2π
log

T

2π
− T

2π
+ S(T ) +O

(
1

T

)
where S(T ) = 1

π arg ζ
(

1
2 + iT

)
with a standard branch (cf. [14, Theorem 9.3]).

Thus, the function S(T ) determines the error term in the estimate of N(T ). Under
RH, we have

S(T ) = O

(
log T

log log T

)
(3.3)
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(cf. [14, (14.13.1) of Theorem 14.13]). In comparison to the above estimate, the
term that determines the error term of Nk(T ) is

1

2π
argGk

(
1

2
+ iT

)
+

1

2π
arg ζ

(
1

2
+ iT

)
by Proposition 3.1 and under RH, they are currently estimated as follows:

argGk

(
1

2
+ iT

)
= Ok

(
log T

(log log T )1/2

)
, arg ζ

(
1

2
+ iT

)
= O

(
log T

log log T

)
.

(3.4)

This estimate of argGk
(

1
2 + iT

)
determines the error term of Nk(T ) and it results

in Nk(T ) having error term slightly greater in magnitude than that of N(T ).
However, this is the best known estimate on Nk(T ) under RH at present.

Furthermore, the size of the implied O-constant in (3.3) has been studied in
many papers, such as [3] and [5]. In contrast to this, we currently have no infor-
mation about the implied O-constant in the first equation of (3.4).
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