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IMAGINARY QUADRATIC FIELDS WITH 2 -CLASS GROUP OF
TYPE (2, 2`)

Adele Lopez

Abstract: We prove that for any given positive integer ` there are infinitely many imaginary
quadratic fields with 2-class group of type (2, 2`), and provide a lower bound for the number
of such groups with bounded discriminant for ` > 2. This work is based on a related result
for cyclic 2-class groups by Dominguez, Miller and Wong, and our proof proceeds similarly.
Our proof requires introducing congruence conditions into Perelli’s result on Goldbach numbers
represented by polynomials, which we establitish in some generality.
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1. Introduction

Since the time of Gauss, mathematicians have been interested in imaginary quad-
ratic fields and their ideal class groups. Gauss himself provided much of the
framework for such studies with the development of his genus theory for binary
quadratic forms. Later developments by Rèdei [12] and others such as Hasse [7]
have given algorithms which compute the 2-class group from the discriminant of
the imaginary quadratic field, which reveal much underlying structure.

However, not much work has been done in the converse direction of computing
imaginary quadratic fields with a given 2-class group. Recently, Dominguez, Miller
and Wong [5] proved that there are infinitely many imaginary quadratic fields
with any given cyclic 2-class group. They determined a set of criteria that the
discriminant of such a field would have to satisfy, and then used the circle method
to show that there are infinitely many integers satisfying those criteria.

In their paper, Dominguez, Miller and Wong asked whether similar results
could be found for other types of groups. We use the same technique to prove
that for any given positive integer `, there are infinitely many imaginary quadratic
fields with a 2-class group with type (2, 2`).

There has also been work on finding lower bounds for the number class groups
of imaginary quadratic fields with elements of a given order, for example, Murty [8]
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found that for g > 2:

|{d 6 X : Cl(−d) contains an element of order g}| � X
1
2 + 1

g

log2X
.

We have been able to achieve a similar lower bound for the class groups under
consideration.

Also, Balog and Ono [2] have proven a similar theorem that gives certain
conditions for how often the `-torsion of the ideal class group of an imaginary
quadratic field is non-trivial. Their technique is similar to ours, relying on the
circle method. In our case, however, we are interested in specific subgroups of the
class group.

Some results for imaginary quadratic fields with 2-class group of this type have
been studied. For example, Benjamin, Lemmermyer and Snyder [3] proved the
following. For an imaginary quadratic number field K, let K1 be the Hilbert
2-class field of K. Then if the 2-class group of K1 is cyclic, the 2-class group of K
has type (2, 2`).

Using genus theory, and other algebraic considerations, we establish a sufficient
set of criteria for an imaginary quadratic field to have 2-class group of type (2, 2`).

Proposition 1.1. If w = 3m2 where m is an odd integer, p1 ≡ 11 mod 24,
p2 ≡ 7 mod 24, and p1 + p2 = 2w2`−1

with ` > 2, then the 2-class group of
Q(
√
−p1p2) has type (2, 2`).

We now need to prove that there are infinitely many primes satisfying this
criteria. Steven J. Miller asked the author if there was a more general way to
introduce congruence conditions into Perelli’s result on Goldbach numbers repre-
sented by polynomials [11], which would imply that there are infinitely many such
primes. We have found such a general theorem, which we prove using the circle
method.

Theorem 1.2. Let m be an even positive integer, and let s1 and s2 be relatively
prime to m. Let F ∈ Z[x] be a polynomial with degree k > 0 and positive leading
coefficient that takes on an even value congruent to s1 + s2 modulo m. Then there
are infinitely many pairs of primes congruent to s1 and s2 modulo m, which sum
to F (n) for some n.

Putting these together, we prove our main theorem.

Theorem 1.3. There are infinitely many imaginary quadratic fields with 2-class
group of type (2, 2`), for any positive integer `.

In particular, if Cl2(−d) is the 2-class group of Q(
√
−d) and ` > 1, then

∣∣{d 6 X,Cl2(−d) ∼= (2, 2`)
}∣∣� X

1
2 + 1

2·2`

log2X
.
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2. Prescribing the 2-class group

We begin by using some algebraic number theory and Gauss’ genus theory to find
sufficient conditions for the discriminant of an imaginary quadratic field Q(

√
−d)

to have a 2-class group of the desired form.
The following lemma is originally due to Ankeny and Chowla [1, Theorem 1],

modified slightly. It should be noted that Soundarajan [13] has significantly im-
proved the lower bound on the number of such fields. It remains to be seen whether
one can use his improved result to improve a result on the type of question con-
sidered in this paper.

Lemma 2.1. Fix m > 1 and let d = w2m − x2 > 0 with w, x ∈ Z, x even,
(x,w) = 1 and 0 < x 6 wm − 4. Then the class group of Q(

√
−d) has an element

of order 2m.

Proof. Consider the ideals (x+
√
−d) and (x−

√
−d). We claim these are coprime.

If not, there is some ideal p of O−d which divides both of them, and hence divides
both their product, (x2 + d) = (w2m) and the ideal (2x), as x +

√
−d + x −√

−d = 2x. However, w and 2x are relatively prime, so this is impossible. Since
(x +

√
−d)(x −

√
−d) = (x2 + d) = (w2m), the factor (x +

√
−d) is equal to J2m

for some ideal J of O−d.
Now suppose that J has order less than 2m, so that for some 0 < n 6 m,

the ideal Jn is principal and thus Jn = (u + v
√
−d) for some u, v ∈ 1

2Z. We
note that v cannot be 0, since J2m contains non-real elements. Since v 6= 0,
then d

4 6 u2 + v2d = Norm(Jn). Since n 6 m, and Norm(J2m) = w2m, we
have that d 6 4wm. But 0 < d = w2m − x2, and so w2m − 4wm 6 x2, thus
(wm − 2)2 6 x2 + 4 < (x+ 2)2, which contradicts our condition on x. Therefore,
the ideal class of J has order exactly 2m. �

Applying this with genus theory, we get the following corollary.

Corollary 2.2. Fix ` > 1, and let w be an odd integer such that 2w2`−1

is the sum
of two distinct primes p1, p2 > 5. Then the 2-Sylow class group of Q(

√
−p1p2) has

type (2υ, 2`
′
), where `′ > `.

Proof. Since w is odd, p1p2 ≡ 1 mod 4. Thus by genus theory, we have a 2-class
group of type (2υ, 2`

′
). To show that `′ > `, we apply the above lemma to our

primes, which we write as w2`−1 ± x, so that p1p2 = w2` − x2. Since p1, p2 > 5,
the condition on x is satisfied, so `′ > `. �
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This allows us to describe a condition for the discriminant of an imaginary
quadratic field so that it has a 2-class group of the desired type, which is our
version of [5, Lemma 2.3]

Proposition 2.3. If w = 3m2 where m is an odd integer, p1 ≡ 11 mod 24,
p2 ≡ 7 mod 24, and p1 + p2 = 2w2`−1

with ` > 2, then the 2-class group of
Q(
√
−p1p2) has type (2, 2`).

Proof. By the corollary, we know that the 2-class group is of the form (2υ, 2`
′
),

where `′ > `.
We now wish to show that the group has the desired form, i.e. υ = 1 and

`′ = `. First we will consider the group abstractly, and consider what properties
the 3 elements of order 2 must have for υ = 1 and `′ = `. Then we will use our
specifications to w, p1, and p2 given to us along with Hasse’s fundamental criterion
to show that our ideal classes with order 2 indeed have the desired properties.

We let J be the ideal from Lemma 2.1 with norm w and in an ideal class with
order exactly 2`. We let A, B, and C be representatives of each of the ideal classes
with order 2. Considering the ideal class group (2υ, 2`

′
), we note that it can be

generated by two elements a and b such that a2`
′

= bυ = 1. The three elements of
order 2 are then a2`

′−1

, b2
υ−1

, and a2`
′−1

b2
υ−1

respectively.
Since ` > 2, if υ > 2 as well, that implies that all the ideal classes of A, B and

C are square. So we must show that one of ideal classes A, B or C is non-square
to show that υ = 1.

Assuming υ = 1, we now consider the ideal class of J . We know that J = arbs

for some r, s ∈ Z. We will also consider the ideal classes of JA, JB and JC, which
are a2`

′−1+rbs, arbs+1, and a2`
′−1+rbs+1 respectively.

Suppose three of the ideal classes of J , JA, JB, and JC are non-square. So
one of J and JA is a non-square, thus if s is even, r must be odd. Similarly, one
of JB and JC is non-square, so if s is odd, r must be odd. Hence r is odd. Now
J has order 2`, so since ` > 2, (arbs)2` = ar2

`

bs2
`

= ar2
`

= 1 and thus a has
order r2`. But this is a contradiction if `′ > ` since r is odd and a has order 2`

′
.

Therefore ` = `′ if three of the ideal classes of J , JA, JB and JC are non-square.
We now will show that the ideal classes under consideration are indeed not

square. To do this, we use Hasse’s fundamental criterion [7] which says that for
an ideal a ⊂ O−D, the ideal class of a is a square iff(

Norm(a),−D
p

)
= 1 for every prime p |D.

In our case, −p1p2 ≡ −1 mod 4, so D = 4p1p2.
Let p be the smaller of p1 and p2. By genus theory, (2, 1 +

√
−D), (p,

√
−D),

(2, 1 +
√
−D)(p,

√
−D) are in the three distinct ideal classes with order 2 (see, for

example [4, Prop. 3.3 + Theorem 7.7]). Respectively, these ideals have norms 2, p,
and 2p.
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We note that
(
w
p1

)
=
(

3
p1

)
= 1 since p1 ≡ 11 mod 12, and that p2 ≡

2w2`−1

mod p1, so
(
p2
p1

)
=
(

2
p1

)
= −1. Then by quadratic reciprocity

(
p1
p2

)
= 1,

since p1 ≡ p2 ≡ 3 mod 4.
We now calculate the appropriate Hilbert symbols:(

2,−D
2

)
= (−1)ω(−p1p2) = −1 since p1p2 ≡ 5 mod 8,(

w,−D
2

)
= (−1)1·1 = −1 since w ≡ −p1p2 ≡ 3 mod 4,

Since we’re not sure which prime p is, we’ll establish the required calculations
for both cases.(
p1w,−D

p1

)
= (−1)1

(
w

p1

)(
−4p2

p1

)
=

(
−1

p1

)(
p2

p1

)
= −1 since p1 ≡ 3 mod 4,(

p2w,−D
p1

)
= (−1)0

(
p2w

p1

)
=

(
p2

p1

)(
w

p1

)
= −1.

In either case, we have(
2pw,−D

2

)
= (−1)1·1 = −1 since − p1p2 ≡ 3 mod 8,

Thus, none of the aforementioned ideal classes are square, so the 2-class group
has type (2, 2`). �

The above lemma requires that ` > 2. For the ` = 1 case, the full theorem is
much simpler to prove.

Proposition 2.4. There are infinitely many imaginary quadratic fields with
2-class group with type (2, 2).

Proof. Let p1 ≡ 3 mod 8 where p1 is a prime, and let p2 ≡ 7 mod 8p1.
By Dirichlet’s theorem, there are clearly an infinite number of such pairs of primes.
Consider the imaginary quadratic field Q(

√
−D), where D = 4p1p2.

Since p1 < p2, genus theory gives us that (2, 1 +
√
−D), (p1,

√
−D),

(2, 1 +
√
−D)(p1,

√
−D) are in the three distinct ideal classes with order 2.

Respectively, these ideals have norms 2, p1, and 2p1.
To prove that Q(

√
−D) has a 2-class group of the desired type, we only need

show that the above three ideal classes are non-square, which we can do by using
Hasse’s criterion.

Calculating the appropriate Hilbert symbols,(
2,−D

2

)
= (−1)ω(−p1p2) = −1 since − p1p2 ≡ 3 mod 8,(

p1,−D
p2

)
=

(
p1

p2

)
= −1 by quadratic reciprocity,
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and (
2p1,−D
p2

)
=

(
2p1

p2

)
= −1 since p2 ≡ 7 mod 8.

Thus, the field has a 2-class group of the required type. �

3. Circle method

3.1. Overview

We now use the circle method to show that there are infinitely many pairs of
primes satisfying the conditions in Proposition 2.3. We will do this by modifying
Perelli’s proof on Goldbach numbers represented by polynomials [11] to handle
arbitrary congruence conditions.

We will consider congruences modulo a positive integer m, with our primes
p1, p2 equivalent to s1 and s2 modulo m, respectively. We want to find infinitely
many pairs of primes whose sum is represented by a given polynomial F ∈ Z[x].
Since there aren’t very many primes dividing m, we restrict our consideration to
s1 and s2 be relatively prime to m. We will also require that the polynomial
represents at least one value that is congruent to s1 + s2 modulo m, and that it
has degree k > 1.

We let N be a sufficiently large positive integer, and we define L = logN and
P = LB , where B is a positive constant. We’ll take n satisfying N1/k 6 n 6
N1/k +H for some H 6 N1/k. So if F (x) = akx

k + · · ·+ a0, then F (n) will be on
the order of c0N , where c0 is a non-zero constant. If we restrict to primes smaller
than N , then we will not have F (n) = p1 + p2. So we will take primes up to N
times a non-zero constant c1 to ensure we have enough room for solutions.

To apply the circle method to our problem, we will use the function

fs(α) =
∑
p6c1N

p≡s mod m

(log p)e(αp),

where e(x) = e2πix. This will hold the desired information about the prime num-
bers equivalent to an arbitrary s modulo m that we wish to consider. We will
consider also consider the related function fS(α) = fs1(α) + fs2(α). By integrat-
ing it in the following manner, we are able to perform a weighted count of the
number of such primes which sum to a given number n:

RS(n) =

∫
[0,1]

fS(α)2e(−αn)dα =
∑

p1,p26c1N
p1+p2=n

p1,p2≡s1,s2 mod m

log p1 log p2.

This also counts pairs of primes both congruent to s1 or s2, but we can avoid
counting these pairs with some basic congruence arguments. If we find a positive
lower bound for this integral, there must be at least one such representation. Our
focus will thus be on approximating and bounding this integral sufficiently well
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to prove that we have infinitely many such pairs of primes. Perelli’s argument for
Goldbach numbers represented by polynomials [11] does the bulk of this work, so
we will follow his argument closely. Our modifications will involve restricting the
congruence classes of the primes, to ensure that they have the desired properties.

It is easier to split our integral into major arcs near rational points, and minor
arcs everywhere else. Since e(α) has period 1, it does not matter which unit
interval we integrate over, so we will choose the interval (PN−1, 1 + PN−1) for
convenience. For 1 6 a 6 q 6 P with (a, q) = 1, define

M′(q, a) =

{
α :

∣∣∣∣α− a

q

∣∣∣∣ 6 PN−1

}
as the major arc centered at a

q . M will denote the union of all the major arcs.
Since N is large, the major arcs are disjoint, and lie in (PN−1, 1 + PN−1]. We
define the minor arcs m = (PN−1, 1 + PN−1]\M.

We will demonstrate that a certain sum SS(F (n)) converges, and we’ll use it
to approximate the contribution from the major arcs. Then we’ll bound the minor
arcs, and combine these to prove the following theorem.

Theorem 3.1. Let m be a positive integer and let s1 and s2 be relatively prime
to m.

Let F ∈ Z[x] be a polynomial with degree k > 0 and positive leading coefficient,
and let L = logN , A, ε > 0, and H such that N1/(3k)+ε 6 H 6 N1/k−ε.

Then ∑
N1/k6n6N1/k+H

|RS(F (n))− F (n)SS(F (n))|2 � HN2L−A.

Proof. We may assume following Perelli [11, §2] that H = N1/(3k)+ε, that ε > 0
is sufficiently small, that A > 0 is sufficiently large, and that N > N0(A, ε) is
a large constant. Now,∑

N1/k6n6N1/k+H

|RS(F (n))− F (n)SS(F (n))|2

=
∑

N1/k6n6N1/k+H

∣∣∣∣∣
∫
M

fS(α)2e(−F (n)α)dα

+

∫
m

fS(α)2e(−F (n)α)dα− F (n)SS(F (n))

∣∣∣∣∣
2

6
∑

N1/k6n6N1/k+H

∣∣∣∣∫
M

fS(α)2e(−F (n)α)dα− F (n)SS(F (n))

∣∣∣∣2

+
∑

N1/k6n6N1/k+H

∣∣∣∣∫
m

fS(α)2e(−F (n)α)dα

∣∣∣∣2 =
∑
M

+
∑
m

.
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From Theorem 3.8 given in the following section, we have∑
M

� HN2L−2B+c +HN2L−A,

where c > 0 is a suitable constant depending on m, F and N . From Theorem 3.10,
we have that ∑

m

� HN2L−B

for sufficiently large B depending on k.
Hence, by choosing B to be sufficiently large in terms of A and k, we can absorb

everything into the HN2L−A term, proving the theorem. �

From this we can prove the following corollary.

Corollary 3.2. Let A, ε > 0, and let H such that N1/(3k)+ε 6 H 6 N1/k−ε.
Then for almost all n ∈ [N1/k, N1/k +H],

RS(F (n)) = F (n)SS(F (n)) +O(NL−A),

with O(HL−A) exceptions.
In particular, if m is even, then for almost all n ∈ [N1/k, N1/k +H] such that

F (n) ≡ s1 + s2 mod m, we have that F (n) is the sum of two primes congruent to
s1 and s2 mod m respectively, with O(HL−A) exceptions.

Proof. This follows from the application of Cauchy-Schwarz to the result of The-
orem 3.3, and by noting that by Lemma 3.9, if m is even, SS(F (n)) = 0 unless
F (n) ≡ s1 + s2 mod m. �

As a special case, we obtain the following theorem.

Theorem 3.3. Let F, s1, s2, and m be as in in Theorem 3.1, with m even, and
suppose that F (n) takes on a value congruent to s1 + s2 mod m. Then there are
infinitely many pairs of primes congruent to s1 and s2 modulo m, which sum to
F (n) for some n.

Proof. Since F takes on a value congruent to s1 + s2 mod m, there are at least
H
m +O(1) values in an interval of size H for which F takes on such a value. Hence,
the theorem follows from Corollary 3.2, by taking disjoint intervals with larger and
larger N . �

This will now give us a proof of our main theorem.

Theorem 3.4. There are infinitely many imaginary quadratic fields with 2-class
group of type (2, 2`), for any positive integer `.

In particular, if Cl2(−d) is the 2-class group of Q(
√
−d) and ` > 1, then

∣∣{d 6 X,Cl2(−d) ∼= (2, 2`)
}∣∣� X

1
2 + 1

2·2`

log2X
.
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Proof. For ` = 1, this was proven in Proposition 2.4.
By Proposition 2.3, we have that∣∣{d 6 X : Cl2(−d) ∼= (2, 2`)

}∣∣
� |{p1, p2 6 X

1/2 : p1 + p2 = F (n), p1 ≡ 7 mod 24, p2 ≡ 11 mod 24}|,

where F (x) = 2(3(2x+ 1)2)2`−1

.
Since F (n) ≡ 18 mod 24 for all n ∈ Z, RS(F (n)) counts such primes, so for

some constant c > 0,

|{p1, p2 6 X
1/2 : p1 + p2 = F (n), p1 ≡ 7 mod 24, p2 ≡ 11 mod 24}|

� log−2(X)
∑

n6cX1/2k

RS(F (n)).

Let m = 24, s1 = 7, and s2 = 11. By combining Corollary 3.2, with the fact
that F (n)� N for n > N1/k, and SS(F (n))� 1 by Lemma 3.9, we get that∑

N1/k6n6N1/k+H

RS(F (n))� HN

Choose ε to be small enough so that H = N1/k−ε > N1/k − 1 for N 6 X. Then
summing over all intervals from N1/k/2i+1 to N1/k/2i where i ranges from 0, up
to the log base 2 of N1/k. ∑

n6N1/k

RS(F (n)� Nk+1

Thus, we find that ∑
n6cX1/2k

RS(F (n))� X
1+k
2k .

The theorem then follows from the fact that the degree of F (x) is 2`. �

We remark that after using the results of Dominguez, Miller and Wong [5], we
can apply the same method of proof as above to get a lower bound for the cyclic
2-class groups in their paper. For ` > 1,

∣∣{d 6 X,Cl2(−d) ∼= (2`)
}∣∣� X

1
2 + 1

2·2`

log2X
.

3.2. Major arcs

Our goal here is to estimate∑
M

=
∑

N1/k6n6N1/k+H

∣∣∣∣∫
M

fS(α)2e(−F (n)α)dα− F (n)SS(F (n))

∣∣∣∣2
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Throughout, we will let q = q0d such that (q,m) = d. To keep things from
getting too cumbersome, we will let h = F (n), and define two functions

v(β) =

c1N∑
n=1

e(βn) and µs(q, a) =

q∑
r=1

(r,q)=1
r≡s mod d

e

(
ar

q

)
.

Note that h = O(N). We will also use the Iverson bracket, defined by

[P ] =

{
1 if P is true
0 if P is false.

We now prove a lemma which gives a good estimate for fs(α).

Lemma 3.5. If 1 6 a 6 q, and α ∈M′(q, a), then there is a positive constant C
such that

fs (α) =
v(α− a/q)µs(q, a)

φ(q0m)
+O(N exp(−CL1/2)).

Proof. We start by considering fs at rational points, and notice that

fs

(
a

q

)
=

q∑
r=1

(r,q)=1

e

(
ar

q

)
ϑs(c1N, q, r) +O(L(log q)),

where
ϑs(x, q, r) =

∑
p6x

p≡r mod q
p≡s mod m

log p

is a sum over primes p. We can apply Siegel-Walfisz [15] to discover that

ϑs(x, q, r) = [s ≡ r mod d]
∑
p6x

p≡r′ mod qm
d

log p

=
x

φ(q0m)
[s ≡ r mod d] +O(N exp(−C1L

1/2)),

for a constant C1 from the Siegel-Walfisz theorem, and where r′ is some number
coming from the Chinese Remainder Theorem. Thus,

fs

(
a

q

)
=

c1N

φ(q0m)

q∑
r=1

(r,q)=1
r≡s mod d

e

(
ar

q

)
+O(N exp(−C1L

1/2))

=
c1Nµs(q, a)

φ(q0m)
+O(N exp(−C1L

1/2))

Following Vaughan [14, §3], we can extend this to a general α ∈ M′(q, a), which
gives us the desired result. �
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We now define our singular series, the finite version

Ss1s2(h;P ) =

P∑
q=1

q∑
a=1

(a,q)=1

µs1(q, a)µs2(q, a)

φ(q0m)2
e

(
−ah
q

)
,

and its infinite limit

Ss1s2(h) =

∞∑
q=1

q∑
a=1

(a,q)=1

µs1(q, a)µs2(q, a)

φ(q0m)2
e

(
−ah
q

)
.

In Lemma 3.7 we will prove that the infinite singular series converges, and in
Lemma 3.9 we will find a product expansion for it. But first, we will need the
following lemma about µs(q, a).

Lemma 3.6. Let (q, a) = 1. Then,

µs(q, a) =

q∑
r=1

(r,q)=1
r≡s mod d

e

(
ar

q

)
= µ(q0)e

(
as

q

)
e

(
as′

q0

)
[(q0,m) = 1]

where s′ is chosen such that s′d ≡ −s mod pi for every prime pi dividing q, but
not dividing d.

Proof. We first let µs(q) := µs(q, 1), and notice that µas(q) = µs(q, a).
Let q = pe11 · · · penn , where ei > 1 for all i. Also let 0 6 bi 6 ei such that

d = pb11 · · · pbnn .
Arrange (WLOG) the primes so that the first γ of the pi’s are the primes not

dividing d (i.e. bi = 0 for i 6 γ).We let d−1
i such that d−1

i d ≡ 1 mod pi, and
By the inclusion-exclusion principle, we have the following.

µs(q) =

q∑
r=1

r≡s mod d

e

(
r

q

)
+

γ∑
k=1

(−1)k

 ∑
16i1<···<ik6γ

q0∑
t=1

t≡−sd−1
ij

(pij )

e

(
td+ s

q

) .
By the Chinese Remainder Theorem, we can combine the congruence condi-

tions in the innermost sum into one, t ≡ s′[i1, · · · , ik] mod pi1 · · · pik , for some
s′[i1, · · · , ik].

So, the innermost sum can be evaluated as

q0∑
t=1

t≡s′[i1,··· ,ik](pi1 ···pik)

e

(
td+ s

q

)
= e

(
s

q

) q0/(pi1 ···pik )∑
u=1

e

(
upi1 · · · pik + s′[i1, · · · , ik]

q0

)

= e

(
s

q

)
e

(
s′[i1, · · · , ik]

q0

)
[q0/(pi1 · · · pik) = 1].
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Hence, the entire sum is

µs(q) = µ(ρ)e

(
s

q

)
e

(
s′[1, · · · , γ]

q0

)
[q0 = ρ],

where ρ = p1 · · · pγ . The theorem then follows. �

Using the previous lemma, we may now prove that the singular series converges,
and has a nice expression in terms of multiplicative functions.

Lemma 3.7. The sum Ss1s2(h) converges, and

Ss1s2(h)−Ss1s2(h;P )� hτ(h)

Pφ(h)
,

where τ is the sum of divisors function. Furthermore,

Ss1s2(h) =

∞∑
q=1

(q0,m)=1

µ(q0)2cq0(h)cd(s1 + s2 − h)

φ(q0m)2
,

and Ss1s2(h;P )� L.

Proof. We notice that this sum is similar to the Ramanujan sum

cq(n) =

q∑
a=1

(a,q)=1

e

(
an

q

)

and by Lemma 3.6 we can rewrite it using Ramanujan sums:
q∑
a=1

(a,q)=1

µs1(q, a)µs2(q, a)e

(
−ah
q

)

=

q∑
a=1

(a,q)=1

e

(
a(s1 + s2 − h)

q

)
e

(
as′1 + as′2

q0

)
µ(q0)2[(q0,m) = 1]

= cq(s1 + s2 − h+ d(s′1 + s′2))µ(q0)2[(q0,m) = 1]

= cq0(−h)cd(s1 + s2 − h)µ(q0)2[(q0,m) = 1],

so we have that

Ss1s2(h;P ) =

P∑
q=1

(q0,m)=1

µ(q0)2cq0(−h)cd(s1 + s2 − h)

φ(q0m)
.

Now using the fact that

cq(−h) = φ(q)µ

(
q

(q, h)

)
φ

(
q

(q, h)

)−1

,
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we consider the following bound based on equation (3) of [11],

∑
q>P

(q0,d)=1

µ(q0)2cq0(−h)cd(s1 + s2 − h)

φ(q0m)2
�
∑
q>P

cq(h)

φ(q)2
�
∑
q>P

φ(q)−1φ

(
q

(q, h)

)−1

�
∑
d|h

φ(d)−1
∑
r>P/d

φ(r)−2

� P−1
∑
d|h

d

φ(d)
� hτ(h)

Pφ(h)
.

This proves that

Ss1s2(h) =

∞∑
q=1

(q0,m)=1

µ(q0)2cq0(h)cd(s1 + s2 − h)

φ(q0m)2

converges.
Finally, from our above expression Ss1s2(h;P )�

∑P
q=1

1
φ(q) � L. �

From this lemma, we may now prove our main theorem concerning the major
arcs.

Theorem 3.8. Let q = q0d such that (q,m) = d, and let A, ε > 0, and H such
that N1/(3k)+ε 6 H 6 N1/k−ε, then there is some constant c > 0 such that∑

M

=
∑

N1/k6n6N1/k+H

∣∣∣∣∫
M

fS(α)2e(−hα)dα− hSS(h)

∣∣∣∣2
� HN2L−2B+c +HN2LA,

where
SS(h) = Ss1s1(h) + 2Ss1s2(h) + Ss2s2(h).

Proof. Recall that fS(α) = fs1(α) + fs2(α). We can separate the integral and its
estimate into three parts, corresponding to the 3 terms in fS(α)2,∫

M

(
fs1(α)2 + 2fs1(α)fs2(α) + fs2(α)2

)
e(−hα)dα

− h
(
Ss1s1(h) + 2Ss1s2(h) + Ss2s2(h)

)
.

It is easier to bound these three parts separately, and we will estimate the contri-
bution from ∫

M

fs1(α)fs2(α)e(−αn)dα

since the other cases follow from this one. To do this, we will mainly use Vaughan’s
arguments [14, §3] modified appropriately in a way similar to the modifications
in [5, §3.3] and [11, §2].
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Applying Lemma 3.5 to the product fs1(α)fs2(α), we find that

fs1(α)fs2(α)− µs1(q, a)µs2(q, a)

φ(q0m)2
v(α− a/q)2 � N2 exp(−CL1/2),

and integrating over M gives us

∑
q6P

q∑
a=1

(a,q)=1

∫
M(q,a)

(
fs1(α)fs2(α)− µs1(q, a)µs2(q, a)

φ(q0m)2
v(α− a/q)2

)
e(−αh)

� P 3N exp(−CL1/2).

By definition of the major arcs, we arrange this as∫
M

fs1(α)fs2(α)e(−αh)

= Ss1s2(h, P )

∫ P/N

−P/N
v(β)2e(−βh)dβ +O(P 3N exp(−CL1/2)).

According to Vaughan [14, Chapter 3], we have∫ 1/2

P/N

|v(β)|2dβ � P−1N,

and by the definition of v(β), the integral∫ 1/2

−1/2

v(β)2e(−βh)dβ

simply counts the number of solutions to n1 +n2 = h. Hence it is equal to h− 1 if
h = F (n) is positive. This will clearly be the case if N is sufficiently large, since
F (n) has positive leading coefficient.

Combining these with the results from Lemma 3.7 we can now use our singular
series through Perelli’s [11] and Vaughan’s [14] arguments.∫

M

fs1(α)fs2(α)e(−αh)− hSs1s2(h)� N

∣∣∣∣ hτ(h)

Pφ(h)

∣∣∣∣+NL1−B +NL−A/2.

Applying Nair’s theorem [9], we can bound the sum

∑
N1/k6n6N1/k+H

∣∣∣∣∫
M

fs1(α)fs2(α)e(−αh)− hSs1s2(h)

∣∣∣∣2
� HN2L−2B+c2 +HN2L−A,

where c2 > 0 is a constant depending on m, F and N .
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We get similar bounds for the other two cases, differing only by the constant
c2 in each case. Thus, we may use the triangle inequality to combine all of these
together, giving us that

∑
M

=
∑

N1/k6n6N1/k+H

∣∣∣∣∫
M

fS(α)2e(−hα)dα− hSS(h)

∣∣∣∣2
� HN2L−2B+c +HN2L−A,

for some constant c > 0 depending on m, F and N . We note that c is ineffective
because of the use of Siegel-Walfisz. �

We will also require the following important lemma, which gives a product
expansion for the singular series.

Lemma 3.9. We have the following product expansion

Ss1s2(h) = [s1 + s2 ≡ h mod m]
m

φ(m)2

∏
p-h
p-m

(
1− 1

(p− 1)2

)∏
p|h
p-m

(
1 +

1

p− 1

)
.

Furthermore, if F (n) is an even value congruent to s1 + s2 mod m, then

SS(F (n))� 1.

Proof. Using the expression in Lemma 3.7, and the multiplicative properties of
the arithmetic functions involved, we get

Ss1s2(h) =
∑
d|m

cd(s1 + s2 − h)

φ(m)2

∞∑
q=1

(q,m)=1

µ(q)2cq(h)

φ(q)2

= [s1 + s2 ≡ h mod m]
m

φ(m)2

∏
p-h
p-m

(
1− 1

(p− 1)2

)∏
p|h
p-m

(
1 +

1

p− 1

)
.

In particular, note that Ss1s2(h) = 0 iff s1 + s2 6≡ h mod m, or if m and h are
both odd. This makes sense since we are trying to count pairs of primes congruent
to s1 and s2 modulo m that sum to h. But as long as it is not zero, we have that
Ss1s2(h)� 1. Our condition on F (n) forces it to not be zero, hence the lemma is
proved.

We remark that when m = 1, this becomes the singular series for the binary
Goldbach problem in [11] or [14], and that when m = 8, with s1 = 3, s2 = 5, then
SS is the singular series in [5, Equation (34)]. �
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3.3. Minor arcs

Here, our goal is to bound

∑
m

=
∑

N1/k6n6N1/k+H

∣∣∣∣∫
m

fS(α)2e(−F (n)α)dα

∣∣∣∣2 .
This will rely heavily on Perelli’s arguments in [11] and [10], with the changes
similar to those provided in Dominguez, Miller, and Wong [5, pp. 12-13].

Following Perelli, we let Q′ = HkL−B/4, and Q = Q′1/2

2 , and we let M(q, a)

and M(q, a) be the Farey arcs with center a
q of the Farey dissections of order Q

and Q′ respectively.
We let

M =
⋃

q6LB/4

q⋃
a=1

(a,q)=1

M(q, a),

and let m = [0, 1]\M.
We are now ready to prove the following bound for the minor arcs.

Theorem 3.10. For B > 0 large enough,∑
m

� HN2L−B .

Proof. Following Perelli’s arguments [11, Equations (5)-(11)], we find that by
a variant of Weyl’s inequality∑

m

� HNLB/2+1

× sup
ξ∈m

max
q<LB/4

(a,q)=1

∫
m∩(ξ+M(q,a))

|fS(α)|2dα+HN2L−(B−4k2−2k+4)/2k+3

.

Manipulating the arcs as in Perelli [11, Equations (12)-(14)] we then get

sup
ξ∈m

max
q6LB/4

(a,q)=1

∫
m∩(ξ+M(q,a))

|fS(α)|2dα� max
q6Q

(a,q)=1

∫
M′′(q,a)

|fS(α)|2dα,

where

M′′(q, a) =

{
M(q, a)\M′(q, a), if q 6 P,
M(q, a), if P 6 q 6 Q.

We will now examine fS and rewrite it in terms of other functions, and center it
at aq . First, consider the Dirichlet characters with modulus m. There are t = φ(m)
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of these, and by orthogonality of characters, we can take a linear combination such
that

[n ≡ s1, s2 mod m] = a1χ1(n) + · · ·+ atχt(n).

We then write

fS

(
a

q
+ η

)
=
µs1(q, a) + µs2(q, a)

φ(q)
T (η) +R(η, q, a),

where

T (η) =
∑

n6c1N

e(nη),

RS(η, q, a) =
1

φ(q)

∑
χ mod q

χ(a)τ(χ)WS(χ, η) +O(N1/2),

WS(χ, η) =
∑

n6c1N
n≡s1,s2 mod m

Λ(n)χ(n)e(nη)−
t∑
i=1

ai[χ = χi]T (η),

and τ(χ) is the Gauss sum for characters with conductor q. We note that we can
lift all these characters to characters modulo qm, and the comparison in WS is
over these lifted characters. Also, note that the difference between log p and Λ(n)
gets absorbed into the error term O(N1/2).

By Lemma 3.6, we have that µs1(q, a) + µs2(q, a) 6 2, hence we have∫
M′′(q,a)

|fS(α)|2dα� 1

φ(q)2

∫
ξ(q)

|T (η)|2dη +

∫ 1
qQ

−1
qQ

|RS(η, q, a)|2dη,

where

ξ(q) =


(
LB

N , 1
2

)
, if q 6 LB ,(

− 1
qQ ,

1
qQ

)
, if LB < q 6 Q.

Using the fact that T (η) is a geometric series, we can see that T (η) �
min{N, 1/||η||}, thus

1

φ(q)2

∫
ξ(q)

|T (η)|2dη � NL−B .

Following Perelli’s distinction between good and bad characters [11, Equations
(16)-(24)], we can directly use his argument for R to give us the bound∫ 1

qQ

−1
qQ

|RS(η, q, a)|2dη � q

φ(q)

∑
χ good

∫ 1
qQ

−1
qQ

|WS(χ, η)|2dη +NL−B .
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We now consider WS more carefully:

WS(χ, η) =
∑

n6c1N
n≡s1,s2 mod m

Λ(n)χ(n)e(nη)−
t∑
i=1

ai[χ = χi]T (η)

=
∑

n6c1N

[
Λ(n)χ(n)e(nη)(a1χ1(n) + · · ·+ atχt(n))−

t∑
i=1

ai[χ = χi]e(nη)

]

=
∑

n6c1N

[
t∑
i=1

ai (Λ(n)χ(n)χi(n)− [χ = χi])

]
e(nη)

So by Gallagher’s Lemma [6, Lemma 1], we get∫ 1
qQ

−1
qQ

|WS(χ, η)|2dη

� 1

qQ2

∫ c1N

−qQ
2

∣∣∣∣∣∣∣
x+ qQ

2∑
n=x

n∈[1,c1N ]

(
t∑
i=1

ai (Λ(n)χ(n)χi(n)− [χ = χi])

)∣∣∣∣∣∣∣
2

dx.

Now, we have the explicit formula∑
n6x

Λ(n)χ(n)χi(n)− [χ = χi]x = −
∑
|γ|6c1N

xρ

ρ
+O(L2),

for 4 6 x 6 c1N , and qm 6 c1N , where ρ = β + iγ are zeros of L(s, χχi) with
0 < β < 1 Using this, we argue as in Perelli and Pintz in [10, Equations (22)-(26)]
for their estimate of W2, to get that

1

qQ2

∫ c1N

−qQ
2

∣∣∣∣∣∣∣
x+ qQ

2∑
n=x

n∈[1,c1N ]

(
t∑
i=1

ai (Λ(n)χ(n)χi(n)− [χ = χi])

)∣∣∣∣∣∣∣
2

dx� NL−B ,

where we use the inequality |a+ b|2 � |a|2 + |b|2 to handle the extra sum.
Piecing these all together, we find that by choosing B sufficiently large relative

to k, we have∑
m

� HN2L−(B−4k2−2k+4)/2k+3

+HN2L1−B/2 � HN2L−B . �
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