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VALUES OF DEDEKIND SUMS FOR FUNCTION FIELDS

Yoshinori Hamahata

Abstract: H. Rademacher and E. Grosswald raised the following questions:

1. Is {(a/c, d(a, c)) | a/c ∈ Q∗} dense in R2?

2. Is {d(a, c) | a/c ∈ Q∗} dense in R?
D. Hickerson answered them affirmatively, and H. Ito obtained a result similar to Hickerson’s

for the elliptic Dedekind sums defined by R. Sczech. We consider the values of the Dedekind
sum attached to a given A-lattice in rational function fields. The objective of this paper is to
establish a result similar to those of Hickerson and Ito.
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1. Introduction

The classical Dedekind sum is defined by

d(a, c) =
1

4c

c−1∑
k=1

cot

(
πak

c

)
cot

(
πk

c

)
for coprime integers c > 0 and a. For coprime positive integers a, c, we have the
reciprocity law

d(a, c) + d(c, a) =
1

12

(
a

c
+
c

a
+

1

ac
− 3

)
.

Rademacher and Grosswald [7] raised the following questions:

1. Is {(a/c, d(a, c)) | a/c ∈ Q∗} dense in R2?
2. Is {d(a, c) | a/c ∈ Q∗} dense in R?
D. Hickerson [5] answered them affirmatively, and H. Ito [6] obtained a result

similar to Hickerson’s for the elliptic Dedekind sums defined by R. Sczech [8]. It is
well-known that there is an analogy between a number field and a function field.
In [1], we introduced the Dedekind sum attached to a given Drinfeld module.
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A rank r Drinfeld module is similar to the multiplicative group Gm (resp. an
elliptic curve) when r = 1 (resp. r > 2). The Dedekind sum attached to the Carlitz
module is an analog of d(a, c) defined above, and the Dedekind sum attached to
a Drinfeld module with rank r > 2 is an analog of an elliptic Dedekind sum [8].
In [4], we proved a result similar to Hickerson’s for the Dedekind sum attached
to the Carlitz module. The objective of the present paper is to extend our result
to the Dedekind sum attached to an arbitrary Drinfeld module. We state our
main results in Section 2. In Section 3, we recall some previous results from [1].
In Section 4, we prove our main results, and make some concluding remarks in
Section 5.

2. Main results

Before stating our result, we outline our notation and give some definitions.
Let Fq be the finite field with q elements, and set A := Fq[T ], K := Fq(T ),

and K∞ := Fq((1/T )). We denote by C∞ the completion of an algebraic closure
of K∞. A rank r A-lattice Λ in C∞ is a finitely generated A-submodule of rank
r in C∞ that is discrete in the topology of C. For such an A-lattice Λ, we define
the product eΛ(z) = z

∏
0 6=λ∈Λ(1 − z/λ). The product converges uniformly on

bounded sets in C∞, and defines a map eΛ : C∞ → C∞. The map eΛ has the
following properties:
(E1) eΛ is entire in the rigid analytic sense, and surjective;
(E2) eΛ is Fq-linear and Λ-periodic;
(E3) eΛ has simple zeros at the points of Λ, and no other zeros;
(E4) deΛ(z)/dz = e′Λ(z) = 1.

For every a ∈ A, there exists a unique polynomial φa = φΛ
a of the form∑

li(φa)zq
i

such that φa(eΛ(z)) = eΛ(az). Let τ = Xq and let C∞{τ} be the
non-commutative ring in τ with the commutation rule cqτ = τc (c ∈ C∞). There
exists a unique positive integer r such that for for any a ∈ A \ {0},

φa =

r deg a∑
i=0

li(φa)τ i (l0(φa) = a).

Then, the map φ : A → C∞{τ}, a 7→ φa is called a Drinfeld module of rank r
over C∞. Because φ is an Fq-linear ring homomorphism, the values φa(a ∈ A)
are determined by φT . The rank one Drinfeld module ρ : A→ C∞{τ} defined by
ρT (z) = Tz+zq is called the Carlitz module. There is a one-to-one correspondence
between the set of rank r A-lattices and the set of rank r Drinfeld modules given
by

φa(eΛ(z)) = eΛ(az) (a ∈ A).

Let Λ be a rank r A-lattice. Using (E4), eΛ(z)−1 is expressed by

eΛ(z)−1 =
1

z
+
∑

06=λ∈Λ

1

z − λ
,
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which is similar to

cot z =
1

z
+

∞∑
n=1

(
1

z + πn
+

1

z − πn

)
and

E1(z) = E1(z;Zω + Z) =
∑

l∈Zω+Z,l+z 6=0

(z + l)−1|z + l|−s
∣∣
s=0

for a lattice Zω + Z in C. This observation leads us to the definition of Dedekind
sums in function fields. For coprime a, c ∈ A\{0}, we define the Dedekind sum by

sΛ(a, c) =
1

c

∑
0 6=λ∈Λ/cΛ

eΛ

(
aλ

c

)−1

eΛ

(
λ

c

)−1

.

When Λ/cΛ = {0}, sΛ(a, c) is defined as zero. Using (E2), we find that sΛ(a, c) = 0
for q > 3. Hence we assume that q = 3 or 2. Let φ be the Drinfeld module
corresponding to Λ, and let φa = T + l1(φa)τ + · · ·+ · · ·+ lr deg a(φa)τ r deg a. Our
first result is as follows:

Theorem 1. Assume that q = 3 or 2. Let L be the A-lattice corresponding to the
Carlitz module ρ. Then

sΛ(a, c) =

{
l1(φT )sL(a, c) (q = 3),

l1(φT )2sL(a, c) (q = 2)

for coprime a, c ∈ A \ {0}.

As corollaries, we have the following results:

Theorem 2.

(i) If q = 3, then sΛ([a0, . . . , ar]) is written as
l1(φT )
T 3−T ([0, a1, . . . , ar]

+(−1)r+1[0, ar, . . . , a1] + a1 − a2 + · · ·+ (−1)r+1ar) (r > 1),

0 (r = 0).

(ii) If q = 2, then sΛ([a0, . . . , ar]) is written as
l1(φT )2

T 4+T 2 ([0, a1, . . . , ar] + (−1)r+1[0, ar, . . . , a1]

+
∏r
i=1[0, ai, . . . , ar] + a1 − a2 + · · ·+ (−1)r+1ar + r − 1) (r > 1),

0 (r = 0).

Here [a0, a1, . . . , an] is a continued fraction defined by (4.2) in Section 4.



32 Yoshinori Hamahata

Let us define the modified Dedekind sum tΛ(a, c) by

tΛ(a, c) =

{
sΛ(a, c)/l1(φT ) (q = 3),

sΛ(a, c)/l1(φT )2 (q = 2).

We now present a density result for tΛ(a, c).

Theorem 3. Assume that q = 3 or 2. If l1(φT ) = 0, then sΛ(a, c) = 0.
If l1(φT ) 6= 0, then
(i) {(a/c, tΛ(a, c)) | a/c ∈ K∗} is dense in K2

∞.
(ii) {tΛ(a, c) | a/c ∈ K∗} is dense in K∞.

Remark 4. Theorem 3 for r > 2 is an analog of Ito’s result (Theorem 2 in [6])
for the elliptic Dedekind sum D(h, k) defined by

D(h, k) =
1

k

∑
µ∈(Zω+Z)/k(Zω+Z)

E1

(
hµ

k

)
E1

(µ
k

)
for h, k ∈ O = {m ∈ C | m(Zω + Z) ⊂ Zω + Z} with k 6= 0.

3. Review of some previous results

Let us review the previous results obtained in [1]. Let Λ be the A-lattice that
corresponds to a Drinfeld module φ. For a ∈ A \ {0}, let φ[a] be the set of
a-division points defined by φ[a] = {x ∈ C∞ | φa(x) = 0}. Put

Ek(φ[a]) =
∑

06=x∈φ[a]

1

xk
.

Then the reciprocity law for our Dedekind sums is as follows:

Theorem 5 ([1]). If a, c ∈ A \ {0}, then

sΛ(a, c) + sΛ(c, a) =
1

ac
(E2(φ[a]) + E2(φ[c])− E1(φ[a])E1(φ[c])) . (3.1)

We recall that

Ek(φ[a]) =

{
l1(φa)/a (k = q − 1),

0 (k = 1, . . . , q − 2 if q > 2).
(3.2)

Rewriting (3.1) with the aid of (3.2), we get the following:

Theorem 6 ([1]). Let a, c ∈ A \ {0} be coprime.
(i) If q = 3, then

sΛ(a, c) + sΛ(c, a) =
1

ac

(
l1(φa)

a
+
l1(φc)

c

)
.

(ii) If q = 2, then

sΛ(a, c) + sΛ(c, a) =
1

ac

(
l1(φa)2

a2
+
l1(φc)

2

c2
+
l1(φa)l1(φc)

ac

)
.
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4. Proof of Theorems 1, 2, and 3

It is easy to see that Theorem 2 follows from Theorem 8 below, and that Theorem
3 follows from Theorem 9 below. Hence it suffices to prove Theorem 1.

4.1. The case l1(φT ) = 0

Let a/c = [a0, a1, . . . , an]. By Theorem 6, sΛ(a/c) = −sΛ(c/a). Hence

sΛ(a/c) = sΛ([0, a1, . . . , an]) = −sΛ([a1, a2, . . . , an]) = · · ·
= (−1)nsλ(an) = 0.

4.2. The case l1(φT ) 6= 0

First, we recall the results of the Dedekind sum attached to the Carlitz module ρ
defined by ρT = T + τ . If L is the A-lattice corresponding to ρ, then according to
Goss [3], we have

l1(ρa) =
aq − a
T q − T

(4.1)

for a ∈ A \ {0}. Using this, we have

Proposition 7 ([4]). Let a, c ∈ A \ {0} be coprime.
(i) If q = 3, then

sL(a, c) + sL(c, a) =
1

T 3 − T

(
a

c
+
c

a
+

1

ac

)
.

(ii) If q = 2, then

sL(a, c) + sL(c, a) =
1

T 4 + T 2

(
a

c
+
c

a
+

1

a
+

1

c
+

1

ac
+ 1

)
.

For x ∈ K, we define a sequence (xn)n>0 by

x0 = x, xn+1 =
1

xn − an
,

where an is the polynomial part of the Laurent expansion xn =
∑k
i=−∞AiT

i.
This sequence yields the unique continued fraction development of x given by

x = [a0, a1, . . . , an] := a0 +
1

a1 +
1

· · ·+ 1

an−1 +
1

an

. (4.2)

We write sΛ(a/c) = sΛ(a, c) because the value sΛ(a, c) depends on a/c. Then
sΛ(a/c) is A-periodic, i.e., sΛ(a/c+ b) = sΛ(a/c) for b ∈ A. For Λ = L, the value
sL(a/c) is described by the continued fraction development of a/c.
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Theorem 8 ([4]).
(i) If q = 3, then sL([a0, . . . , ar]) is written as

1
T 3−T ([0, a1, . . . , ar] + (−1)r+1[0, ar, . . . , a1]

+a1 − a2 + · · ·+ (−1)r+1ar) (r > 1),

0 (r = 0).

(ii) If q = 2, then sL([a0, . . . , ar]) is written as
1

T 4+T 2 ([0, a1, . . . , ar] + (−1)r+1[0, ar, . . . , a1]

+
∏r
i=1[0, ai, . . . , ar] + a1 − a2 + · · ·+ (−1)r+1ar + r − 1) (r > 1),

0 (r = 0).

It should be noted that the value sL(a/c) is uniquely determined from the
reciprocity law in Proposition 7. From this theorem, we have

Theorem 9 ([4]). Assume that q = 3 or 2.
(i) {(a/c, sL(a, c)) | a/c ∈ K∗} is dense in K2

∞.
(ii) {sL(a, c) | a/c ∈ K∗} is dense in K∞.

We next extend Theorem 9 to the case l1(φT ) = 1. Let φa = a + l1(φa)τ +
· · ·+ lr deg a(φa)τ r deg a for a ∈ A. Because φT is expressed as

φT = ρT + l2(φT )τ2 + · · ·+ lr(φT )τ r,

the coefficient of τ in φa coincides with that of τ in ρa. Hence l1(φa) =
(aq − a)/(T q − T ). Using Theorem 6, sΛ(a, c) has the same reciprocity law as
that for sL(a, c). As mentioned in 4.2.1, the value sL(a, c) is uniquely determined
by the reciprocity law. Therefore it follows that sΛ(a, c) = sL(a, c).

Finally, we consider the general case l1(φT ) 6= 0. Let φa = a + l1(φa)τ +
· · · + lr deg a(φa)τ r deg a for a ∈ A. We take γ ∈ C∞ such that l1(φT ) = γq−1.
Define a Drinfeld module ψ by ψT = γφT γ

−1, and writing ψa = a + l1(ψa)τ +
· · · + lr deg a(ψa)τ r deg a for a ∈ A, we see that l1(ψT ) = 1. Hence l1(ψa) =
(aq − a)/(T q − T ). We have

l1(φa) = γq−1l1(ψa) = l1(φT )
aq − a
T q − T

.

Let

tΛ(a, c) =

{
sΛ(a, c)/l1(φT ) (q = 3),

sΛ(a, c)/l1(φT )2 (q = 2).

Then by Theorem 6, it holds that

tΛ(a, c) + tΛ(c, a) =

{
1

T 3−T
(
a
c + c

a + 1
ac

)
(q = 3),

1
T 4+T 2

(
a
c + c

a + 1
a + 1

c + 1
ac + 1

)
(q = 2).

This is just the reciprocity law for sL(a, c) in Proposition 7. Thus we conclude
that tΛ(a, c) = sL(a, c), which completes the proof of Theorem 1.
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5. Concluding remarks

As an application of Theorem 1, we make some remarks on modular forms for
GL(r,A). Suppose r > 2. Set

Ωr = Pr−1(C∞) \ {K∞-rational hyperplanes}.

For ω = (ω1 : · · · : ωr) ∈ Ωr, put zi = ωi/ωr (i = 1, . . . , r) and Λω = Az1 +
· · · + Azr. We write φω for the Drinfeld module corresponding to Λω, and let
φ
ω
T = T + l1(ω)τ + · · ·+ lr(ω)τ r. The coefficient li(ω) is a modular form of weight
qi − 1 for GL(r,A) in the sense of Gekeler [2]. Theorem 1 yields the following
result:

Theorem 10. Assume that q = 3 or 2. Let L be the A-lattice correspnding to the
Carlitz module ρ. Then for coprime a, c ∈ A \ {0}, sΛω (a, c) is a modular form of
weight q − 1 for GL(r,A), and is written as

sΛω (a, c) =

{
sL(a, c)l1(ω) (q = 3),

sL(a, c)l1(ω)2 (q = 2).
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