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EXPLICIT RELATIONS BETWEEN PRIMES IN SHORT
INTERVALS AND EXPONENTIAL SUMS OVER PRIMES

Alessandro Languasco, Alessandro Zaccagnini

Abstract: Under the assumption of the Riemann Hypothesis, we prove explicit quantitative
relations between hypothetical error terms in the asymptotic formulae for truncated mean-square
average of exponential sums over primes and in the mean-square of primes in short intervals. We
also remark that such relations are connected with a more precise form of Montgomery’s pair-
correlation conjecture.
Keywords: exponential sum over primes, primes in short intervals, pair-correlation conjecture.

1. Introduction

In many circle-method applications a key role is played by the asymptotic behavior
as X →∞ of the truncated mean square of the exponential sum over primes, i.e.
by

R(X, ξ) =

∫ ξ

−ξ
|S(α)− T (α)|2 dα,

1

2X
6 ξ 6

1

2
,

where S(α) =
∑
n6X Λ(n)e(nα), T (α) =

∑
n6X e(nα), e(x) = e2πix and Λ(n)

is the von Mangoldt function. In 2000 the first author and Perelli [6] studied
how to connect, under the assumption of the Riemann Hypothesis (RH) and of
Montgomery’s pair-correlation conjecture, the behavior as X →∞ of R(X, ξ) with
the one of the mean-square of primes in short intervals, i.e., with

J(X,h) =

∫ X

1

(ψ(x+ h)− ψ(x)− h)2 dx, 1 6 h 6 X,

where ψ(x) =
∑
n6x Λ(n). Recalling that Goldston and Montgomery [2] proved

that the asymptotic behavior of J(X,h) as X →∞ is related with Montgomery’s
pair-correlation function

F (X,T ) = 4
∑

0<γ,γ′6T

Xi(γ−γ′)

4 + (γ − γ′)2
,
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where γ, γ′ run over the imaginary part of the non-trivial zeros of the Riemann
zeta-function, the following result was proved in [6].

Theorem. Assume RH. As X →∞, the following statements are equivalent:
(i) for every ε > 0, R(X, ξ) ∼ 2Xξ logXξ uniformly for X−1/2+ε 6 ξ 6 1/2;
(ii) for every ε > 0, J(X,h) ∼ hX log(X/h) uniformly for 1 6 h 6 X1/2−ε;
(iii) for every ε > 0 and A > 1, F (X,T ) ∼ (T/2π) log min(X,T ) uniformly for

X1/2+ε 6 T 6 XA.

We remark that the uniformity ranges in the previous statement are smaller
than the ones in [2]: this is due to the presence of a term E(X,h) which arises
from the estimation of some very short integrals naturally arising in applying
Gallagher’s lemma. In particular in [6] it is proved, for every fixed ε > 0, that

E(X,h)�


(h+ 1)3(logX)2 (uncond.) for 0 < h 6 Xε

h3 (uncond.) for Xε 6 h 6 X

(h+ 1)X(logX)4 (under RH) for 0 < h 6 X.

(1)

Hence it is clear that the above-mentioned limitation in the uniformity ranges
comes from the fact that for h > X1/2−ε the estimates in (1) are too large if
compared with the expected main term for J(X,h). In Theorem 1 below we will
see that E(X,h) plays an important role here too.

In 2003 Chan [1] formulated a more precise pair-correlation hypothesis and
gave explicit results for the connections between the error terms in the asymp-
totic formulae for F (X,T ) and J(X,h). Such results were recently extended and
improved by the authors of this paper in a joint work with Perelli [7]: writing

F (X,T ) =
T

2π

(
log

T

2π
− 1
)

+RF (X,T ), (2)

J(X,h) = hX
(

log
X

h
+ c′

)
+RJ(X,h) (3)

and
c′ = −γ − log(2π) (4)

(γ is Euler’s constant), they gave explicit relations between (2), (3) and error terms
essentially of type

RF (X,T )� T 1−a

(log T )b
and RJ(X,h)� hX

(logX)b

( h
X

)a
,

with X, T and h in suitable ranges and a, b > 0. According to the heuristics
in Montgomery-Soundararajan [9] (see p.511) it appears that such bounds are
both reasonable ones if 0 6 a 6 1/2 − ε, b > 0 and, respectively, uniformly for
T 1+ε 6 X 6 TA and Xε 6 h 6 X1−ε.

Our aim here is to investigate the connections between (2)-(3) with an asymp-
totic formula of the type

R(X, ξ) = 2Xξ logXξ + cXξ +W (X, ξ), (5)
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say, where the expected value for c is given by

c = 2(c′ − 2 + γ + log(2π)) (6)

(which, by (4), gives c = −4), and to prove explicit connections between the error
terms involved. The heuristics in [9] suggests that a reasonable estimate should
be

W (X, ξ)� (Xξ)1−a

(logXξ)b
, (7)

with 0 6 a 6 1/2− ε, b > 0, uniformly for X−1+ε 6 ξ 6 X−ε. Unfortunately the
presence of the above-mentioned term E(X,h) forces us, as in [6], to restrict our
attention to the range X−1/2+ε 6 ξ 6 1/2 (or, equivalently, to 1 6 h 6 X1/2−ε).

In what follows the implicit constants may depend on a, b. Our first result is

Theorem 1. Assume RH and let 1 6 h 6 X1/2−ε, X−1/2+ε 6 ξ 6 1/2. Let
further 0 6 a < 1, b > 0, (a, b) 6= (0, 0) be fixed. If (7) holds uniformly for

1

h

( h
X

)a
(logX)−b−4 6 ξ 6

1

h

(X
h

)a
(logX)b+4, (8)

then
RJ(X,h)� X + E(X,h) +Ra,b(X,h)

uniformly for

X
( 1

Xξ(logX)b+4

)1/(1−a)

6 h 6 X
( (logX)b+4

Xξ

)1/(a+1)

,

where E(X,h) is defined in (1), and

Ra,b(X,h) =

{
hX log logX(logX)−b if a = 0

hX
(
h/X

)a
(logX)−b if a > 0.

(9)

We explicitly remark that the conditions ξ 6 1/2 and (8) imply

h� Xa/(a+1)(logX)(b+4)/(a+1)

which also leads to Ra,b(X,h) � X. It is also useful to remark that E(X,h) �
Ra,b(X,h) only for h� X(1−a)/(2+a)(logX)−b/(2+a).

The technique used to prove Theorem 1 is similar to the one in Lemma 2 in
[7]; the main difference is in the presence of the terms E(X,h) (which comes from
Lemma 3) and O(X) (which comes from the term O(1) in (12)). We further
remark that eq. (12) of Lemma 1 is directly connected to the ability of detecting
the second order term in (5) and to establish the relation (4), which leads to the
expected value of c in (5)-(6).
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Concerning the opposite direction, we have

Theorem 2. Assume RH and let 1 6 h 6 X1/2−ε, X−1/2+ε 6 ξ 6 1/2. Let
further 0 6 a < 1, b > 0, (a, b) 6= (0, 0) be fixed. If we have

RJ(X,h)� hX

(logX)b

( h
X

)a
uniformly for

1

ξ

(Xξ)−a/(2a+6)

(logX)(a+b+4)/(2a+6)
6 h 6

1

ξ
(Xξ)4a/(a+3)(logX)(3a+4b+13)/(a+3),

then

W (X, ξ)� (Xξ)3/(3+a)

(logX)(b−a−2)/(3+a)
, (10)

uniformly for

1

h

( h
X

)a/(3a+6)

(logX)−(a+b+4)/(3a+6)

6 ξ 6
1

h

(X
h

)4a/(3−3a)

(logX)(3a+4b+13)/(3−3a).

Note that for a = 0 we have to take b > 2 to get that the error term in (10) is
o(Xξ). The technique used to prove Theorem 2 is similar to the one in Lemma 5
of [7]; the main difference is in the use of Lemma 4 which is needed to provide
pair-correlation independent estimates of the involved quantities.

We remark that results similar to Theorems 1-2 can be proved for the weighted
quantities

S̃(α) =

∞∑
n=1

Λ(n)e−n/Xe(nα),

T̃ (α) =

∞∑
n=1

e−n/Xe(nα),

R̃(X, ξ) =

∫ ξ

−ξ
|S̃(α)− T̃ (α)|2 dα,

J̃(X,h) =

∫ ∞
0

(ψ(x+ h)− ψ(x)− h)2 e−2x/X dx.

The proofs are similar; in the analogue of Theorem 1 the main difference is in using
the second part of Lemma 3 thus replacing E(X,h) with the sharper quantity
Ẽ(X,h) defined in (15). Concerning the analogue of Theorem 2, the key point
is in Eq. (33): in this case we will be able to extend its range of validity to
ξ 6 x 6 ξX1−ε and to get rid of the term (x3/ξ)(logX)2. These remarks lead to
results which hold in wider ranges: 1 6 h 6 X1−ε and X−1+ε 6 ξ 6 1/2.
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The order of magnitude of J̃(X,h) can be directly deduced from the one of
J(X,h) via partial integration, see e.g. eq. (18). Unfortunately, the vice-versa
seems to be very hard to achieve; this depends on the fact that we do not have
sufficiently strong Tauberian theorems to get rid of the exponential weight in the
definition of J̃(X,h). Such a phenomenon is well known in the literature, see, e.g.,
Heath-Brown’s remark on pages 385-386 of [4].

Acknowledgments. We wish to thank the referee for pointing out inaccuracies
and suggesting improvements at several places.

2. Some lemmas

In the following we will need two weight functions and, in particular, precise
information on their total mass and size of the derivatives. For h > 0 we let

K(α, h) =
∑

−h6n6h

(h− |n|) e(nα) and U(α, h) =
( sin(πhα)

πα

)2

. (11)

Lemma 1. For h > 0, we have
∫ 1/2

0
K(α, h) dα = h/2 and

∫ +∞
0

U(α, h) dα = h/2.
Moreover we also have∫ 1/2

0

log(hα)K(α, h) dα = −h
2

(log(2π) + γ − 1) +O(1), (12)∫ +∞

0

log(hα)U(α, h) dα = −h
2

(log(2π) + γ − 1).

Before the proof, we remark that this lemma is consistent with the constant
in Lemma 2 of Languasco, Perelli and Zaccagnini [7], taking into account the fact
that our variable h here corresponds to πκ there.

Proof. The results on U(α, h) can be immediately obtained by integrals n.3.821.9
and n.4.423.3, respectively on pages 460 and 594 of Gradshteyn and Ryzhik [3].
The first identity for K(α, h) immediately follows by isolating the contribution of
n = 0 in its definition and making a trivial computation. Now we prove (12). Sep-
arating again the contribution of the term n = 0, a straightforward computation
gives

I(h) := 2

∫ 1/2

0

log(hα)K(α, h) dα

= h log h− h(log 2 + 1) + 2
∑

16n6h

(h− n)

∫ 1

0

log
(hβ

2

)
cos(πnβ) dβ.
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A standard argument lets us write

I(h) = h log h− h(log 2 + 1) + 2
∑

16n6h

(h− n)

∫ 1

0

log β cos(πnβ) dβ

= h log h− h(log 2 + 1)−
∑

16n6h

h− n
n
− 2

∑
16n6h

(h− n)
si(πn)

πn
,

by Formula 4.381.2 on page 581 of [3], where the sine integral function is defined
by

si(x) = −
∫ +∞

x

sin t

t
dt (13)

for x > 0. The elementary relation
∑

16n6h 1/n = log h+ γ +O
(
h−1

)
shows that

I(h) = −h(log 2 + γ) +O(1)− 2h

π

∑
16n6h

si(πn)

n
+

2

π

∑
16n6h

si(πn).

Finally we remark that Eq. (13) implies, by means of a simple integration by parts,
that si(x)� x−1 as x→ +∞. Hence∑

16n6h

si(πn)

n
=
∑
n>1

si(πn)

n
+O

(
h−1

)
=
π

2
(log π − 1) +O

(
h−1

)
,

by Formula 6.15.2 on page 154 of [10]. Moreover, by a double partial integration
in (13) we get ∑

16n6h

si(πn) =
∑

16n6h

(−1)n+1

πn
+O

( ∑
16n6h

1

n2

)
� 1.

In conclusion

I(h) = −h(log 2 + γ)− 2h

π

(π
2

(log π − 1) +O
(
h−1

))
+O(1),

and Lemma 1 is proved. �

Lemma 2. For h > 1 we have

K(α, h)� min
(
h2, ‖α‖−2

)
,

and
d

dα
K(α, h)� h‖α‖min

(
h3, ‖α‖−3

)
.

The proof of Lemma 2 is standard and hence we omit it. We also remark
that estimates similar to the ones in Lemma 2 hold for U(α, h) too; since they
immediately follow from the definition we omit their proofs too.
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We need the following auxiliary result which is based on Gallagher’s lemma.

Lemma 3. Let 1 6 h 6 X,

R(α) = S(α)− T (α) and R̃(α) = S̃(α)− T̃ (α). (14)

Then∫ 1/2

−1/2

|R(α)|2K(α, h) dα =

∫ +∞

−∞
|R(α)|2 U(α, h) dα = J(X,h) +O(E(X,h)),

where E(X,h) is defined in (1). Moreover we have,∫ 1/2

−1/2

|R̃(α)|2K(α, h) dα =

∫ +∞

−∞
|R̃(α)|2 U(α, h) dα = J̃(X,h) +O

(
Ẽ(X,h)

)
,

where, for every fixed ε > 0, we define

Ẽ(X,h) =


(h+ 1)3(logX)2 (uncond.) for 0 < h 6 Xε

h3 (uncond.) for Xε < h 6 X

(h+ 1)2(logX)4 (under RH) for 0 < h 6 X.

(15)

Proof. The first part is Lemma 1 of [6], so we skip the proof. For the second
part, we start arguing as in Lemma 1 of [6] thus getting∫ 1/2

−1/2

|R̃(α)|2 K(α, h) dα =

∫ +∞

−∞
|R̃(α)|2 U(α, h) dα

=

∫ +∞

−∞

∣∣∣∣∣ ∑
|n−x|<h/2

n>1

(Λ(n)− 1)e−n/X

∣∣∣∣∣
2

dx.

A standard computation hence gives

∫ 1/2

−1/2

|R̃(α)|2 K(α, h) dα =

∫ +∞

0

∣∣∣∣∣∣
∑

x<n6x+h

(Λ(n)− 1)e−n/X

∣∣∣∣∣∣
2

dx

+O
(
(h+ 1)2(log(h+ 1))4

)
, (16)

where in the last estimate we assumed RH and we used the asymptotic formula

ψ(y) = y +O
(
y1/2(log y)2

)
(17)

on a interval of length 6 h. Noting that∑
x<n6x+h

(Λ(n)− 1)e−n/X = e−x/X(ψ(x+ h)− ψ(x)− h)
(

1 +O
(h+ 1

X

))



386 Alessandro Languasco, Alessandro Zaccagnini

and recalling that h 6 X, from (16) we have∫ 1/2

−1/2

|R̃(α)|2K(α, h) dα = J̃(X,h)
(

1 +O
(h+ 1

X

))
+O

(
(h+ 1)2(logX)4

)
.

To estimate the last error term we connect J̃(X,h) to J(X,h). A partial
integration immediately gives

J̃(X,h) =
2

X

∫ ∞
0

J(t, h)e−2t/X dt. (18)

Splitting the range of integration on the right-hand side of (18) into [0, h]∪[h,+∞),
a direct computation using (17) shows that

∫ h
0
J(t, h)e−2t/X dt� h3(log h)4 while,

still assuming RH, in the remaining range we use the Selberg [11] estimate

J(t, h)� ht(log t)2 for 1 6 h 6 t, (19)

and so we get∫ +∞

h

J(t, h)e−2t/X dt� h

∫ +∞

h

t(log t)2 e−2t/X dt� hX2(logX)2.

Summing up, under RH we have

J̃(X,h)� (h+ 1)X(logX)4

and we can finally write∫ 1/2

−1/2

|R̃(α)|2K(α, h) dα = J̃(X,h) +O
(
(h+ 1)2(logX)4

)
.

The unconditional cases follow by replacing (17) with the Brun-Titchmarsh in-
equality and (19) with the estimate J(t, h) � h2t + ht log t (see the Lemma
in [5]). �

In the next sections we will also need the following remark. Let ξ > 0 and
δξ = 1/2. In this case U(α, δ) � δ2 for |α| 6 ξ; hence by the first equation in
Lemma 3 we obtain∫ ξ

−ξ
|R(α)|2 dα� ξ2

(
J
(
X,

1

2ξ

)
+ E

(
X,

1

2ξ

))
.

By (19) and (1), under RH we immediately obtain, for every 1/(2X) 6 ξ 6 1/2,
that ∫ ξ

−ξ
|R(α)|2 dα� Xξ(logX)4. (20)
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3. Proof of Theorem 1

We use Lemma 3 in the form

J(X,h) =

∫ 1/2

−1/2

|R(α)|2K(α, h) dα+O(E(X,h)), (21)

where R(α) is defined in (14). Observe that both |R(α)|2 and K(α, h) are even
functions of α, and hence we may restrict our attention to α ∈ [0, 1/2]. Recalling
(6) and writing

f(X,α) = X log(Xα) +
( c

2
+ 1
)
X = X log

X

h
+X log(hα) +

( c
2

+ 1
)
X, (22)

we can approximate |R(α)|2 as |R(α)|2 = f(X,α) +
(
|R(α)|2 − f(X,α)

)
. Using

Lemma 1 and (22), we obtain∫ 1/2

0

f(X,α)K(α, h) dα =
h

2
X log

X

h
+ c′

h

2
X +O(X), (23)

where c′ is defined in (4).
Let now U1 < 1/h < U2 6 1 be two parameters to be chosen later. By Lemma 2,

(20) and a partial integration we immediately obtain(∫ U1

0

+

∫ 1/2

U2

)(
|R(α)|2 − f(X,α)

)
K(α, h) dα� h2U1X(logX)4 +

X(logX)4

U2
.

(24)
From (24) it is clear that the optimal choice is h2U1 = 1/U2. We now evaluate the
integral over [U1, U2]. A direct computation and the hypothesis show that∫ ξ

0

(
|R(α)|2 − f(X,α)

)
dα� (Xξ)1−a

(logXξ)b
,

and hence, by partial integration and Lemma 2, we obtain∫ U2

U1

(
|R(α)|2 − f(X,α)

)
K(α, h) dα� h2 (XU1)1−a

(logX)b
+
X1−aU−1−a

2

(logX)b

+
hX1−a

(logX)b

∫ U2

U1

ξ2−a min
(
h3, ξ−3

)
dξ.

Using the constraints h2U1 = 1/U2 and U1 < 1/h, the right-hand side is

� h1+aX1−a

(logX)b
+

hX1−a

(logX)b

∫ U2

1/h

ξ−1−a dξ � Ra,b(X,h, U2), (25)

where

Ra,b(X,h, U2) =

{
hX log(hU2)(logX)−b if a = 0

h1+aX1−a (logX)−b if a > 0.
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Hence, by (24)-(25) and h2U1 = 1/U2 we get∫ 1/2

0

(
|R(α)|2 − f(X,α)

)
K(α, h) dα� X(logX)4

U2
+Ra,b(X,h, U2). (26)

Choosing

U2 =
Xa(logX)b+4

h1+a
and U1 =

ha−1

Xa(logX)b+4
,

by (23) and (26) we finally get∫ 1/2

0

|R(α)|2K(α, h) dα =
h

2
X log

X

h
+ c′

h

2
X +O(X +Ra,b(X,h))

where c′ and Ra,b(X,h) are defined in (4) and (9). Theorem 1 follows from (21).

4. Proof of Theorem 2

We adapt the proof of Lemma 5 of [7], which is an explicit form of Lemma 4 of [2].
We recall that 0 < η < 1/4 is a parameter to be chosen later and

Kη(x) =
sin(2πx) + sin(2π(1 + η)x)

2πx(1− 4η2x2)
,

so that its Fourier transform becomes

K̂η(t) =


1 if |t| 6 1

cos2
(π(|t| − 1)

2η

)
if 1 6 |t| 6 1 + η

0 if |t| > 1 + η

and
K ′′η (x)� min(1; (ηx)−3), (27)

see Eqs. (3.14)-(3.15) and Lemma 4 of [7]. Moreover, by Lemma 3 of [7], we also
have

K̂η(t) =

∫ ∞
0

K ′′η (x)U(t, x) dx. (28)

Hence, again considering only positive values of α, we have∫ ∞
0

|R(α)|2 K̂η

(α
ξ

(1 + η)
)

dα 6
R(X, ξ)

2
6
∫ ∞

0

|R(α)|2 K̂η

(α
ξ

)
dα (29)

where R(α) is defined in (14). Writing f(X,α) as in (22), we approximate |R(α)|2
as |R(α)|2 = f(X,α) + (|R(α)|2 − f(X,α)). Observing that U(α/ξ, x) =
ξ2U(α, x/ξ), letting

g(x, ξ) = ξ2

∫ ∞
0

(|R(α)|2 − f(X,α))U
(
α,
x

ξ

)
dα
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and using (28), we get∫ ∞
0

|R(α)|2 K̂η

(α
ξ

)
dα =

∫ ∞
0

f(X,α)K̂η

(α
ξ

)
dα+

∫ ∞
0

K ′′η (x)g(x, ξ) dx = J1 +J2,

(30)
say. A direct computation and (6) show that

J1 = Xξ logXξ +
c

2
Xξ +O(ηXξ logXξ). (31)

In order to estimate J2 we first remark that by Lemma 1, (22) and (4), we have

ξ2

∫ ∞
0

f(X,α)U
(
α,
x

ξ

)
dα =

xXξ

2
log

Xξ

x
+
c′

2
xXξ. (32)

Now we need the following Lemma whose proof follows the line of Lemma 2
of [6].

Lemma 4. Assume RH and let ε > 0. We have

g(x, ξ)�


Xξ2 logX if 0 < x 6 ξ

xXξ(logX)2 if ξ 6 x 6 ξX1/2−ε

xXξ(logX)4 if x > ξX1/2−ε.

Assume further the hypothesis of Theorem 2. We have

g(x, ξ)� x1+a (Xξ)1−a

(logX)b
+
x3

ξ
(logX)2 if ξ 6 x 6 ξX1/2−ε. (33)

Choosing now V1, V2 such that ξ < V1 < 1/η < V2 < ξX1/2−ε, we split J2’s
integration range into six subintervals. We obtain

J2 =

(∫ ξ

0

+

∫ V1

ξ

+

∫ 1/η

V1

+

∫ V2

1/η

+

∫ ξX1/2−ε

V2

+

∫ +∞

ξX1/2−ε

)
K ′′η (x)g(x, ξ) dx

= M1 +M2 +M3 +M4 +M5 +M6, (34)

say. By Lemma 4 and (27), we obtain

M1 � Xξ2 logX

∫ ξ

0

dx� Xξ3 logX,

M2 � Xξ(logX)2

∫ V1

ξ

x dx� XξV 2
1 (logX)2,

M3 �
∫ 1/η

V1

(
x1+a (Xξ)1−a

(logX)b
+
x3

ξ
(logX)2

)
dx� (Xξ)1−a

η2+a(logX)b
+

(logX)2

ξη4
,

M4 �
1

η3

∫ V2

1/η

(
xa−2 (Xξ)1−a

(logX)b
+

(logX)2

ξ

)
dx� (Xξ)1−a

η2+a(logX)b
+
V2(logX)2

ξη3
,

M5 �
Xξ(logX)2

η3

∫ ξX1/2−ε

V2

dx

x2
� Xξ(logX)2

V2η3
,
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and

M6 �
Xξ(logX)4

η3

∫ +∞

ξX1/2−ε

dx

x2
� X1/2+ε(logX)4

η3
.

Hence, recalling ξ > X−1/2+ε, by (34) and the definitions of V1 and V2 we get

J2 � Xξ(logX)2
(
V 2

1 +
(logX)2

V2η3

)
+

(Xξ)1−a

η2+a(logX)b
. (35)

Choosing V1 = η1/2/ logX and V2 = log3X/η4, by (30)-(31) and (35), we obtain∫ ∞
0

|R(α)|2 K̂η

(α
ξ

)
dα = Xξ logXξ +

c

2
Xξ +O

(
ηXξ logX +

(Xξ)1−a

η2+a(logX)b

)
.

(36)
To optimize the error term we choose η3+a = (Xξ)−a(logX)−b−1, so that (36)
becomes∫ ∞

0

|R(α)|2 K̂η

(α
ξ

)
dα = Xξ logXξ +

c

2
Xξ +O

(
(Xξ)3/(3+a)

(logX)(b−a−2)/(3+a)

)
. (37)

Finally, by (29) and (37), we obtain

R(X, ξ) 6 2Xξ logXξ + cXξ +O
(

(Xξ)3/(3+a)

(logX)(b−a−2)/(3+a)

)
.

In a similar way we also get that

R(X, ξ) > 2Xξ logXξ + cXξ +O
(

(Xξ)3/(3+a)

(logX)(b−a−2)/(3+a)

)
,

and Theorem 2 follows.
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