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Abstract: Let (T (t))t>0 be a strongly continuous C0-semigroup of bounded linear operators
on a Banach space X such that limt→∞ ‖T (t)/t‖ = 0. Characterizations of when (T (t))t>0 is
uniformly mean ergodic, i.e., of when its Cesàro means r−1

∫ r
0 T (s) ds converge in operator norm

as r → ∞, are known. For instance, this is so if and only if the infinitesimal generator A has
closed range in X if and only if limλ↓0+ λR(λ,A) exists in the operator norm topology (where
R(λ,A) is the resolvent operator of A at λ). These characterizations, and others, are shown to
remain valid in the class of quojection Fréchet spaces, which includes all Banach spaces, countable
products of Banach spaces, and many more. It is shown that the extension fails to hold for all
Fréchet spaces. Applications of the results to concrete examples of C0-semigroups in particular
Fréchet function and sequence spaces are presented.

Keywords: C0-semigroup, uniform mean ergodicity, quojection and prequojection Fréchet
spaces.

1. Introduction

Let (T (t))t>0 be a 1-parameter C0-semigroup of continuous linear operators in
a Banach space X. Ergodic theorems have a long tradition and are usually for-
mulated via existence of the limits of the Cesàro averages C(r)x = 1

r

∫ r
0
T (t)x dt,

r > 0, or of the Abel averages λRλx = λ
∫∞

0
e−λtT (t)x dt, λ > 0, for each x ∈ X,

when r → ∞ and λ → 0+, respectively. In the former case one speaks of the
mean ergodicity of (T (t))t>0 and in the latter case of its Abel mean ergodicity;
for the general theory and applications see [11, Ch.4], [20, Ch.VIII], [23, Ch.V],
[24, Ch.XVIII], [31] and the references therein. Of course, the above convergence
is relative to the strong operator topology τs in the space L(X) of all continu-
ous linear operators on X. The following fundamental result characterizing the
mean ergodicity (resp. Abel mean ergodicity) of (T (t))t>0 for the operator norm
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convergence in L(X), in which case one speaks of uniform mean ergodicity (resp.
uniform Abel mean ergodicity), is due to M. Lin; see [33, Theorem & Corollary 1],
[34, Theorem 12].

Theorem 1.1. Let X be a Banach space and (T (t))t>0 ⊆ L(X) be a strongly con-
tinuous C0-semigroup with T (0) = I satisfying limt→∞

∥∥∥T (t)
t

∥∥∥ = 0. The following
assertions are equivalent.

(i) limr→∞ C(r) exists for the operator norm topology in L(X).
(ii) The range ImA of the infinitesimal generator A of (T (t))t>0 is a closed

subspace of X.
(iii) limN→∞

1
N

∑N
n=1R

n
1 exists for the operator norm topology in L(X).

(iv) There exists a projection P ∈ L(X) with ImP = {x ∈ X : T (t)x = x
∀t > 0} such that limλ↓0+ ‖λRλ − P‖ = 0.

(v) limn→∞(λRλ)n exists for the operator norm topology in L(X) for (some)
all λ > 0.

(vi) There exists λ0 > 0 such that

sup
0<λ6λ0

‖Rλy‖ <∞, y ∈ ImA.

Much of modern analysis occurs in locally convex Hausdorff spaces (briefly,
lcHs) which are non-normable. The notions of a C0-semigroup (T (t))t>0 ⊆ L(X)
(with X a Banach space) being mean ergodic or Abel mean ergodic relative to
τs are purely topological and so carry over immediately to the setting when
X is a lcHs. The natural analogue of the operator norm topology in L(X) is
the topology τb of uniform convergence on the bounded subsets of the lcHs X.
Accordingly, the notions of (T (t))t>0 being uniformly mean ergodic (resp. uni-
formly Abel mean ergodic), i.e., relative to τb, are also defined. For certain classi-
cal aspects of the theory of mean ergodic semigroups of operators, relative to τs,
in the non-normable setting we refer to [21], [31, Ch.2], [44, Ch.III, §7] and the
references therein. Further recent results on this topic occur in [6], [7], [9]. The
aim of this paper is to clarify the role of Theorem 1.1 in the setting of lcHs. Some
relevant comments in this respect are appropriate.

Leaving the Banach space setting brings with it various inherent (unpleasant)
features. For instance, given any strongly continuous C0-semigroup (T (t))t>0 in
a Banach space X there always exists ω > 0 such that the semigroup (e−ωtT (t))t>0

is uniformly bounded, i.e., supt>0 e
−ωt‖T (t)‖ < ∞, [23, Ch.I Proposition 5.5].

Already in non-normable (lc-)Fréchet spaces X this need not be the case (cf. [6],
[7], [27], [28], [41]), i.e., (e−ωtT (t))t>0 may fail to be an equicontinuous subset
of L(X) for every ω > 0. So, the general theory of C0-semigroups in Fréchet
spaces is more involved than in Banach spaces. The infinitesimal generator A of
(T (t))t>0 is always a closed linear operator (not necessarily everywhere defined).
In the Banach space setting the resolvent set ρ(A) of A is always non-empty
and open, [23, Ch.II Theorem 1.10 & Ch. IV. Proposition 1.3]; not necessarily
so if X is a Fréchet space, [7, Example 3.5(vii)]. It can even happen, for X
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a non-normable Fréchet space, that ρ(A) = ∅; see Propostion 4.6 below! Moreover,
some of the basic techniques for Banach spaces which are crucial for establishing
various uniform mean ergodic theorems (eg. if the resolvent operators of A satisfy
‖R(λ,A)‖ → 0 as λ → 0+, then I − R(λ,A) is invertible in L(X) for all λ small
enough, or the inequality dist(λ, σ(A)) > 1

‖R(λ,A)‖ for λ ∈ ρ(A), or that ρ(A) is the
natural (open) domain in which R(·, A) is holomorphic) are not always available
in non-normable Fréchet spaces. So, one cannot expect Theorem 1.1 to carry over
to general lcHs X. In fact, it does not even extend to general Fréchet spaces; see
Example 3.7 below.

Despite the negative comments made above it turns out, nevertheless, that
Theorem 1.1 does have a natural extension (cf. Theorem 3.2) to an important
and non-trivial class of Fréchet spaces, namely the quojections; see Section 3 for
the definition of this class. All Banach spaces, all countable products of Banach
spaces, and many more Fréchet spaces are quojections. Concrete examples of
quojections include the sequence space ω = CN, the function spaces Lploc(Ω), with
1 6 p 6 ∞ and Ω ⊆ RN and open set, and C(m)(Ω) with m ∈ N0 and Ω ⊆ RN
an open set, when equipped with their canonical lc-topology. As alluded to above,
Theorem 3.2 is the main result of the paper. A further version of Theorem 3.2
is also presented in Section 3, namely to the class of prequojection Fréchet spaces
(which properly contains the quojections). Section 2 is devoted to establishing
various preliminary results needed in the sequel, many of interest in their own
right. The final Section 4 presents some examples of concrete C0-semigroups acting
in particular quojection Fréchet spaces, with the aim of determining whether (or
not) they are mean ergodic/uniformly mean ergodic.

2. Preliminaries

Let X be a lcHs and ΓX a system of continuous seminorms determining the
topology ofX. The strong operator topology τs in the space L(X) of all continuous
linear operators from X into itself (from X into another lcHs Y we write L(X,Y ))
is determined by the family of seminorms qx(S) := q(Sx), for S ∈ L(X), for each
x ∈ X and q ∈ ΓX , in which case we write Ls(X). Denote by B(X) the collection
of all bounded subsets of X. The topology τb of uniform convergence on bounded
sets is defined in L(X) via the seminorms qB(S) := supx∈B q(Sx), for S ∈ L(X),
for each B ∈ B(X) and q ∈ ΓX ; in this case we write Lb(X). For X a Banach
space, τb is the operator norm topology in L(X). If ΓX is countable and X is
complete, then X is called a Fréchet space. The identity operator on a lcHs X is
denoted by I.

By Xσ we denote X equipped with its weak topology σ(X,X ′), where X ′ is
the topological dual space of X. The strong topology in X (resp. X ′) is denoted
by β(X,X ′) (resp. β(X ′, X)) and we write Xβ (resp. X ′β); see [29, §21.2] for the
definition. The strong dual space (X ′β)′β of X ′β is denoted simply by X ′′. By X ′σ
we denote X ′ equipped with its weak-star topology σ(X ′, X). Given T ∈ L(X),
its dual operator T ′ : X ′ → X ′ is defined by 〈x, T ′x′〉 = 〈Tx, x′〉 for all x ∈ X,
x′ ∈ X ′. It is known that T ′ ∈ L(X ′σ) and T ′ ∈ L(X ′β), [30, p.134].
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Definition 2.1. Let X be a lcHs and (T (t))t>0 ⊆ L(X) be a 1-parameter family
of operators. The map t 7→ T (t), for t ∈ [0,∞), is denoted by T : [0,∞)→ L(X).

We say that (T (t))t>0 is a semigroup if it satisfies

(i) T (s)T (t) = T (s+ t) for all s, t > 0, with T (0) = I.

A semigroup (T (t))t>0 is locally equicontinuous if, for fixed K > 0, the set {T (t) :
0 6 t 6 K} is equicontinuous, i.e., given p ∈ ΓX there exist q ∈ ΓX and M > 0
(depending on p and K) such that

p(T (t)x) 6Mq(x), x ∈ X, t ∈ [0,K]. (2.1)

A semigroup (T (t))t>0 is said to be a C0-semigroup if it satisfies

(ii) limt→0+ T (t) = I in Ls(X).

If the C0-semigroup (T (t))t>0 satisfies the additional condition that

(iii) limt→t0 T (t) = T (t0) in Ls(X), for each t0 > 0,

then it is called a strongly continuous C0-semigroup.
A semigroup (T (t))t>0 is said to be exponentially equicontinuous if there exists

a > 0 such that (e−atT (t))t>0 ⊆ L(X) is equicontinuous, i.e.,

∀p ∈ ΓX ∃q ∈ ΓX ,Mp > 0 with p(T (t)x) 6Mpe
atq(x) ∀t > 0, x ∈ X. (2.2)

If a = 0, then we simply say equicontinuous. Finally, a semigroup (T (t))t>0 is said
to be a uniformly continuous C0-semigroup if T : [0,∞) → Lb(X) is continuous,
i.e.,

(iv) limt→t0 T (t) = T (t0) in Lb(X), for each t0 > 0 (with t→ 0+ if t0 = 0).

Given any locally equicontinuous C0-semigroup (T (t))t>0 (resp. any locally
equicontinuous, uniformly continuous C0-semigroup) on a lcHs X, observe that
condition (iii) (resp. condition (iv)) in Definition 2.1 is equivalent to T (t)→ I in
Ls(X) (resp. in Lb(X)) as t→ 0+, [6, Remark 1(iii)].

Remark 2.2.

(i) Let X be a lcHs and (T (t))t>0 be an equicontinuous C0-semigroup on
X. For p ∈ ΓX define p̃(x) := supt>0 p(T (t)x), for x ∈ X. By Definition
2.1(i)–(iii) p̃ is well-defined, is a seminorm and satisfies

p(x) 6 p̃(x) 6Mpq(x) 6Mpq̃(x), x ∈ X. (2.3)

Hence, Γ̃X := {p̃ : p ∈ ΓX} also generates the given lc-topology of X.
Moreover, for p̃ ∈ Γ̃X , we have

p̃(T (t)x) = sup
s>0

p(T (t)T (s)x) = sup
s>0

p(T (t+ s)x) 6 p̃(x), x ∈ X, t > 0.

(2.4)
(ii) In [28, Prop. 1.1] it is shown that in a barrelled lcHs X every strongly

continuous C0-semigroup (T (t))t>0 is locally equicontinuous.
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(iii) Every C0-semigroup of operators in a Banach space, being strongly con-
tinuous, [23, Ch. I, Proposition 5.3], is necessarily exponentially equicon-
tinuous, [20, p.619], [23, Ch. I, Proposition 5.5]. For Fréchet spaces
this need not be so. Indeed, in the sequence space ω = CN (topol-
ogy of coordinate convergence), T (t)x := (entxn)∞n=1, for t > 0 and
x = (xn)∞n=1 ∈ ω, defines a strongly continuous C0-semigroup which is
not exponentially equicontinuous. As ω is a Montel space, (T (t))t>0 is
also uniformly continuous.

If X is a sequentially complete lcHs and (T (t))t>0 is a locally equicontinuous
C0-semigroup on X, then the linear operator A defined by

Ax := lim
t→0+

T (t)x− x
t

,

for x ∈ D(A) := {x ∈ X : limt→0+
T (t)x−x

t exists in X}, is closed with D(A) = X,
[28, Propositions 1.3 & 1.4]. The operator (A,D(A)) is called the infinitesimal
generator of (T (t))t>0. Moreover, A and (T (t))t>0 commute, [28, Proposition
1.2(1)], i.e., for each t > 0 we have {T (t)x : x ∈ D(A)} ⊆ D(A) and AT (t)x =
T (t)Ax, for all x ∈ D(A). Also known, [28, Proposition 1.2(2)], is that

T (t)x− x =

∫ t

0

T (s)Axds =

∫ t

0

AT (s)x ds, x ∈ D(A), (2.5)

and, [28, Corollary p.261], that

T (t)x− x = A

∫ t

0

T (s)x ds, x ∈ X. (2.6)

For each x ∈ D(A) (resp. x ∈ X), the integrals occuring in (2.5) (resp. (2.6)) are
Riemann integrals of an X-valued, continuous function on [0, t]; see [6, Appendix].
The closedness of A ensures that KerA := {x ∈ D(A) : Ax = 0} is a closed
subspace of X. The range of A is the subspace ImA := {Ax : x ∈ D(A)}.

Let A : D(A) ⊆ X → X be a linear operator on a lcHs X. Whenever λ ∈ C
is such that (λI − A) : D(A) → X is injective, the linear operator (λI − A)−1 is
understood to have domain Im(λI −A). The resolvent set of A is defined by

ρ(A) := {λ ∈ C : (λI −A) : D(A)→ X is bijective and (λI −A)−1 ∈ L(X)}

and the spectrum of A is defined by σ(A) := C \ ρ(A). For λ ∈ ρ(A) we also write
R(λ,A) := (λI − A)−1. For λ, µ ∈ ρ(A) it is routine to check that the resolvent
equation

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A)

is valid. The spectral theory for closed linear operators A in a (non-normable) lcHs
X is not as well developed as in Banach spaces and many features depart from the
well known theory in Banach spaces; see [7, Section 3], for example, where those
aspects that we require in this paper can be found.
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The following general results, also of interest in their own right, play a crucial
role in later sections.

Proposition 2.3. Let X be a sequentially complete lcHs and (T (t))t>0 ⊆ L(X)
be a locally equicontinuous C0-semigroup with infinitesimal generator (A,D(A))

so that
{
T (t)
t : t > t0

}
is equicontinuous for some t0 > 0. Then

C0+ := {z ∈ C : Re(z) > 0} ⊆ ρ(A)

and {R(λ,A) : Re(λ) > a} is equicontinuous for every a > 0. Moreover, for every
x ∈ X and n ∈ N we have

R(λ,A)nx =
(−1)n−1

(n− 1)!

dn−1R(λ,A)x

dλn−1
=

1

(n− 1)!

∫ ∞
0

tn−1e−λtT (t)x dt, λ ∈ C0+ .

Proof. According to [6, Remark 1(iii)] the C0-semigroup (T (t))t>0 is strongly
continuous. Let p ∈ ΓX . Then there exist Ap > 0 and r ∈ ΓX such that
p
(
T (t)x
t

)
6 Apr(x) for x ∈ X and t > t0, that is,

p(T (t)x) 6 Aptr(x), x ∈ X, t > t0.

By local equicontinuity of (T (t))t>0 the set {T (t) : t ∈ [0, t0]} ⊆ L(X) is equicon-
tinuous and so there exist q ∈ ΓX with q > r and Bp > 0 such that

p(T (t)x) 6 Bpq(x), x ∈ X, t ∈ [0, t0].

Fix any a > 0. Since max{1, t} 6 caeat for t > 0 (with ca := max{1, 1
a}) it follows

that
p(T (t)x) 6 caMpe

atq(x), x ∈ X, t > 0, (2.7)

whereMp := max{Ap, Bp}, i.e., the semigroup (T (t))t>0 is a-exponentially equicon-
tinuous. Then Lemma 5.2 and Remark 5.3 of [7] imply that {z ∈ C : Re(z) >
a} ⊆ ρ(A) and

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt, x ∈ X, Re(λ) > a, (2.8)

with the integral existing as an improper X-valued Riemann integral. Since a > 0
is arbitrary, it follows that C0+ ⊆ ρ(A).

Inequalities (2.7) and (2.8) ensure that

p(R(λ,A)x) 6 caMpq(x)

∫ ∞
0

e−(Re(λ)−a)t dt =
caMp

(Re(λ)− a)
q(x), x ∈ X,

whenever Re(λ) > a. For ε > 0 we have 1
(Re(λ)−a) 6

1
ε whenever λ satisfies

Re(λ) > a+ ε. Accordingly,

p(R(λ,A)x) 6
caMp

ε
q(x), x ∈ X, Re(λ) > a+ ε,

which shows that {R(λ,A) : Re(λ) > a+ ε} is equicontinuous. Since a and ε are
arbitrary, it follows that {R(λ,A) : Re(λ) > b} is equicontinuous for every b > 0.
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Fix λ ∈ C0+ . Then there exists η > 0 such that the closure of V (λ, η) := {z ∈
C : |z−λ| < η} is contained in C0+ ⊆ ρ(A). Moreover, {R(µ,A) : µ ∈ V (λ, η)} ⊆
{R(µ,A) : Re(µ) > η} and so {R(µ,A) : µ ∈ V (λ, η)} ⊆ L(X) is equicontinuous.
Setting U := C0+ it follows from [7, Proposition 3.4(i)] that R(·, A) : C0+ → L(X)
is holomorphic from C0+ into Lb(X) with

R(λ,A)n =
(−1)n−1

(n− 1)!

dn−1R(λ,A)

dλn−1
, n ∈ N.

It remains to establish, for x ∈ X and n ∈ N, that

(−1)n−1

(n− 1)!

dn−1R(λ,A)x

dλn−1
=

1

(n− 1)!

∫ ∞
0

tn−1e−λtT (t)x dt, λ ∈ C0+ . (2.9)

The case n = 1 is given by (2.8). Consider now n = 2. Let Re(λ) > 0 and set
a := Re(λ)

2 > 0. Given p ∈ ΓX choose q ∈ ΓX and Mp > 0 such that (2.7) holds.
Then

p(te−λtT (t)x) 6 caMpte
−(Re(λ)−a)tq(x) = caMpte

−Re(λ)t
2 q(x), (2.10)

for x ∈ X and t > 0, with
∫∞

0
te−

Re(λ)t
2 dt < ∞. Sequential completeness

of X ensures that the improper X-valued Riemann integral
∫∞

0
te−λtT (t)x dt

exists. Moreover, (2.10) and [6, Proposition 11(vii)] imply that the operator
x 7→

∫∞
0
te−λtT (t)x dt, for x ∈ X, belongs to L(X). Fix any η ∈

(
0, Re(λ)

3

)
,

in which case V (λ, η) ⊆ {µ ∈ C : Re(µ) > η}. Then it follows from (2.7) and (2.8)
that, for every µ ∈ V (λ, η) with µ 6= λ and x ∈ X,

p

(
R(µ,A)x−R(λ,A)x

µ− λ
−
(
−
∫ ∞

0

te−λtT (t)x dt

))
= p

(∫ ∞
0

[
e−µt − e−λt

µ− λ
+ te−λt

]
T (t)x dt

)
6 caMpq(x)

∫ ∞
0

∣∣∣∣e−(µ−λ)t − 1

µ− λ
+ t

∣∣∣∣ e−Re(λ)t
2 dt. (2.11)

Considering the power series for the exponential function we have∣∣∣∣e−(µ−λ)t − 1

µ− λ
+ t

∣∣∣∣ 6 ∞∑
k=2

|µ− λ|k−1tk

k!
6
∞∑
k=2

ηk−1tk

k!

< teηt 6 max{1, t}eηt 6 cη/2e
3η
2 t,

where we have used the fact that max{1, t} 6 cη/2e
ηt
2 for t > 0. Accordingly, for

t > 0 and µ satisfying 0 < |µ− λ| < η we have∣∣∣∣e−(µ−λ)t − 1

µ− λ
+ t

∣∣∣∣ e−Re(λ)t
2 6 cη/2e(

3
2η−

Re(λ)
2 )t. (2.12)
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Since
(

3
2η −

Re(λ)
2

)
< 0 (as 0 < η < Re(λ)

3 ), the function t 7→ cη/2e
( 3

2η−
Re(λ)

2 )t

is integrable on [0,∞). So, the Dominated Convergence Theorem, the estimates
(2.11) and (2.12), and the fact that the pointwise limit

lim
µ→λ

(
e−(µ−λ)t − 1

µ− λ
+ t

)
e−

Re(λ)t
2 = 0, t ∈ [0,∞),

imply that limµ→λ
R(µ,A)−R(λ,A)

µ−λ = −
∫∞

0
te−λtT (t) dt in Ls(X). This is precisely

(2.9) for n = 2.
This argument can be adapted, together with induction, to verify that (2.9)

holds for all n ∈ N and for Re(λ) > 0. �

Remark 2.4. Suppose that X is sequentially complete and barrelled and that
(T (t))t>0 ⊆ L(X) is a strongly continuous C0-semigroup satisfying limt→∞

T (t)
t =

0 in Ls(X).

(i) Under the above conditions the hypotheses of Proposition 2.3 are sat-
isfied for every t0 > 0. Indeed, according to Remark 2.2(ii) the semi-
group (T (t))t>0 is locally equicontinuous. Fix now any t0 > 0. Given
x ∈ X we have limt→∞

T (t)x
t = 0 in X and so there exists τx > t0

such that
{
T (t)x
t : t > τx

}
is bounded in X. By local equicontinuity

{T (t)x : t ∈ [0, τx]} is bounded in X and hence, so is
{
T (t)x
t : t ∈ [t0, τx]

}
.

It follows that
{
T (t)x
t : t > t0

}
is also bounded. Since x ∈ X is arbitrary

and X is barrelled, we can conclude that
{
T (t)
t : t > t0

}
is equicontinuous

in L(X).
(ii) The above hypotheses also imply that (T (t))t>0 is exponentially equicon-

tinuous. Indeed, by part (i) we have
{
T (t)
t : t > t0

}
is equicontinuous.

Moreover, (T (t))t>0 is locally equicontinuous by Remark 2.2(ii). In par-
ticular, {T (t) : t ∈ [0, 1]} is equicontinuous. Let p ∈ ΓX . Then there exist
q1, q2 ∈ ΓX such that

p(T (t)x) 6M1q1(x) 6M1e
tq1(x), x ∈ X, t ∈ [0, 1],

p(T (t)x) 6 tM2q2(x) 6M2e
tq2(x), x ∈ X, t > 1,

for constants M1, M2 > 0. For some q > max{q1, q2} with q ∈ ΓX and
M > max{M1,M2} we have p(T (t)x) 6 Metq(x), for x ∈ X, t > 0, i.e.,
(T (t))t>0 is exponentially equicontinuous.

Corollary 2.5. Let X be a barrelled, sequentially complete lcHs and (T (t))t>0 ⊆
L(X) be a locally equicontinuous C0-semigroup with infinitesimal generator
(A,D(A)) and satisfying τs-limt→∞

T (t)
t = 0. Then (0,∞) ⊆ ρ(A) and λ 7→

λR(λ,A) is continuous from (0,∞) into Lb(X).
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Proof. It suffices to show that λ 7→ λR(λ,A) is continuous from (0,∞) into
Lb(X). Remark 2.4(i) and Proposition 2.3 imply that (0,∞) ⊆ ρ(A) and that
{R(λ,A) : a 6 λ <∞} is equicontinuous for every a > 0.

Fix µ > 0. Let p ∈ ΓX and B ∈ B(X). By equicontinuity of {R(λ,A) : λ ∈
[µ/2, (3µ)/2]} there exist Mp > 0 and q ∈ ΓX such that

p(R(λ,A)x) 6Mpq(x), x ∈ X, λ ∈
[
µ

2
,

3µ

2

]
.

For every λ ∈
[
µ
2 ,

3µ
2

]
it follows from the resolvent equation that

pB(R(λ,A)−R(µ,A)) = |λ−µ| sup
x∈B

p(R(λ,A)R(µ,A)x) 6Mp|λ−µ|qB(R(µ,A)).

For λ ∈
[
µ
2 ,

3µ
2

]
it follows that τb-limλ→µR(λ,A) = R(µ,A), i.e., R(·, A) is con-

tinuous at µ. Since µ ∈ (0,∞) is arbitrary, we are done. �

Proposition 2.6. Let X be a sequentially complete lcHs and (T (t))t>0 ⊆ L(X)
be a locally equicontinuous C0-semigroup with infinitesimal generator (A,D(A)) so
that

{
T (t))
t : t > t0

}
is equicontinuous for some t0 > 0 and τb-limt→∞

T (t)
t = 0.

Then, for every real λ > 0, we have

τb − lim
n→∞

(λR(λ,A))n

n
= 0.

Proof. Fix a real number λ > 0. According to Proposition 2.3 the set C0+ ⊆ ρ(A)
and, for every x ∈ X and n ∈ N, we have

R(λ,A)nx =
1

(n− 1)!

∫ ∞
0

tn−1e−λtT (t)x dt, λ > 0. (2.13)

Fix p ∈ ΓX , ε > 0 and B ∈ B(X). It follows from τb-limt→∞
T (t)
t = 0 that there

exists t1 > 0 such that

sup
x∈B

p(T (t)x) < ελt, t > t1. (2.14)

The local equicontinuity of (T (t))t>0 ensures that {T (t) : t ∈ [0, t1]} ⊆ L(X) is
equicontinuous and so there exist Mp > 0 and q ∈ ΓX with

p(T (t)x) 6Mpq(x), x ∈ X, t ∈ [0, t1]. (2.15)

It follows from (2.13), (2.14) and (2.15) and [6, Proposition 11(vii)] that, for every
x ∈ B and n ∈ N, we have

p

(
(λR(λ,A))nx

n

)
6
Mpq(x)

n

λn

(n− 1)!

∫ t1

0

e−λttn−1 dt+ ε
λn+1

n!

∫ ∞
t1

e−λttn dt.
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Since µk+1

k!

∫∞
0
e−µttk dt = 1 for every k ∈ N0 and real µ > 0, it follows that

p

(
(λR(λ,A))nx

n

)
6
Mpq(x)

n
+ ε, x ∈ B, n ∈ N.

Hence, with K := supx∈B q(x), we can conclude that

sup
x∈B

p

(
(λR(λ,A))nx

n

)
6
MpK

n
+ ε, n ∈ N,

from which it follows that

lim sup
n→∞

sup
x∈B

p

(
(λR(λ,A))nx

n

)
6 ε.

Letting ε→ 0+, the proof is complete. �

Lemma 2.7. Let X be a sequentially complete lcHs and (T (t))t>0 ⊆ L(X) be
a locally equicontinuous C0-semigroup with infinitesimal generator (A,D(A)) such
that ρ(A) 6= ∅. Then

Fix(T (·)) = Ker(I − λR(λ,A)), λ ∈ ρ(A), (2.16)

where Fix(T (·)) := {x ∈ X : T (t)x = x ∀t > 0}. In particular, x ∈ Fix(T (·))
precisely when x = λR(λ,A)x for some (all) λ ∈ ρ(A).

Proof. Fix any λ ∈ ρ(A). Let x ∈ Ker(I − λR(λ,A)). Then x = λR(λ,A)x ∈
D(A) and so the identity (2.5) holds for this particular x. On the other hand,
x ∈ D(A) also implies that R(λ,A)(λI − A)x = x = λR(λ,A)x and so, by the
injectivity of R(λ,A), we obtain (λI −A)x = λx, i.e., Ax = 0. Then (2.5) reveals
that T (t)x − x = 0 for all t > 0, i.e., x ∈ Fix(T (·)). So, Ker(I − λR(λ,A)) ⊆
Fix(T (·)).

Conversely, if x ∈ Fix(T (·)), then limt→0+
T (t)x−x

t = 0. Hence, x ∈ D(A) and
Ax = 0. So,

x = R(λ,A)(λI −A)x = R(λ,A)(λx−Ax) = λR(λ,A)x.

Accordingly, x ∈ Ker(I − λR(λ,A)) and so Fix(T (·)) ⊆ Ker(I − λR(λ,A)). This
completes the proof of (2.16). �

Remark 2.8. In the setting of Lemma 2.7 if 0 ∈ ρ(A), then Fix(T (·)) = Ker I =
{0} and so Ker(I − λR(λ,A)) = {0} for every λ ∈ ρ(A).

Lemma 2.9. Let X be a sequentially complete lcHs and (T (t))t>0 ⊆ L(X) be
a locally equicontinuous C0-semigroup with infinitesimal generator (A,D(A)) such
that ρ(A) 6= ∅. Then

ImA = (λR(λ,A)− I)(X), λ ∈ ρ(A).
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Proof. Fix any λ ∈ ρ(A). Then (λI−A)R(λ,A) = I on X and R(λ,A)(λI−A) =
I on D(A). It follows that λR(λ,A) = I +AR(λ,A) on X and so

(λR(λ,A)− I)(X) = A(R(λ,A)(X)) ⊆ ImA.

On the other hand, for every y ∈ ImA there is x ∈ D(A) with Ax = y. Accordingly,
x = R(λ,A)(λI − A)x = λR(λ,A)x−R(λ,A)y, i.e., R(λ,A)y = (λR(λ,A)− I)x.
Consequently, we have

y = (λI −A)R(λ,A)y = (λI −A)(λR(λ,A)− I)x

= (λR(λ,A)− I)(λI −A)x ∈ (λR(λ,A)− I)(X).

The arbitrariness of y in ImA implies the reverse inclusion

ImA ⊆ (λR(λ,A)− I)(X). �

Let (T (t))t>0 be a locally equicontinuous C0-semigroup on a sequentially com-
plete lcHs X. The linear operators

C(0) := I and C(r)x :=
1

r

∫ r

0

T (t)x dt, x ∈ X, r > 0, (2.17)

are called the Cesáro means of (T (t))t>0. The integrals in (2.17) are X-valued Rie-
mann integrals with respect to the locally convex topology of X; see [6], [27], [46],
for example. The Cesáro means {C(r)}r>0 are well defined and belong to L(X),
[6, Section 3]. If (T (t))t>0 is equicontinuous, then {C(r)}r>0 is also equicontinu-
ous, [6, Section 3]. In case X is barrelled the Cesáro means exist in L(X) whenever
the semigroup (T (t))t>0 is strongly continuous (via Remark 2.2(ii)). Since the in-
terval [0,∞) is a directed set relative to the usual order > induced from R, it is
meaningful to speak about convergence of the net {C(r)}r>0 in Ls(X) or Lb(X)
as r →∞.

Lemma 2.10. Let X be a sequentially complete lcHs and (T (t))t>0 ⊆ L(X) be
a locally equicontinuous C0-semigroup with infinitesimal generator (A,D(A)) and
satisfying τb-limt→∞

T (t)
t = 0. If A : D(A)→ X is bijective with A−1 : X → D(A)

continuous, then τb-limr→∞ C(r) = 0.

Proof. Let y ∈ X. As A is surjective there is x ∈ D(A) such that y = Ax, namely
x = A−1y. According to (2.5), for every r > 0, we have that

(T (r)− I)x =

∫ r

0

T (s)Axds =

∫ r

0

T (s)y ds

and so, C(r)y = (T (r)−I)x
r . Now, fix any p ∈ ΓX and B ∈ B(X). Then

sup
y∈B

p(C(r)y) =
1

r
sup

x∈A−1(B)

p((T (r)− I)x)

6 sup
x∈A−1(B)

p

(
T (r)

r
x

)
+

1

r
sup

x∈A−1(B)

p(x), r > 0,
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where the set A−1(B) ∈ B(X) and is contained in D(A) as A−1 : X → D(A) is
continuous. Since T (r)

r → 0 in Lb(X) as r → ∞, the previous inequality implies
that supy∈B p(C(r)y)→ 0 as r →∞. By the arbitrariness of p and B the desired
claim follows. �

Let X be a sequentially complete lcHs and (T (t))t>0 ⊆ L(X) be a locally
equicontinuous C0-semigroup. Then (T (t))t>0 is called mean ergodic if P :=

limr→∞ C(r) exists in Ls(X). By [6, Remarks 4(ii) & 5(iii)] if τs-limt→∞
T (t)
t = 0,

then P is a projection with

ImP = Fix(T (·)) = KerA

and
KerP = span{x− T (t)x : t > 0, , x ∈ X} = ImA,

where (A,D(A)) is the infinitesimal generator of (T (t))t>0. In particular,

X = KerA⊕ ImA. (2.18)

If limr→∞ C(r) exists in Lb(X), then (T (t))t>0 is called uniformly mean ergodic.
An alternate notion is that (T (t))t>0 is called Abel mean ergodic (resp. uniformly
Abel mean ergodic) if the interval (0,∞) ⊆ ρ(A) and, for some λ0 > 0, the net
{λR(λ,A)}0<λ6λ0

is convergent in Ls(X) (resp. in Lb(X)) for λ→ 0+, where the
interval (0, λ0] is a directed set for the usual order6 induced from R. Without men-
tioning λ0 explicitly we also write (for the sake of simplicity) τs-limλ→0+ λR(λ,A)
(resp. τb-limλ→0+ λR(λ,A)) for the respective limits in Ls(X) and in Lb(X).

Remark 2.11.

(i) Let X be a barrelled, sequentially complete lcHs and (T (t))t>0 ⊆ L(X) be
a locally equicontinuous C0-semigroup with infinitesimal generator
(A,D(A)) such that τs-limt→∞

T (t)
t = 0 and (T (t))t>0 is Abel mean er-

godic. Then {λR(λ,A)}0<λ6λ0
is necessarily equicontinuous for some λ0 >

0. Indeed, choose any λ0 > 0 such that the net {λR(λ,A)}0<λ6λ0 con-
verges in Ls(X) for λ→ 0+, say to P ∈ L(X). By the barrelledness of X it
suffices to show that {λR(λ,A)x}0<λ6λ0

∈ B(X) for every x ∈ X. So, fix
x ∈ X and p ∈ ΓX . Then there exists λ′ ∈ (0, λ0] such that p(λR(λ,A)x−
Px) 6 1 for all λ ∈ (0, λ′) and hence, sup0<λ<λ′ p(λR(λ,A)x) <∞. Since
[λ′, λ0] is compact and λ 7→ λR(λ,A)x is continuous from [λ′, λ0] into X
(cf. Corollary 2.5), it follows that supλ′6λ6λ0

p(λR(λ,A)x) < ∞. Conse-
quently, {λR(λ,A)x}0<λ6λ0

∈ B(X).
If X is a Banach space, then the Abel mean ergodicity of (T (t))t>0 by
itself suffices to ensure that sup0<λ6λ0

‖λR(λ,A)‖ <∞, i.e., the condition
τs-limt→∞

T (t)
t = 0 can be omitted. To see this fix µ ∈ (0, λ0]. Since

µ ∈ ρ(A), with ρ(A) open in C, and the function z 7→ R(z,A) (hence,
also z 7→ zR(z,A)) is holomorphic, for the operator norm in L(X), in
a neighbourhood of µ (in C), [23, Ch. IV, Proposition 1.3], it follows that
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limλ→µ, λ∈R λR(λ,A) exists relative to ‖ · ‖ and equals µR(µ,A). Hence,
λ 7→ λR(λ,A) is operator norm continuous in any interval [a, λ0] with
0 < a < λ0. The argument of the previous paragraph then applies to show
that {λR(λ,A)}0<λ6λ0 is bounded in Ls(X) and hence, by the Principle
of Uniform Boundedness, that sup0<λ6λ0

‖λR(λ,A)‖ <∞.
(ii) Let X be a lcHs and (T (t))t>0 be a semigroup as in part (i). Then the

equicontinuity of {λR(λ,A)}0<λ6λ0
(by part (i)) and [7, Lemma 3.8(ii)]

imply that
ImA = {x ∈ X : lim

λ→0+
λR(λ,A)x = 0}. (2.19)

Moreover, since R(λ,A)(X) ⊆ D(A) for each λ ∈ ρ(A), it follows from
[7, Lemma 3.6] that

KerA = {x ∈ D(A) : λR(λ,A)x = x} = {x ∈ X : λR(λ,A)x = x},
(2.20)

for each λ ∈ ρ(A) \ {0}. In particular, via (2.19) and (2.20) we have

ImA ∩KerA = {0}.

Proposition 2.12. Let X be a barrelled, sequentially complete lcHs and
(T (t))t>0 ⊆ L(X) be a locally equicontinuous C0-semigroup with infinitesimal gen-
erator (A,D(A)) such that τs-limt→∞

T (t)
t = 0 and (T (t))t>0 is Abel mean ergodic.

Then P := τs-limλ→0+ λR(λ,A) is a projection with ImP = KerA = Fix(T (·)) and
KerP = ImA, i.e., P is a projection of X onto KerA along ImA.

Proof. Let λ0 > 0 be as in Remark 2.11. Let x ∈ X. Then we have Px =
limµ→0+ µR(µ,A)x. Fix any λ ∈ (0, λ0]. For each 0 < µ < λ the resolvent
equation yields

λµR(λ,A)R(µ,A)x =
λµ

µ− λ
R(λ,A)x+

λ

λ− µ
(µR(µ,A)x).

Let µ → 0+ to deduce that λR(λ,A)Px = 0 + Px = Px. It follows from (2.20)
that Px ∈ KerA, i.e., ImP ⊆ KerA. In the proof of Lemma 2.9 it was noted that

R(λ,A)Ax = λR(λ,A)x− x, x ∈ D(A), λ ∈ ρ(A) \ {0}. (2.21)

Since ImP ⊆ KerA ⊆ D(A), we conclude that

0 = R(λ,A)AP = λR(λ,A)P − P,

i.e., λR(λ,A)P = P for all λ > 0. Let λ → 0+ yields P 2 = P and so P is
a projection. Moreover, (2.21) implies if x ∈ KerA, then λR(λ,A)x = x for all
λ ∈ ρ(A) \ {0} and so, for λ → 0+, we can conclude that Px = x, i.e., x ∈ ImP .
This establishes that ImP = KerA.

The definition of P and (2.19) imply that KerP = ImA.
Finally, that KerA = Fix(T (·)) is known, [6, Remark 5(iii)]. �
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We point out that the formulation of condition (iv) in Theorem 1.1 (as given
in [33, Theorem]) is not optimal. One merely needs to assume that the limit P :=
limλ→0+ λRλ = limλ→0+ λR(λ,A) exists in the operator norm topology. The limit
P is then automatically a projection onto ImP = Fix(T (·)); see Proposition 2.12.

Lemma 2.13. Let X be a sequentially complete lcHs and (T (t))t>0 ⊆ L(X)
be a locally equicontinuous C0-semigroup with infinitesimal generator (A,D(A))

satisfying τs-limt→∞
T (t)
t = 0. Set Y := ImA and define A1x := Ax for each

x ∈ D(A1) := D(A) ∩ Y . If (T (t))t>0 is mean ergodic, then Y = ImA1.

Proof. Let y ∈ ImA. Then there is x ∈ D(A) with y = Ax. Via (2.18) x = x1+x2

with x1 ∈ KerA and x2 ∈ Y (hence, x2 = x − x1 ∈ D(A) and so x2 ∈ D(A1)).
So, y = Ax = A(x1 + x2) = Ax2 = A1x2 ∈ ImA1. Thus, ImA ⊆ ImA1 which
implies that Y = ImA ⊆ ImA1 ⊆ Y . On the other hand if y ∈ ImA1, then there
is x ∈ D(A1) with y = A1x = Ax ∈ ImA ⊆ Y . So, ImA1 ⊆ Y . Therefore,
ImA1 = Y . �

Remark 2.14. The space Y defined in Lemma 2.13 is T (·)-invariant. Indeed, if
x ∈ D(A), then for each t > 0 we have AT (t)x = T (t)Ax from which T (t)(Y ) ⊆ Y
follows. Consequently, the restriction maps S(t) := T (t)|Y , for t > 0, define
a C0-semigroup on Y . Since {p|Y : p ∈ ΓX} is a system of continuous semi-
norms determining the topology of Y , it follows that (S(t))t>0 ⊆ L(Y ) is locally
equicontinuous. Moreover, it is routine to check that (A1, D(A1)) is the infinites-
imal generator of (S(t))t>0 and that R(λ,A1) = R(λ,A) for each λ ∈ ρ(A). In
particular, ρ(A) ⊆ ρ(A1) after noting that Y is R(·, A)-invariant.

Lemma 2.15. Let X be a sequentially complete, barrelled lcHs. Let (T (t))t>0 ⊆
L(X) be a uniformly continuous C0-semigroup with infinitesimal generator
(A,D(A)) satisfying τb-limt→∞

T (t)
t = 0. Then (T (t)′)t>0 is a locally equicontin-

uous, uniformly continuous C0-semigroup on X ′β satisfying τb-limt→∞
T (t)′

t = 0.
Moreover, if (A′, D(A′)) is the infinitesimal generator of (T (t)′)t>0, then λ ∈ ρ(A′)
and R(λ,A′) = R(λ,A)′ for every λ ∈ C0+ .

Proof. As already noted, (T (t)′)t>0 ⊆ L(X ′β). Moreover, it is routine to check
that (T (t)′)t>0 is a semigroup. Since (T (t))t>0 is necessarily locally equicontinuous
(cf. Remark 2.2(ii)) and X is barrelled, (T (t)′)t>0 is also locally equicontinuous,
[30, §39.3 Theorem (6)]. On the other hand, as (T (t))t>0 is a uniformly con-
tinuous C0-semigroup and τb-limt→∞

T (t)
t = 0, we can apply [3, Lemma 2.1] to

conclude that (T (t)′)t>0 is a uniformly continuous C0-semigroup on X ′β satisfying

τb-limt→∞
T (t)′

t = 0.
Let (A′, D(A′)) be the infinitesimal generator of (T (t)′)t>0. Since X is bar-

relled, X ′β is quasicomplete, [30, §39.6 Theorem (5)]. Moreover, Remark 2.4(i)

implies that
{
T (t)
t : t > t0

}
is equicontinuous, for every t0 > 0, and hence, also{

T (t)′

t : t > t0
}
⊆ L(X ′β) is equicontinuous (as X is barrelled), [30, §39.3 Theo-

rem (6)]. Then, by Proposition 2.3 applied to both (T (t))t>0 and (T (t)′)t>0, we
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can conclude that C0+ ⊆ ρ(A) ∩ ρ(A′) and, for each λ ∈ C0+ , that

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt, x ∈ X,

R(λ,A′)x =

∫ ∞
0

e−λtT (t)′x′ dt, x′ ∈ X ′,

So, for every x ∈ X, x′ ∈ X ′ and λ ∈ C0+ , we have

〈x,R(λ,A′)x′〉 =

〈
x,

∫ ∞
0

e−λtT (t)′x′ dt

〉
=

∫ ∞
0

e−λt〈x, T (t)′x′〉 dt

=

∫ ∞
0

e−λt〈T (t)x, x′〉 dt =

〈∫ ∞
0

e−λtT (t)x dt, x′
〉

= 〈R(λ,A)x, x′〉 = 〈x,R(λ,A)′x′〉.

This implies that R(λ,A′)x′ = R(λ,A)′x′ for every x′ ∈ X ′ and λ ∈ C0+ , i.e.,
R(λ,A′) = R(λ,A)′ for every λ ∈ C0+ . �

In Lemma 2.15, the necessity of the requirement that the C0-semigroup
(T (t))t>0 is uniformly continuous, rather than merely strongly continuous, is due
to the fact that the dual semigroup (T (t)′)t>0 may fail to be strongly continuous
in X ′β , even for X a Banach space, [23, p.43].

3. Uniform mean ergodicity of C0-semigroups of operators

The purpose of this section is to extend Theorem 1.1 from Banach spaces to
the class of prequojection Fréchet spaces; see Theorem 3.2 and Proposition 3.4.
Moreover, in Example 3.7 it is shown that this extension really is confined to this
class of Fréchet spaces. First some preliminaries are required.

A Fréchet space X is always a projective limit of continuous linear operators
Sk : Xk+1 → Xk, for k ∈ N, with each Xk a Banach space. If it is possible
to choose Xk and Sk such that each Sk is surjective and X is isomorphic to the
projective limit projj(Xj , Sj), then X is called a quojection, [12, Section 5]. Ba-
nach spaces and countable products of Banach spaces are quojections. Actually,
every quojection is the quotient of a countable product of Banach spaces, [14]. In
[38] Moscatelli gave the first examples of quojections which are not isomorphic to
countable products of Banach spaces. As already mentioned in Section 1, concrete
examples of quojections are ω = CN, the spaces Lploc(Ω), with 1 6 p 6 ∞, and
C(m)(Ω), for all m ∈ N0. Indeed, the above function spaces are isomorphic to
countable products of Banach spaces. Moreover, the spaces of continuous func-
tions C(Λ), with Λ a σ-compact completely regular topological space, endowed
with the compact open topology are also examples of quojections. Domański con-
structed a completely regular topological space Λ such that the Fréchet space
C(Λ) is a quojection which is not isomorphic to a complemented subspace of
a product of Banach spaces, [19, Theorem]. It is known that a Fréchet space
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X admits a continuous norm if and only if X contains no isomorphic copy of ω,
[26, Theorem 7.2.7]. On the other hand, a quojection X admits a continuous norm
if and only if it is a Banach space, [12, Proposition 3]. Hence, a quojection is either
a Banach space or contains an isomorphic copy of ω, necessarily complemented,
[26, Theorem 7.2.7]. For further information on quojections we refer to the survey
paper [36] and the references therein; see also [12], [18].

Let X be a quojection Fréchet space and {qj}∞j=1 be any fundamental, in-
creasing sequence of seminorms generating the lc-topology of X. For each j ∈ N,
set Xj := X/q−1

j ({0}) and endow Xj with the quotient lc-topology. Denote by
Qj : X → Xj the corresponding canonical (surjective) quotient map and define
the increasing sequence of seminorms {(q̂j)k}∞k=1 on Xj by

(q̂j)k(Qjx) := inf{qk(y) : y ∈ X and Qjy = Qjx}, x ∈ X, (3.1)

for each k ∈ N. Then

(q̂j)k(Qjx) 6 qk(x), x ∈ X, k, j ∈ N; (3.2)

see (2.4) in [5]. Moreover,

(q̂j)j(Qjx) = qj(x), x ∈ X, j ∈ N, (3.3)

which implies that (q̂j)j is a norm on Xj . Since X is a quojection Fréchet space
and since every quotient space (of such a Fréchet space) with a continuous norm is
necessarily Banach, [12, Proposition 3], it follows that for each j ∈ N there exists
k(j) > j such that the norm (q̂j)k(j) generates the lc-topology of Xj . Thus, X
is isomorphic to the projective limit of the sequence {(Xj , (q̂j)k(j))}∞j=1 of Banach
spaces with respect to the continuous, surjective linking maps Qj,j+1 : Xj+1 → Xj

defined by
Qj,j+1 ◦Qj+1 = Qj , j ∈ N. (3.4)

This particular construction will be used on various occasions in the sequel.
For any sequence {xn}∞n=1 in a lcHs X, its sequence of arithmetic means is

given by n−1
∑n
m=1 xm, for n ∈ N. Given S ∈ L(X) we can form its sequence of

iterates Sm := S ◦ . . . ◦ S, for m ∈ N. Then the arithmetic means

S[n] :=
1

n

n∑
m=1

Sm, n ∈ N,

of {Sm}∞m=1 are called the Cesàro means of S. If τs-limn→∞ S[n] (resp.
τb-limn→∞ S[n]) exists, then S is called mean ergodic (resp. uniformly mean er-
godic).

Various aspects concerning the mean ergodicity of individual operators in non-
normable lcHs can be found in [2], [4], [15], [42], [43] and the references therein.

Remark 3.1. If {xn}∞n=1 is any sequence in a lcHs X for which x = limn→∞ xn
exists, then also its sequence of arithmetic means {n−1

∑n
m=1 xm}∞n=1 converges
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to the same limit x. Indeed, by considering each p ∈ ΓX , this can be verified
by adapting the standard argument used for scalar sequences; see the proof of
Theorem 6b in [25, Ch.5, §6], for example. In particular, if S ∈ L(X) and P :=
limm→∞ Sm exists in Ls(X) (resp. Lb(X)), then also limn→∞ S[n] = P in Ls(X)
(resp. Lb(X)).

We are now able to formulate the main result of the paper. It should be
compared with Theorem 1.1.

Theorem 3.2. Let X be a quojection Fréchet space and (T (t))t>0 be a locally
equicontinuous, C0-semigroup on X satisfying τb-limt→∞

T (t)
t = 0. Then the fol-

lowing assertions are equivalent.

(1) The semigroup (T (t))t>0 is uniformly mean ergodic.
(2) The infinitesimal generator (A,D(A)) of (T (t))t>0 has closed range.
(3) The operator λR(λ,A) is uniformly mean ergodic for every λ > 0.
(4) The operator λR(λ,A) is uniformly mean ergodic for some λ > 0.
(5) The semigroup (T (t))t>0 is uniformly Abel mean ergodic.
(6) The sequence of iterates {(λR(λ,A))n}∞n=1 converges in Lb(X) for every

(some) λ > 0.
(7) ImA is a quojection and there exists λ0 > 0 such that

{R(λ,A)y : y ∈ (0, λ0]} ∈ B(X), y ∈ ImA.

Proof. Since τb-limt→∞
T (t)
t = 0, the set

{
T (t)
t : t > t0

}
is equicontinuous for

some t0 > 0; see Remark 2.4(i). Then Proposition 2.3 implies that C0+ ⊆ ρ(A)
and, via Proposition 2.6, we can conclude that

τb − lim
n→∞

[λR(λ,A)]n

n
= 0, λ > 0. (3.5)

(2)⇒(3). Let λ > 0 be arbitrary. By Lemma 2.9 (λR(λ,A) − I)(X) is closed
in X. As X is a quojection Fréchet space, Theorem 3.4 in [8] applied to λR(λ,A)
yields that {(λR(λ,A))[n]}∞n=1 converges in Lb(X). Thus, (3) holds.

(3)⇒(4). This is obvious.
(4)⇒(2). Suppose that (4) holds for some λ > 0. For this λ, since (3.5) holds

and X is a quojection Fréchet space, we can apply Theorem 3.4 of [8] to the
operator λR(λ,A) to conclude that (I − λR(λ,A))(X) is closed. On the other
hand, Lemma 2.9 yields that (I − λR(λ,A))(X) = ImA. Hence, ImA is closed in
X which is precisely (2).

(1)⇒(5). This follows from [7, Theorem 5.5(i) and Remark 5.6(i)].
(2)⇒(1). Consider the closed subspace Y := ImA of X. Remark 2.14 ensures

that Y is T (·)-invariant and the restrictions (T (t)|Y )t>0 form a locally equicontin-
uous C0-semigroup on Y with infinitesimal generator (A1, D(A1)) given by

D(A1) := Y ∩D(A) and A1x := Ax, x ∈ D(A1).
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It is routine to check that τb-limt→∞
T (t)|Y
t = 0. By Lemma 2.9, for any fixed

λ > 0, we have that Y = (λR(λ,A) − I)(X). So, (λR(λ,A) − I)(X) is closed
in X. According to (3.5) and the fact that X is a quojection, Theorem 3.4 and
Remark 3.6(1) of [8] can be applied to the operator λR(λ,A) to conclude that it is
uniformly mean ergodic and that the continuous linear operator I−λR(λ,A) : Y →
Y is bijective (hence, invertible with a continuous inverse).

If A1y = 0 for some y ∈ D(A1), then y = R(λ,A)(λI − A)y = λR(λ,A)y −
R(λ,A)A1y = λR(λ,A)y and so (I − λR(λ,A))y = 0, which implies that y = 0.
Thus, A1 is one-to-one. On the other hand, if we apply Lemma 2.9 to (T (t)|Y )t>0,
then we deduce that ImA1 = (I − λR(λ,A1))(Y ) = (I − λR(λ,A))(Y ) = Y .
Therefore, A1 : D(A1) → Y is bijective and so the inverse operator (A1)−1 : Y →
D(A1) exists. Since A1 is closed, also (A1)−1 is closed. By the Closed Graph
Theorem it follows that (A1)−1 is continuous. According to Lemma 2.10 we have
that τb-limr→∞ C(r) = 0.

Via (3.5) and the fact that (λR(λ,A) − I)(X) = Y is closed in X (with X
a quojection Fréchet space), we can apply [8, Theorem 3.4] to conclude that X =
Y ⊕ Ker(I − λR(λ,A)). Then Lemma 2.7 yields that X = Y ⊕ Fix(T (·)). Since
C(r) → 0 in Lb(Y ) as r → ∞ and C(r) = I on Fix(T (·)) for all r > 0, it follows
from the previous identity that τb-limr→∞ C(r) exists, i.e., part (1) holds.

(5)⇒(2). Let P := τb-limλ→0+ λR(λ,A). It follows from (2.19), (2.20) and
Proposition 2.12 that P is a projection (hence, X = ImP ⊕KerP ) with

ImP = Fix(T (·)) = KerA = {x ∈ D(A) : λR(λ,A)x = x}, ∀λ ∈ ρ(A),

KerP = ImA = {x ∈ X : lim
λ→0+

λR(λ,A)x = 0}.

Moreover, Y := ImA is invariant for each operator in {λR(λ,A) : λ ∈ ρ(A)}, [7,
Lemma 3.6], and each operator in {T (t) : t > 0}; see Remark 2.14. So, if we
define

D(A1) := Y ∩D(A) and A1x := Ax, x ∈ D(A1),

then (A1, D(A1)) is the infinitesimal generator of {T (t)|Y }t>0 with R(λ,A1) =
R(λ,A)|Y for λ ∈ ρ(A); see Remark 2.14. In particular, as X = KerA⊕ ImA we
can proceed as in the proof of Lemma 2.13 to deduce that Y = ImA1. Accord-
ingly, Y is a complemented subspace of the quojection Fréchet space X and so is
itself a quojection Fréchet space. Hence, we may assume that Y = X and that
λR(λ,A)→ 0 in Lb(X) as λ→ 0+.

Fix a fundamental, increasing sequence {rj}∞j=1 of seminorms generating the
lc-topology of X. Since τb-limt→∞

T (t)
t = 0 and X is barrelled, {T (t)/t : t > 1}

is equicontinuous. Moreover, the local equicontinuity of {T (t)}t>0 ensures that
{T (t) : t ∈ [0, 1]} is equicontinuous. So, for each j ∈ N, there is Mj > 0 such that

rj(T (t)x) 6Mjtrj+1(x), t > 1, x ∈ X, (3.6)
rj(T (t)x) 6Mjrj+1(x), t ∈ [0, 1], x ∈ X, (3.7)

where there is no loss of generality in assuming that (3.6) and (3.7) hold for rj+1

as we can pass to a subsequence of {rj}∞j=1 if necessary.
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Fix j ∈ N and define qj on X by setting

qj(x) := max

{
sup
t∈[0,1]

rj(T (t)x), sup
t>1

rj(t
−1T (t)x)

}
, x ∈ X.

Then qj is a seminorm on X and, via (3.6) and (3.7), we have

rj(x) 6 qj(x) 6Mjrj+1(x), x ∈ X.

Thus, {qj}∞j=1 is also a fundamental increasing sequence of seminorms generating
the lc-topology of X and satisfies

qj(T (t)x) 6 2qj(x), t ∈ [0, 1], x ∈ X, (3.8)
qj(T (t)x) 6 (1 + t)qj(x), t > 1, x ∈ X. (3.9)

Indeed, if t ∈ [0, 1] (hence, also 1− t ∈ [0, 1]), then (3.8) follows from

qj(T (t)x) = max

{
sup
s∈[0,1]

rj(T (s+ t)x), sup
s>1

rj

((
1 +

t

s

)
T (s+ t)x

s+ t

)}

= max

{
sup

s∈[0,1−t]
rj(T (s+ t)x), sup

s∈[1−t,1]

rj((s+ t)(s+ t)−1T (s+ t)x),

sup
s>1

rj

((
1 +

t

s

)
T (s+ t)x

s+ t

)}
6 2 max

{
sup
u∈[0,1]

rj(T (u)x), sup
u>1

rj(u
−1T (u)x)

}
= 2qj(x), x ∈ X.

On the other hand, if t > 1, then (3.9) follows from

qj(T (t)x) = max

{
sup
s∈[0,1]

rj((s+ t)(s+ t)−1T (s+ t)x),

sup
s>1

rj

((
1 +

t

s

)
T (s+ t)x

s+ t

)}
6 (1 + t) sup

u>1
rj(u

−1T (u)x) 6 (1 + t)qj(x), x ∈ X.

Moreover, Remark 2.4(i) and Proposition 2.3 imply that C0+ ⊆ ρ(A) and

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt, x ∈ X, λ ∈ C0+ .
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So, via (3.8) and (3.9) we conclude, for each j ∈ N, λ > 0 and x ∈ X, that

qj(R(λ,A)x) 6 qj

(∫ 1

0

e−λtT (t)x dt

)
+ qj

(∫ ∞
1

e−λtT (t)x dt

)
6 2qj(x)

∫ 1

0

e−λt dt+ qj(x)

∫ ∞
1

e−λt(1 + t) dt

=
2(1− e−λ)

λ
qj(x) +

(
2e−λ

λ
+
e−λ

λ2

)
qj(x)

=

(
2

λ
+
e−λ

λ2

)
qj(x) =: dλqj(x). (3.10)

We now apply the construction (3.1)-(3.4) to the sequence of seminorms {qj}∞j=1

to yield the corresponding sequence {(Xj , (q̂j)k(j))}∞j=1 of Banach spaces and the
quotient maps Qj ∈ L(X,Xj), for j ∈ N.

Fix j ∈ N. Define a family of operators {Rj(λ)}λ>0 on Xj by setting

Rj(λ)Qjx := QjR(λ,A)x, x ∈ X, λ > 0. (3.11)

Proceeding as in the proof of Theorems 3.3 and 3.5 in [5] (for the operators Tj(t),
t > 0, there) one shows via (3.11) that each Rj(λ) is a well defined linear operator
on Xj . Moreover, by (3.2), (3.10) and (3.11) we obtain, for each λ > 0, that

(q̂j)k(j)(Rj(λ)x̂) = (q̂j)k(j)(Rj(λ)Qjx) = (q̂j)k(j)(QjR(λ,A)x)

6 qk(j)(R(λ,A)x) 6 dλqk(j)(x)

for all x̂ ∈ Xj and x ∈ X with Qjx = x̂. Taking the infimum with respect to
x ∈ Q−1

j ({x̂}) it follows that

(q̂j)k(j)(Rj(λ)x̂) 6 dλ(q̂j)k(j)(x̂), x̂ ∈ Xj , λ > 0,

and hence, Rj(λ) ∈ L(Xj) for every λ > 0. Moreover, relative to the directed
set (0, λ0) for some λ0 > 0, we have τb-limλ↓0+ λR(λ,A) = 0 which implies that
λRj(λ) → 0 in Lb(Xj) as λ ↓ 0+. Indeed, since X is a quojection, if B̂j denotes
the closed unit ball of the Banach space Xj , then by [18, Proposition 1] there is
Bj ∈ B(X) such that B̂j ⊆ Qj(Bj). It follows from (3.11), for the operator norm
in L(Xj), that

||λRj(λ)|| := sup
x̂∈B̂j

(q̂j)k(j)(λRj(λ)x̂) 6 sup
x̂∈Qj(Bj)

(q̂j)k(j)(λRj(λ)x̂)

= sup
x∈Bj

(q̂j)k(j)(λRj(λ)Qjx) = sup
x∈Bj

(q̂j)k(j)(QjλR(λ,A)x)

6 sup
x∈Bj

qk(j)(λR(λ,A)x),

where supx∈Bj qk(j)(λR(λ,A)x) → 0 for λ ↓ 0+ as (T (t))t>0 is uniformly Abel
mean ergodic. So, limλ↓0+ ‖λRj(λ)‖ = 0 for each j ∈ N. Thus, for each j ∈ N,
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there is λj ∈ (0, λ0] which can be chosen with λj < λj−1 such that ‖λjRj(λj)‖ 6 1
2 .

This ensures that each operator I−λjRj(λj) ∈ L(Xj), for j ∈ N, is bijective, hence
invertible, [20, Ch. VII, Corollary 6.2], with

1

2
(q̂j)k(j)(x̂) 6 (q̂j)k(j)[(I − λjRj(λj))x̂] 6

3

2
(q̂j)k(j)(x̂), x̂ ∈ Xj . (3.12)

We can now show that ImA is closed in X. By (3.2), (3.11) and (3.12) and the
fact that j 6 k(j) we have, for each j ∈ N, that

1

2
(q̂j)j(x̂) 6

1

2
(q̂j)k(j)(x̂) 6 (q̂j)k(j)[(I − λjRj(λj))x̂]

= (q̂j)k(j)[Qj(I − λjR(λj , A))x] 6 qk(j)[(I − λjR(λj , A))x]

= qk(j)(AR(λj , A)x)

for all x̂ ∈ Xj and x ∈ X with Qjx = x̂. Since (q̂j)j(x̂) = qj(x) for all x ∈ X with
Qjx = x̂ (cf. (3.3)), the above inequality yields

1

2
qj(x) 6 qk(j)(AR(λj , A)x), x ∈ X, j ∈ N. (3.13)

Fix j ∈ N. Let y ∈ D(A). Since R(λj , A)(X) = D(A), there is a unique x ∈ X
with y = R(λj , A)x and so (λjI−A)y = (λjI−A)R(λj , A)x = x. Thus, by (3.13)
we obtain that 1

2qj((λjI −A)y) 6 qk(j)(Ay) and, since j 6 k(j), that

qj(y) 6 λ−1
j [qj((λjI −A)y) + qj(Ay)] 6 λ−1

j [2qk(j)(Ay) + qj(Ay)]

6 3λ−1
j qk(j)(Ay), y ∈ D(A). (3.14)

Recall we are supposing that X = Y = ImA. As X = KerA ⊕ ImA, we have
KerA = {0} and so A is injective. Thus, from (3.14) it follows that

qj(A
−1z) 6 3λ−1

j qk(j)(z), z ∈ ImA, j ∈ N. (3.15)

The inequalities (3.15) ensure that A−1 : ImA → D(A) is a continuous linear
operator. We claim that the closedness of ImA follows. Indeed, let y ∈ X = ImA.
Then there is a sequence {yk}∞k=1 ⊆ ImA such that yk → y in X as k →∞. It then
follows from (3.15) that the sequence xk := A−1yk, for k ∈ N, is Cauchy and so
converges to some z ∈ X. On the other hand, each xk ∈ D(A) and Axk = yk → y
in X as k → ∞ by assumption. Since A is a closed operator, it follows that
z ∈ D(A) and A(z) = y, i.e., y ∈ ImA. This implies that X = ImA and so ImA is
closed.

(1)⇒(6). Let P := τb-limr→∞ C(r). According to (2.18) we have X = KerA⊕
ImA with

ImP = Fix(T (·)) = KerA,

KerP = span{x− T (t)x : t > 0, x ∈ X} = ImA.

Moreover, since (1)⇒(5)⇒(2), ImA is closed and so ImA = ImA.
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Note that Y := ImA is a quojection Fréchet space as it is a complemented
subspace of X. By (2.16) we have (λR(λ,A))|Fix(T (·)) = IFix(T (·)) = P |Fix(T (·))
and Lemma 3.6 of [7] implies that ImA is R(λ,A)-invariant for any λ > 0. So, we
may assume that Y = X and, correspondingly, that C(r)→ 0 in Lb(X) as r →∞.
Therefore, we need to prove that (λR(λ,A))n → 0 in Lb(X) as n→∞ for (some)
every λ > 0.

Let {rj}∞j=1 be any fundamental, increasing sequence of seminorms generating
the lc-topology of X. Fix a > 0. Then Remark 2.4(i) and Proposition 2.3 ensure
that (T (t))t>0 is a-exponentially equicontinuous. So, for each j ∈ N, there is
cj > 0 such that

rj(T (t)x) 6 cje
atrj+1(x), t > 0, x ∈ X, (3.16)

where there is no loss of generality in taking rj+1 as we can pass to a subsequence
of {rj}∞j=1 if necessary.

Fix j ∈ N and define a seminorm qj on X by setting

qj(x) := sup
t>0

rj(e
−atT (t)x), x ∈ X. (3.17)

Then (3.16) implies that qj satisfies

rj(x) 6 qj(x) 6 cjrj+1(x), x ∈ X.

Therefore, {qj}∞j=1 is also a fundamental, increasing sequence of seminorms gen-
erating the lc-topology of X and (via (3.17)) satisfies, for each j ∈ N,

qj(e
−atT (t)x) = sup

s>0
rj(e

−asT (s)(e−atT (t)x))

= sup
s>0

rj(e
−a(s+t)T (s+ t)x) 6 qj(x),

for x ∈ X, t > 0. Accordingly, for each j ∈ N, we have

qj(T (t)x) 6 eatqj(x), x ∈ X, t > 0. (3.18)

We again apply the construction (3.1)–(3.4), now to the seminorms {qj}∞j=1 given
by (3.17), to yield the corresponding sequence of Banach spaces {(Xj , (q̂j)k(j))}∞j=1

and the quotient maps Qj ∈ L(X,Xj), for j ∈ N.
Fix j ∈ N. Define a family of operators (Tj(t))t>0 on Xj via

Tj(t)Qjx := QjT (t)x, x ∈ X, t > 0. (3.19)

By (3.18) and (3.19) we can proceed as in the proof of [5, Theorem 3.3] to show
that each Tj(t) is a well defined linear operator on Xj with Tj(0) = I. Moreover,
by (3.2) and (3.18) we also obtain, for each t > 0, that

(q̂j)k(j)(Tj(t)x̂) = (q̂j)k(j)(Tj(t)Qjx) = (q̂j)k(j)(QjT (t)x)

6 qk(j)(T (t)x) 6 eatqk(j)(x),
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for all x̂ ∈ Xj and x ∈ X with Qjx = x̂. Taking the infimum with respect to
x ∈ Q−1

j (x̂) it follows that

(q̂j)k(j)(Tj(t)x̂) 6 eat(q̂j)k(j)(x̂), x̂ ∈ Xj , (3.20)

and hence, since (q̂j)k(j) is the norm of Xj , that Tj(t) ∈ L(Xj). In particular,
(Tj(t))t>0 ⊆ L(Xj) is a-exponentially equicontinuous. Moreover, for each t > 0
and x̂ ∈ Xj with x̂ = Qjx, we have via (3.2) and (3.19) that

(q̂j)k(j)(Tj(t)x̂− x̂) = (q̂j)k(j)(Tj(t)Qjx−Qjx)

= (q̂j)k(j)(Qj(T (t)x− x)) 6 qk(j)(T (t)x− x),

and so, (q̂j)k(j)(Tj(t)x̂− x̂)→ 0 as t→ 0+ as (T (t))t>0 is a C0-semigroup. Since x̂
is arbitrary, (Tj(t))t>0 is also a C0-semigroup. According to [6, Remark 1(iii)] the
C0-semigroup (Tj(t))t>0 is strongly continuous at every point t > 0. Moreover,
Tj(t)
t → 0 for the operator norm in Lb(Xj) as t → ∞. Indeed, since X is a quo-

jection, if B̂j denotes the closed unit ball of the Banach space Xj , then by [18,
Proposition 1] there is Bj ∈ B(X) so that B̂j ⊆ Qj(Bj). It follows from (3.19),
for the operator norm in Lb(Xj), that for each t > 0 we have∥∥∥∥Tj(t)t

∥∥∥∥ = sup
x̂∈B̂j

1

t
(q̂j)k(j)(Tj(t)x̂)

6 sup
x̂∈Qj(Bj)

1

t
(q̂j)k(j)(Tj(t)x̂) = sup

x∈Bj

1

t
(q̂j)k(j)(Tj(t)Qjx)

= sup
x∈Bj

1

t
(q̂j)k(j)(QjT (t)x) 6 sup

x∈Bj

1

t
qk(j)(T (t)x).

Since supx∈Bj
1
t qk(j)(T (t)x) → 0 as t → ∞, this implies that

∥∥∥Tj(t)t

∥∥∥ → 0 as
t→∞.

Denote by (Aj , D(Aj)) the infinitesimal generator of (Tj(t))t>0. It follows
from (3.19) that the family {R(λ,Aj)}λ∈C,Re(λ)>0 ⊆ L(Xj) of resolvent operators
of (Aj , D(Aj)) exists and satisfies

R(λ,Aj)Qj = QjR(λ,A), λ ∈ C, Re(λ) > 0 (3.21)

in L(X,Xj). Next, for each r > 0, define

Cj(r)x̂ :=
1

r

∫ r

0

Tj(s)x̂ ds, x̂ ∈ Xj ,

and observe that by (3.19), the continuity of Qj : X → Xj and [6, Proposi-
tion 11(vi)], we have

Cj(r)Qjx =
1

r

∫ r

0

Tj(s)Qjx ds =
1

r

∫ r

0

QjT (s)x ds

= Qj

(
1

r

∫ r

0

T (s)x ds

)
= QjC(r)x, x ∈ X. (3.22)
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To see that Cj(r) → 0 in Lb(Xj) as r → ∞, choose Bj ∈ B(X) such that B̂j ⊆
Qj(Bj). For each r > 0, it follows via (3.2) and (3.22) that

sup
x̂∈B̂j

(q̂j)k(j)(Cj(r)x̂) 6 sup
x̂∈Qj(Bj)

(q̂j)k(j)(Cj(r)x̂) = sup
x∈Bj

(q̂j)k(j)(Cj(r)Qjx)

= sup
x∈Bj

(q̂j)k(j)(QjC(r)x) 6 sup
x∈Bj

qk(j)(C(r)x).

But, supx∈Bj qk(j)(C(r)x)→ 0 as r →∞ by assumption. So, it follows that

‖Cj(r)‖ = sup
x̂∈B̂j

(q̂j)k(j)(Cj(r)x̂)→ 0

as r →∞, i.e., Cj(r)→ 0 in Lb(Xj) as r →∞. According to [34, Theorem 12] we
have that ‖(λR(λ,Aj))

n‖ → 0 in Lb(Xj) as n→∞ for (some) every λ > 0. Since
j ∈ N is arbitrary, it follows that (λR(λ,A))n → 0 in Lb(X) as n→∞ for (some)
every λ > 0. Indeed, by (3.21) we have (in L(X,Xj)) that

Qj(λR(λ,A))n = λR(λ,Aj)Qj(λR(λ,A))n−1 = . . . = (λR(λ,Aj))
nQj ,

for j, n ∈ N and (some) all λ > 0. Fix any j ∈ N and B ∈ B(X). The previous
identity and (3.3) yield

sup
x∈B

qj((λR(λ,A))nx) = sup
x∈B

(q̂j)j(Qj(λR(λ,A))nx) = sup
x∈B

(q̂j)j((λR(λ,Aj))
nQjx)

6 sup
x̂∈Qj(B)

(q̂j)k(j)((λR(λ,Aj))
nx̂), n ∈ N,

for (some) all λ > 0, where supx̂∈Qj(B)(q̂j)k(j)((λR(λ,Aj))
nx̂) → 0 as n → ∞

for (some) every λ > 0 as Qj(B) ⊆ djB̂j for some dj > 0 by the continuity of
Qj : X → Xj .

As j ∈ N and B ∈ B(X) are arbitrary, we obtain that (λR(λ,A))n → 0 in
Lb(X) as n→∞ for (some) every λ > 0 .

(6)⇒(3). Let λ > 0 be such that P := τb-limn→∞(λR(λ,A))n exists. By
Remark 3.1 also P = τb-limn→∞(R(λ,A))[n]. This is precisely condition (3).

(1)⇒(7). Because of (1)⇒(2) we have ImA = ImA. Then (2.18) implies that
ImA is a complemented subspace of X and hence, ImA is a quojection Fréchet
space (as X is a quojection Fréchet space).

Fix y ∈ ImA. Then, for each λ > 0, we can write R(λ,A)y = −x+ λR(λ,A)x
for some x ∈ D(A) satisfying Ax = y. Since (1)⇒(5), the limit of the net
{λR(λ,A)}0<λ6λ0 exists in Lb(X) as λ ↓ 0+ (for some λ0 > 0). In partic-
ular, z := limλ→0+ λR(λ,A)x exists in X. So, for a given p ∈ ΓX , there is
λ′ = λ′(x, p) ∈ (0, λ0] such that p(λR(λ,A)x− z) < 1 for all 0 < λ < λ′. It follows
that

p(R(λ,A)y) = p(−x+ λR(λ,A)x) 6 p(x) + p(λR(λ,A)x− z) + p(z)

< p(x) + p(z) + 1, 0 < λ < λ′. (3.23)
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On the other hand, by the equicontinuity of {R(λ,A) : λ > λ′} (cf. Remark 2.4(i)
and Proposition 2.3) there exist Mp > 0 and q ∈ ΓX such that p(R(λ,A)u) 6
Mpq(u), for u ∈ X and λ > λ′. In particular,

p(R(λ,A)y) 6Mpq(y), λ′ 6 λ 6 λ0. (3.24)

By (3.23) and (3.24) we see that supλ∈(0,λ0] p(R(λ,A)y) < ∞. As p is arbitrary,
this implies that {R(λ,A)y : λ ∈ (0, λ0]} ∈ B(X).

(7)⇒(2). By assumption Y := ImA is a quojection Fréchet space and
{R(λ,A)y : λ ∈ (0, λ0]} ∈ B(X) for every y ∈ Y and some fixed λ0 > 0. Then
(T (t)|Y )t>0 is a locally equicontinuous C0-semigroup on Y whose infinitesimal gen-
erator (Ã1, D(Ã1)) is given by Ã1x := Ax for x ∈ D(Ã1) := D(A) ∩ Y and with
the resolvent operator R(λ, Ã1) = R(λ,A)|Y for every λ ∈ ρ(A); see Remark 2.14.
Moreover, τb-limt→∞

T (t)|Y
t = 0.

Since {R(λ, Ã1) : λ > λ0} is equicontinuous (apply Remark 2.4(i) and Proposi-
tion 2.3 to (T (t)|Y )t>0), it follows that {R(λ,A)y : λ > 0} = {R(λ, Ã1)y : λ > 0},
being the union of two bounded sets, belongs to B(Y ) ⊆ B(X) for every y ∈ Y .
This implies that the net {λR(λ, Ã1)}0<λ6λ0

converges to 0 in Lb(Y ) for λ ↓ 0+.
Indeed, fix B ∈ B(Y ) and p ∈ ΓY . Then pB is a continuous seminorm in Lb(Y )
and C := ∪λ>0R(λ, Ã1)(B) is bounded in Y . Set M := supc∈C p(c) < ∞. Given
any ε > 0, select λ′ > 0 such that λ′ < min{λ0, ε/M}. Then, for any λ ∈ (0, λ′) it
follows that

pB(λR(λ, Ã1)) = sup
z∈B

p(λR(λ, Ã1)z) 6 λ sup
c∈C

p(c) 6 λM < ε.

The arbitrariness of B, p and ε implies that τb-limλ↓0+ λR(λ, Ã1) = 0 in Lb(Y ),
i.e., (T (t)|Y )t>0 is uniformly Abel mean ergodic in Y .

Since Y is a quojection Fréchet space, we can apply (5)⇒(2) to (T (t)|Y )t>0 to
conclude that ImÃ1 is closed in Y and so, ImÃ1 = Y . Thus, we have Y = ImÃ1 ⊆
ImA ⊆ Y , i.e., Y = ImA. This means that ImA is closed in X, which is precisely
condition (2). �

Remark 3.3. In the proof of (1)⇒(6) in Theorem 3.2, with P := τb-limr→∞ C(r),
it was shown, for each λ > 0, that (λR(λ,A))n|Fix(T (·)) = P |Fix(T (·)), for all n ∈ N,
and so (λR(λ,A))n → P for n → ∞ (relative to τb) on Fix(T (·)) = ImP . It was
also proved that (λR(λ,A))n → 0 for n → ∞ (relative to τb) on ImA = ImA =
KerP . Hence, for each λ > 0, the limit of {(λR(λ,A))n}∞n=1 in Lb(X) is actually
the projection P ∈ L(X).

A prequojection is a Fréchet space X such that X ′′ is a quojection. Every quo-
jection is a prequojection. A prequojection is called non-trivial if it is not itself
a quojection. It is known that X is a prequojection if and only if X ′β is a strict
(LB)-space. An alternative characterization is that X is a prequojection if and
only if X has no Köthe nuclear quotient which admits a continuous norm; see
[12, 17, 40, 45]. This implies that a quotient of a prequojection is again a prequo-
jection. In particular, every complemented subspace of a prequojection is again
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a prequojection. The problem of the existence of non-trivial prequojections arose
in a natural way in [12]; it has been solved, in the positive sense, in various papers,
[13], [17], [39]. All of these papers employ the same method, which consists in the
construction of the dual of a prequojection, rather than the prequojection itself,
which is often difficult to describe (see the survey paper [36] for further informa-
tion). However, in [37] an alternative method for constructing prequojections is
presented which has the advantage of being direct. For an example of a concrete
space (i.e., a space of continuous functions on a suitable topological space), which
is a non-trivial prequojection, see [1].

The following extension of Theorem 3.2 is relevant for non-trivial prequojection
Fréchet spaces.

Proposition 3.4. Let X be a prequojection Fréchet space and (T (t))t>0 ⊆ L(X)

be a uniformly continuous C0-semigroup satisfying τb-limt→∞
T (t)
t = 0. Then the

infinitesimal generator A of (T (t))t>0 belongs to L(X). Moreover, the following
assertions are equivalent.

(1) The semigroup (T (t))t>0 is uniformly mean ergodic.
(2) ImA is a closed subspace of X.
(3) The operator λR(λ,A) is uniformly mean ergodic for every λ > 0.
(4) The operator λR(λ,A) is uniformly mean ergodic for some λ > 0.
(5) The semigroup (T (t))t>0 is uniformly Abel mean ergodic.
(6) The sequence of iterates {(λR(λ,A))n}∞n=1 converges in Lb(X) for (some)

every λ > 0.
(7) ImA is a prequojection and there exists λ0 > 0 such that

{R(λ,A)y : y ∈ (0, λ0]} ∈ B(X), y ∈ ImA.

Proof. According to Remark 2.2(ii) the semigroup (T (t))t>0 is locally equicontin-
uous. Furthermore, Remark 2.4(ii) implies that (T (t))t>0 is exponentially equicon-
tinuous. Then [5, Proposition 3.4] yields that A ∈ L(X).

The proofs of (2)⇔(3)⇔(4), (1)⇒(5), (2)⇒(1) and (6)⇒(3) are exactly the
same as in Theorem 3.2 after taking into account that Theorem 3.4 of [8] is also
valid in prequojection Fréchet spaces.

In order to establish (5)⇒(2) and (1)⇒(6) we first observe, since X is a prequo-
jection Fréchet space, that X ′β is a barrelled strict (LB)-space (being the strong
dual of a quasinormable Fréchet space) and X ′′ is a quojection Fréchet space.
Moreover, X ′β is complete, [29, §28, 5(1), p.385]. Applying twice Lemma 2.15,
we conclude that (T (t)′′)t>0 ⊆ L(X ′′) is a uniformly continuous C0-semigroup
satisfying τb-limt→∞

T (t)′′

t = 0. It follows from Lemma 2.15 (which ensures that
(T (t)′)t>0 is a locally equicontinuous, uniformly continuous C0-semigroup on X ′β
satisfying τb-limt→∞

T (t)′

t = 0), the formula (2.17) and a standard duality ar-
gument (based on properties of the Riemann integral, [5, Proposition 11]) that
the Cesàro means of (T (t)′)t>0 are precisely the dual operators {C(r)′}r>0 of
{C(r)}r>0. Repeating the argument it follows that the bidual operators {C(r)′′}r>0

form the family of Cesáro means of (T (t)′′)t>0. Of course, A′′ ∈ L(X ′′) is the
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infinitesimal generator of (T (t)′′)t>0. Applying Proposition 2.3, Remark 2.4(i)
and Lemma 2.15 to (T (t))t>0 and (T (t)′′)t>0 yields C0+ ⊆ ρ(A) ∩ ρ(A′′) and
R(λ,A)′′ = R(λ,A′′) for every λ ∈ C0+ . Now we can proceed with the proof of
further equivalences.

(5)⇒(2). Let P := τb-limλ→0+ λR(λ,A). Since X ′β is barrelled, it follows by
applying Lemma 2.1 of [3] twice that λR(λ,A′′) = λR(λ,A)′′ → P ′′ in Lb(X ′′)
as λ → 0+. Hence, (T (t)′′)t>0 is uniformly Abel mean ergodic. Proposition 2.12
applied to (T (t)′′)t>0 shows that P ′′ is the projection ofX ′′ onto KerA′′ = ImP ′′ =
Fix(T (·)′′).

Since X ′′ is a quojection Fréchet space, we can apply Theorem 3.2 to conclude
that the Cesáro means {(R(1, A′′))[n]}∞n=1 converge in Lb(X ′′β ). As X is an invari-
ant subspace for R(1, A)′′ = R(1, A′′) and bounded subsets of X are bounded in
X ′′, it follows that {(R(1, A))[n]}∞n=1 converges in Lb(X), i.e., condition (4) holds.
But, (4)⇔(2) and so (2) holds.

(1)⇒(6). Let Q := τb-limr→∞ C(r). Again by Lemma 2.1 of [3], applied twice,
it follows that C(r)′′ → Q′′, in Lb(X ′′) as r → ∞, i.e., (T (t)′′)t>0 is uniformly
mean ergodic. Since X ′′ is a quojection Fréchet space, we can apply Theorem 3.2
and so Remark 3.3 to conclude that (λR(λ,A′′))n → Q′′ in Lb(X ′′) as n → ∞
for every λ > 0. As X is an invariant subspace of R(λ,A)′′ = R(λ,A′′), for every
λ > 0, it follows that {(λR(λ,A))n}∞n=1 converges in Lb(X) to Q, i.e., condition
(6) holds.

So, we have established that all equivalences (1)⇔(2)⇔ . . .⇔(6) are available
for (T (t))t>0.

(1)⇒(7). Using the availability of all equivalences just mentioned for (T (t))t>0

and the fact that a complemented subspace of a prequojection Fréchet space is
again a prequojection Fréchet space (in place of the same fact for quojection
Fréchet spaces), the same proof as for (1)⇒(7) in Theorem 3.2 applies again.

(7)⇒(2). By assumption Y = ImA is a prequojection Fréchet space. The same
proof as for (7)⇒(2) in Theorem 3.2 shows that (T (t)|Y )t>0 is uniformly Abel
mean ergodic in Y . Now, apply (5)⇒(2), which is available in the prequojection
Fréchet space setting, to conclude that (2) holds (as in the proof of (7)⇒(2) in
Theorem 3.2). �

Remark 3.5. The assumption that (T (t))t>0 is a uniformly continuous C0-semi-
group is needed to guarantee that the dual and bidual semigroups (T (t)′)t>0 and
(T (t)′′)t>0 are also (uniformly continuous) C0-semigroups on X ′β and X ′′ resp.
Recall that in general the dual semigroup of a strongly continuous C0-semigroup
need not be a C0-semigroup, even in Banach spaces.

A lcHs X is a Grothendieck space if sequences in X ′ which are convergent for
σ(X ′, X) also converge for σ(X ′, X ′′). Reflexive lcHs’ are Grothendieck spaces.
A lcHsX has theDunford–Pettis property (briefly, DP) if every element of L(X,Y ),
for Y any quasicomplete lcHs, which transforms elements of B(X) into relatively
σ(Y, Y ′)-compact subsets of Y , also transforms σ(X,X ′)-compact subsets of X
into relatively compact subsets of Y , [22, pp.633-634]. It suffices if Y runs through
all Banach spaces, [16, p.79]. A reflexive lcHs has the DP property if and only if
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it is Montel, [22, p.634]. A Grothendieck lcHs X with the DP property is called
a GDP-space. Every Montel lcHs is a GDP-space, [16, Remark 2.2], [3, Corol-
lary 3.8]. For further information on non-normable GDP-spaces we refer to [3],
[10], [16].

Corollary 3.6. Let X be a prequojection GDP-Fréchet space and (T (t))t>0 ⊆
L(X) be a locally equicontinuous C0-semigroup satisfying τb-limt→∞

T (t)
t = 0.

Then its infinitesimal generator A ∈ L(X). Moreover, all seven assertions in
Proposition 3.4 are equivalent.

Proof. Since X is a GDP-Fréchet space, the semigroup (T (t))t>0 is necessar-
ily uniformly continuous, [6, Theorem 7]. So, the result follows from Proposi-
tion 3.4. �

Example 3.7. The validity of Theorem 3.2 and Proposition 3.4 remains confined
to the setting of prequojection Fréchet spaces. Indeed, consider the semigroup
(T (t))t>0 constructed in [5, Example 3.1] and acting in the nuclear Fréchet space
λ1(B). More precisely, let B = (an(i))i,n∈N be a Köthe matrix, i.e., 1 6 an(i) 6
an+1(i) for all i, n ∈ N. Then the space

λ1(B) :=

{
x = (xi)i∈N ∈ CN : pn(x) =

∑
i∈N

an(i)|xi| <∞, ∀n ∈ N

}

is Fréchet relative to the lc-topology generated by the sequence of norms {pn}∞n=1.
Choose B such that λ1(B) is nuclear, i.e.,

(
an(i)
an+1(i)

)
i∈N
∈ `1 for all n ∈ N (pass

to a subsequence if necessary), in which case λ1(B) is not a prequojection. Let
µ = (µi)i∈N be a sequence of real numbers with each µi > 0 and limi→∞ µi = 0.
For each t > 0 let T (t) ∈ L(λ1(B)) defined by T (t)x := (e−µitxi)i∈N for x ∈ λ1(B).
Then (T (t))t>0 is an equicontinuous (in particular, τb-limt→∞

T (t)
t = 0), uniformly

continuous C0-semigroup on λ1(B) with infinitesimal generator (A,D(A)) given
by Ax := (−µixi)i∈N for x ∈ D(A) = {x ∈ λ1(B) : µ · x := (µixi)i∈N ∈ λ1(B)}.
Moreover, A is clearly injective and ImA is a dense subspace of λ1(B). Indeed,
{ej}∞j=1 ⊆ ImA where ej denotes the element of λ1(B) with a 1 in the j-th
coordinate and 0’s elsewhere and so span{ej}∞j=1 is dense in λ1(B). So, there
exists the closed, densely defined linear operator A−1 : ImA → D(A) given by
A−1x =

(
− 1
µi
xi

)
i∈N

for x ∈ ImA. In particular, if µ grows fast enough (eg.,

µi =
∑i
n=1 an(i) for i ∈ N), then D(A) is a proper dense subspace of λ1(B)

because (1/µi)i∈N ∈ λ1(B) \D(A).
The semigroup (T (t))t>0 is mean ergodic (hence, uniformly mean ergodic as

λ1(B) is nuclear and thus Montel) because τs-limr→∞ C(r) = 0 via equicontinuity
of {C(r)}r>0 (as (T (t))t>0 is equicontinuous), [6, Remark 4(ii), Remark 5(i), (iii),
(v)]. So, condition (1) of Theorem 3.2 holds. By [7, Theorem 5.5(i)] also condition
(5) of Theorem 3.2 holds.
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We claim that τb-limn→∞(λR(λ,A))n = 0 for every λ > 0, i.e., condition (6)
of Theorem 3.2 holds. Indeed, fix any λ > 0. Then λR(λ,A)x =

(
λ

λ+µi
xi

)
i∈N

,

for x ∈ λ1(B), and so [λR(λ,A)]nx =
((

λ
λ+µi

)n
xi

)
i∈N

for each x ∈ λ1(B) and

n ∈ N. Now, fix x ∈ λ1(B). Given k ∈ N and ε > 0, there exists i0 ∈ N such that∑
i>i0

ak(i)|xi| < ε/2 and so also
∑
i>i0

ak(i)
∣∣∣( λ
λ+µi

)n
xi

∣∣∣ < ε/2 for every n ∈ N
as 0 < λ

λ+µi
< 1 for each i ∈ N. On the other hand, there exists n0 ∈ N such that∑i0

i=1 ak(i)
∣∣∣( λ
λ+µi

)n0

xi

∣∣∣ < ε/2 because limn→∞

(
λ

λ+µi

)n
= 0 for all 1 6 i 6 i0.

Since the sequence
{(

λ
λ+µi

)n}∞
n=1

is decreasing, for each 1 6 i 6 i0, it follows

that
∑i0
i=1 ak(i)

∣∣∣( λ
λ+µi

)n
xi

∣∣∣ < ε/2 for all n > n0. So, pk((λR(λ,A))nx) < ε for
all n > n0. The arbitrariness of k and ε > 0 yields that τs-limn→∞(λR(λ,A))n = 0
and hence, that τb-limn→∞(λR(λ,A))n = 0 as λ1(B) is Montel.

On the other hand, ImA is dense in λ1(B) but not closed, i.e., condition (2) of
Theorem 3.2 fails to hold. Indeed, in case ImA is closed, we have ImA = λ1(B)
and so A−1 : λ1(B)→ D(A) (with A−1 continuous by the Closed Graph Theorem).
Thus, A−1(1/µ) = (−1)i∈N ∈ D(A) ⊆ λ1(B) which is not the case.

4. Applications

The purpose of this section is to present some relevant examples of semigroups
acting in quojection Fréchet spaces and to determine whether or not they are
mean ergodic/uniformly mean ergodic.

4.1. A semigroup of multiplication operators in C(R)

Let X = C(R) be the space of all C-valued continuous functions on R with the
compact open topology. Then X is a quojection Fréchet space and its lc-topology
is generated by the increasing sequence of seminorms defined by

qk(f) := sup
|x|6k

|f(x)|, f ∈ X,

for k ∈ N. Let ϕ ∈ X \ {0} be R-valued and consider the multiplication operator
A : X → X defined by

Af := ϕf, f ∈ X.

Recall that S ∈ L(X), with X any lcHs, is power bounded if {Sn}n∈N ⊆ L(X)
is equicontinuous.

Proposition 4.1. The following properties hold for A.

(1) A ∈ L(X).
(2) Anf = ϕnf for all n ∈ N and f ∈ X.
(3) A is power bounded if and only if ϕ(R) ⊆ [−1, 1].
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(4) If ϕ(x) 6= 0 for every x ∈ R, then A is surjective.
(5) The resolvent operator R(λ,A) exists in L(X) if and only if λ 6∈ ϕ(R).

Equivalently, ρ(A) = C \ ϕ(R).
(6) (A,X) is the infinitesimal generator of the uniformly continuous C0-semigroup

(T (t))t>0 on X given by T (t)f = etϕf for all t > 0 and f ∈ X.
(7) (T (t))t>0 is equicontinuous if and only if ϕ(R) ⊆ (−∞, 0].
(8) (T (t))t>0 is exponentially equicontinuous if and only if there exists L > 0

such that ϕ(x) 6 L for every x ∈ R.

Proof. It is routine to verify that (1) and (2) are valid.
(3) Suppose that |ϕ| 6 1. By part (2) we have

qk(Anf) = sup
|x|6k

|(ϕ(x))nf(x)| 6 sup
|x|6k

|f(x)| = qk(f), f ∈ X, n ∈ N,

for each k ∈ N. Hence, {An}n∈N is equicontinuous, i.e., A is power bounded.
On the other hand, suppose there is some x0 ∈ R such that |ϕ(x0)| > 1.

Choose k0 ∈ N such that x0 ∈ [−k0, k0] and let f0 ≡ 1 ∈ X. Then |(ϕ(x0))n| 6
qk0

(Anf0) for all n ∈ N and so supn qk0
(Anf0) =∞, i.e., {Anf0 : n ∈ N} 6∈ B(X).

Accordingly, {An}n∈N is not equicontinuous, i.e., A is not power bounded.
(4) Fix any g ∈ X. Since ϕ(x) 6= 0 for every x ∈ R, we can define f := g/ϕ

pointwise on R. Then f ∈ X and satisfies Af = g.
(5) Let λ ∈ C. Suppose that λ 6∈ ϕ(R). Then the operator of multiplication by

1/(λ− ϕ), namely

R(λ,A)f :=
f

λ− ϕ
, f ∈ X, (4.1)

is clearly linear and satisfies R(λ,A)(λI − A) = (λI − A)R(λ,A) = I on X.
Continuity follows from qk(R(λ,A)f) 6 Mk(λ,A)qk(f), for f ∈ X and k ∈ N,
with Mk(λ,A) := max|x|6k 1/|λ− ϕ(x)| <∞.

On the other hand, if R(λ,A) ∈ L(X) exists, i.e., R(λ,A)(λI − A) = (λI −
A)R(λ,A) = I on X, then for the constant function f0 ≡ 1 on R we have (λI −
A)f0 = (λ− ϕ) and so (λ− ϕ)R(λ,A)f0 = f0. Consequently, λ 6∈ ϕ(R).

(6) We first show that (T (t))t>0 is a locally equicontinuous, uniformly contin-
uous C0-semigroup on X. Clearly, it is a semigroup.

Fix k ∈ N and B ∈ B(X). Then T (t)f − f = (etϕ − 1)f , for t > 0 and f ∈ B,
and αk(B) := supf∈B qk(f) <∞. Moreover, for t > 0 we have

sup
f∈B

qk(T (t)f − f) = sup
f∈B

sup
|x|6k

|etϕ(x) − 1| · |f(x)|

6 αk(B)qk(etϕ − 1) 6 αk(B) · (etqk(ϕ) − 1).

Since limt→0+(etqk(ϕ) − 1) = 0, this ensures that supf∈B qk(T (t)f − f) → 0 as
t→ 0+. By the arbitrariness of k and B we conclude that τb-limt→0+ T (t) = I.

Fix R > 0. Then, for every k ∈ N, f ∈ X and all t ∈ [0, R], we have

qk(T (t)f) = sup
|x|6k

|etϕ(x)f(x)| 6 qk(f) sup
|x|6k

etϕ(x) 6 eRqk(ϕ)qk(f).



Uniform mean ergodicity of C0-semigroups in a class of Fréchet spaces 337

This implies that the semigroup (T (t))t>0 is locally equicontinuous. Since
τb-limt→0+ T (t) = I, it follows from the discussion prior to Remark 2.2 that
(T (t))t>0 is uniformly continuous.

Now if f ∈ X, then T (t)f−f
t = etϕ−1

t f for all t > 0 and so,

T (t)f − f
t

−Af =

(
etϕ − 1− tϕ

t

)
f, t > 0.

Let k ∈ N. Then, for every f ∈ X and t > 0, we have

qk

(
T (t)f − f

t
−Af

)
= sup
|x|6k

∣∣∣∣(etϕ(x) − 1− tϕ(x)

t

)
f(x)

∣∣∣∣
6 qk(f) sup

|x|6k

∣∣∣∣etϕ(x) − 1− tϕ(x)

t

∣∣∣∣ 6 t[qk(ϕ)]2etqk(ϕ)qk(f).

This implies that qk
(
T (t)f−f

t −Af
)
→ 0 as t → 0+. Hence, (A,X) is the in-

finitesimal generator of (T (t))t>0.
(7) Let ϕ(x) 6 0 for all x ∈ R. Then etϕ(x) 6 1 for all t > 0 and x ∈ R. It

follows, for every k ∈ N and f ∈ X, that

qk(T (t)f) = sup
|x|6k

|etϕ(x)f(x)| 6 qk(f) sup
|x|6k

etϕ(x) 6 qk(f).

So, (T (t))t>0 is equicontinuous.
Conversely, suppose that (T (t))t>0 is equicontinuous. Then {T (t)f : t > 0} ∈

B(X) for every f ∈ X and hence, supt>0 |(T (t)f)(x)| < ∞ for every f ∈ X and
x ∈ R. If ϕ(x0) > 0 for some x0 ∈ R, then the choice f0 ≡ 1 ∈ X yields

sup
t>0

etϕ(x0) = sup
t>0
|(T (t)f0)(x0)| <∞

which is not the case. Therefore, ϕ 6 0 for all x ∈ R.
(8) Let ϕ(x) 6 L for all x ∈ R and some L > 0. Then etϕ(x) 6 eLt for all t > 0

and x ∈ R. It follows, for every k ∈ N and f ∈ X, that

qk(T (t)f) = sup
|x|6k

|etϕ(x)f(x)| 6 qk(f) sup
|x|6k

etϕ(x) 6 eLtqk(f).

So, (T (t))t>0 is exponentially equicontinuous; see Definition 2.1.
Suppose now that (T (t))t>0 is exponentially equicontinuous in which case there

is a > 0 such that, for each h ∈ N there exist k ∈ N with k > h and Mh > 0 for
which

qh(T (t)f) 6Mhe
atqk(f), f ∈ X, t > 0.

Suppose that ϕ is not bounded from above, i.e., there is a sequence (xn)n∈N ⊆ R
such that ϕ(xn) > n for all n ∈ N. Let n0 := [a] + 1, h0 := [|xn0

|] + 1 and
f0 ≡ 1 ∈ X. Then

qh0
(T (t)f0) = sup

|x|6h0

|etϕ(x)| 6Mh0
eatqk0

(f0) = Mh0
eat, t > 0.
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Since |xn0
| 6 h0, we would have etϕ(xn0

) 6 Mh0
eat, for t > 0, which is not the

case as ϕ(xn0
) > n0 > a. So, ϕ must be bounded from above. �

Remark 4.2. In the setting of Proposition 4.1 the semigroup (T (t))t>0 is equicon-
tinuous if and only if τb-limt→∞

T (t)
t = 0 if and only if τs-limt→∞

T (t)
t = 0.

Indeed, if (T (t))t>0 is equicontinuous, then it is routine to verify that τb-
limt→∞

T (t)
t = 0 (hence, also in Ls(X)).

On the other hand, assume that τs-limt→∞
T (t)
t = 0, in which case

limt→∞
T (t)f0

t = 0 in X (with f0 ≡ 1 ∈ X) and hence, also pointwise on R.
That is, limt→∞

etϕ(x)

t = 0 for each x ∈ R. This implies that ϕ(x) 6 0 for every
x ∈ R and hence, that (T (t))t>0 is equicontinuous; see Proposition 4.1(7).

Since the point evaluations f 7→ f(u), f ∈ X, belong to X ′ for each u ∈ R, it
follows that the vector-valued Riemann integral 1

r

∫ r
0
T (t)f dt in X is precisely the

function x 7→ 1
r

∫ r
0

(T (t)f)(x) dt = f(x) 1
r

∫ r
0
etϕ(x) dt, for x ∈ R, i.e., the Cesáro

means of the semigroup (T (t))t>0 are given by

(C(r)f)(x) = f(x)
1

r

∫ r

0

etϕ(x) dt =

{
f(x) e

rϕ(x)−1
rϕ(x) , ϕ(x) 6= 0,

f(x), ϕ(x) = 0,
(4.2)

for each f ∈ X and r > 0.

Proposition 4.3. If ϕ(x0) > 0 for some x0 ∈ R, then (T (t))t>0 is not mean
ergodic.

Proof. Suppose that (T (t))t>0 is mean ergodic. Then for f0 ≡ 1 ∈ X, the limit
g := limr→∞ C(r)f exists in X. In particular, (4.2) implies that

g(x0) = lim
r→∞

(C(r)f)(x0) = lim
r→∞

erϕ(x0) − 1

rϕ(x0)
=

1

ϕ(x0)
lim
r→∞

erϕ(x0) − 1

r
=∞,

which is a contradiction. So, (T (t))t>0 cannot be mean ergodic. �

Proposition 4.4. Suppose that ϕ(x) 6 0 for all x ∈ R, i.e., (T (t))t>0 is equicon-
tinuous. Then the following conditions are equivalent.

(1) σ(A) ⊆ (−∞, 0).
(2) ϕ(x) < 0 for all x ∈ R.
(3) (T (t))t>0 is uniformly mean ergodic.
(4) (T (t))t>0 is mean ergodic.
(5) ImA = X.
(6) ImA is closed.
(7) (T (t))t>0 is uniformly Abel mean ergodic.
(8) (T (t))t>0 is Abel mean ergodic.
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Proof. (1)⇔(2). This follows from the assumption ϕ 6 0, i.e., ϕ(R) ⊆ (−∞, 0],
and the identity σ(A) = ϕ(R); see Proposition 4.1(5).

(2)⇒(5). This is immediate from Proposition 4.1(4).
(5)⇒(6). This is obvious.
(6)⇒(3). Since ϕ(x) 6 0 for all x ∈ R, by Proposition 4.1(6) (T (t))t>0 is

an equicontinuous C0-semigroup on X with infinitesimal generator (A,X). Re-
mark 4.2 ensures that τb-limt→∞

T (t)
t = 0. Hence, Theorem 3.2 implies that

(T (t))t>0 is uniformly mean ergodic.
(3)⇒(4). This is obvious.
(4)⇒(2). Suppose that there is x0 ∈ R with ϕ(x0) = 0. Since ϕ 6≡ 0 on R,

we may assume that x0 is a boundary point of ϕ−1({0}). Hence, there exists
(xk)k∈N ⊆ R such that limk→∞ xk = x0 in R and ϕ(xk) < 0 for all k ∈ N.

Since (T (t))t>0 is mean ergodic and f0 ≡ 1 ∈ X there is g ∈ X such that
limr→∞ C(r)f0 = g exists in X and hence, also pointwise on R. Thus, by (4.2) it
follows that

g(xk) = lim
r→∞

(C(r)f0)(xk) = lim
r→∞

erϕ(xk) − 1

rϕ(xk)
=

1

ϕ(xk)
lim
r→∞

erϕ(xk) − 1

r
= 0,

for k ∈ N, and that

g(x0) = lim
r→∞

(C(r)f0)(x0) = f0(x0) = 1.

This is a contradiction as g is a continuous function on R and limk→∞ xk = x0 in
R. So, ϕ(x) < 0 for all x ∈ R.

(6)⇔(7). This follows from (2)⇔(4) in Theorem 3.2.
(7)⇒(8). This is obvious.
(8)⇒(4). See [7, Theorem 5.13]. �

Corollary 4.5. If ϕ(x) 6 0 for all x ∈ R and ϕ(x0) = 0 for some x0 ∈ R, then
ImA is not closed in X.

Proof. This is a consequence of (2)⇔(6) in Proposition 4.4. �

4.2. The translation (semi)group on C(R)

We now consider, in the quojection Fréchet space X = C(R), the 1-parameter
group of translation operators (T (t))t∈R defined by

T (t)f(x) := f(x+ t), f ∈ X, x ∈ R, t ∈ R.

Proposition 4.6. The following properties hold for (T (t))t∈R.

(1) (T (t))t∈R is a strongly continuous C0-group on X.
(2) (T (t))t∈R is not exponentially equicontinuous. In particular, T (t)

t 6→ 0 in
Ls(X) as t→∞.

(3) For each f ∈ C1(R) set Af := f ′. Then (A,C1(R)) is the infinitesimal
generator of (T (t))t∈R.
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(4) The operator A : D(A)→ C(R) is surjective, but not injective (with D(A) =
C1(R)).

(5) σ(A) = C with every point of σ(A) an eigenvalue of A.

Proof. (1) Clearly (T (t))t∈R ⊆ L(X) is a group. Moreover, for each R > 0 and
k ∈ N we have

qk(T (t)f) = sup
|x|6k

|f(x+t)| 6 sup
|y|6k+[R]+1

|f(y)| = qk+[R]+1(f), f ∈ X, |t| 6 R,

which shows that (T (t))t∈R is locally equicontinuous.
Fix f ∈ X and k ∈ N. Then

qk(T (t)f − f) = sup
|x|6k

|f(x+ t)− f(x)|, t ∈ R.

Since f is uniformly continuous in [−k−1, k+1] we have sup|x|6k |f(x+t)−f(x)| →
0 as t→ 0, from which it follows that qk(T (t)f−f)→ 0 as t→ 0. The arbitrariness
of k and f now imply that (T (t))t∈R is a C0-group on X. The strong continuity
of (T (t))t∈R follows from the discussion prior to Remark 2.2.

(2) Let f0(x) = ex
2

for all x ∈ R. Then f0 ∈ X and

q1(T (t)f0) = sup
|x|61

e(x+t)2

= e(1+t)2

, t > 0,

with supt>0 e
−ate(1+t)2

= ∞ for every a > 0. So, (T (t))t∈R is not exponentially
equicontinuous. In particular, T (t)

t 6→ 0 in Ls(X) as t→∞ via Remark 2.4(ii).
(3) Let f ∈ C1(R). By the mean value theorem, for each k ∈ N, t 6= 0 and

x ∈ [−k, k] there exists xt ∈ R between x and x+ t such that

qk

(
T (t)f − f

t
− f ′

)
= sup
|x|6k

∣∣∣∣f(x+ t)− f(x)

t
− f ′(x)

∣∣∣∣ = sup
|x|6k

|f ′(xt)− f ′(x)|,

with sup|x|6k |f ′(xt) − f ′(x)| → 0 for t → 0 as f ′ is uniformly continuous on

compact subsets of R. It follows that qk
(
T (t)f−f

t − f ′
)
→ 0 as t → 0. Thus,

f ′ ∈ D(A) and Af = f ′.
Conversely, let f ∈ D(A). Then, for a fixed x0 ∈ R and with k0 := [x0] + 1 we

have∣∣∣∣f(x0 + t)− f(x0)

t
−Af(x0)

∣∣∣∣ 6 qk0

(
T (t)f − f

t
−Af

)
, 0 < |t| < k0 − x0.

Since qk0

(
T (t)f−f

t −Af
)
→ 0 as t→ 0, it follows that f(x0+t)−f(x0)

t −Af(x0)→ 0

as t → 0, i.e., f ′(x0) = (Af)(x0) exists. By the arbitrariness of x0 we conclude
that f ′ exists and f ′ = Af ∈ X, i.e., f ∈ C1(R).

(4) The operator A is not injective because KerA = {f ∈ X : f constant
function on R}.
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Let g ∈ X. Then the function f ∈ C(R) defined by

f(x) :=

∫ x

0

g(t) dt, x ∈ R,

belongs to C1(R) and f ′ = g on R. So, f ∈ D(A) and Af = g. Hence, ImA = X,
i.e., A is surjective.

(5) Let λ ∈ C. Then the function fλ(x) := eλx, for x ∈ R, belongs to D(A)
and Af = f ′λ = λfλ. So, fλ is an eigenvector of A. Thus, σ(A) = C. �

Since the evaluation functionals at points of R belong to X ′, it follows that the
Cesáro means of the group (T (t))t∈R are given by

(C(r)f)(x) =
1

r

∫ r

0

f(x+ t) dt, f ∈ X, r > 0, x ∈ R. (4.3)

As noted in Proposition 4.6(2) the translation group (T (t))t∈R fails to satisfy
the condition τb-limt→∞

T (t)
t = 0 and so Theorem 3.2 is not applicable to (T (t))t∈R.

According to Proposition 4.6(5) we have ρ(A) = ∅ and so the notion of Abel mean
ergodicity is not available at all! Nevertheless Proposition 4.6(4) shows that ImA =
X is closed and from Af = f ′, for f ∈ C1(R), we see (from the proof of (4)) that
KerA consists of the constant functions. In particular, ImA∩KerA 6= {0} and so
X 6= ImA⊕KerA, i.e., (2.18) fails to hold. On the other hand, KerA = Fix(T (·))
is valid. In view of these observations the following result is expected.

Proposition 4.7. The group (T (t))t∈R is not mean ergodic.

Proof. Let f ∈ X be given by f(x) = ex, x ∈ R. It follows from (4.3) that
(C(r)f)(x) = ex(er−1)

r for x ∈ R and r > 0 and hence, that q1(C(r)f) = e(er−1)
r .

Since supr>0 q1(C(r)f) = ∞, the set {C(n)f : n ∈ N} 6∈ B(X). It follows that
{C(r)}r>0 cannot be convergent in Ls(X) ar r → ∞, i.e., (T (t))t∈R is not mean
ergodic. �

4.3. A semigroup of multiplication operators in Lp
loc(R)

Let X = Lploc(R), 1 < p <∞. Then X is a reflexive quojection Fréchet space with
respect to the lc-topology generated by the increasing sequence of seminorms

qk(f) :=

(∫ k

−k
|f(x)|p dx

)1/p

, f ∈ X, k ∈ N.

Let ϕ : R → (−∞, 0] be a continuous function and consider the linear operator
A : D(A)→ X defined by

Af := ϕf, f ∈ D(A) := {f ∈ X : ϕf ∈ X}.
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Proposition 4.8. The following properties hold for (A,D(A)).

(1) D(A) = X and A ∈ L(X).
(2) Anf = ϕnf for all n ∈ N and f ∈ X.
(3) A is power bounded if and only if ϕ(R) ⊆ [−1, 0].
(4) If ϕ(R) ⊆ (−∞, 0), then A is a bijection of X onto itself. In particular,

A−1 ∈ L(X).
(5) (A,X) generates the equicontinuous, uniformly continuous C0-semigroup

(T (t))t>0 given by

T (t)f = etϕf, t > 0, f ∈ X.

(6) The semigroup (T (t))t>0 is mean ergodic.

Proof. It is routine to check (1); simply use qk(Af) 6 (sup|x|6k |ϕ(x)|)qk(f) for
each f ∈ X and k ∈ N.

Property (2) is clear.
(3) Suppose that ϕ(R) ⊆ [−1, 0]. Then, for each k ∈ N, we have

qk(Anf) 6 qk(f), f ∈ X, n ∈ N,

and hence, A is power bounded.
Conversely, suppose that ϕ(x0) < −1 for some x0 ∈ R. As ϕ is continuous

there exist α < −1 and an open interval J(x0) containing x0 such that ϕ(x) 6 α
for all x ∈ J(x0). Choose k ∈ N such that J(x0) ⊆ [−k, k] and let f0 ≡ 1 ∈ X.
Then

qk(Anf0) >

(∫
J(x0)

|ϕ(x)|np|f0(x)|p
)1/p

> |α|n[µ(J(x0))]1/p, n ∈ N,

with µ denoting the Lebesgue measure. Since |α| > 1, it follows that
supn∈N qk(Anf0) = ∞, i.e., {Anf0}n∈N 6∈ B(X). Hence, {An}n∈N is not power
bounded.

(4) Fix g ∈ X. Since ϕ(x) 6= 0 for all x ∈ R, the function 1/ϕ ∈ C(R). Then
f := g/ϕ ∈ X and satisfies Af = g. So, A is surjective. Let f ∈ X \ {0}. Then
there is a measurable subset B ⊆ R with µ(B) > 0 such that f(x) 6= 0 for all
x ∈ B. Hence, also ϕ(x)f(x) 6= 0 for all x ∈ B, i.e., Af 6= 0 in X and so A is
also injective. Since A−1 : X → X is a closed operator (because of part (1)), the
Closed Graph Theorem ensures that A−1 ∈ L(X).

(5) We first show that (T (t))t>0 is a C0-semigroup on X. It is clearly a semi-
group. Fix f ∈ X and k ∈ N. Then, with αk(ϕ) := max|x|6k |ϕ(x)| <∞, we have
for each t > 0 that

qk(T (t)f − f) =

(∫ k

−k
|(etϕ(x) − 1)f(x)|p dx

)1/p

6 ( sup
|x|6k

|etϕ(x) − 1|)qk(f)

6 tαk(ϕ)etαk(ϕ)qk(f). (4.4)
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This implies that qk(T (t)f−f)→ 0 as t→ 0+. By the arbitrariness of k, it follows
that limt→0+ T (t)f = f . So, (T (t))t>0 is a C0-semigroup on X.

Moreover, ϕ(R) ⊆ (−∞, 0] implies that etϕ(x) 6 1 for all x ∈ R, t > 0 and so

qk(T (t)f) 6 ( sup
|x|6k

|etϕ(x)|)qk(f) 6 qk(f), f ∈ X, t > 0,

i.e., the C0-semigroup (T (t))t>0 is equicontinuous. Since its infinitesimal gener-
ator A ∈ L(X), it follows from [7, Proposition 2.3] that (T (t))t>0 is uniformly
continuous.

Now, for a fixed f ∈ X and k ∈ N, we have

qk

(
T (t)f − f

t
−Af

)
6 sup
|x|6k

∣∣∣∣etϕ(x) − 1− tϕ(x)

t

∣∣∣∣ qk(f)

6 t[αk(ϕ)]2etαk(ϕ)qk(f), t > 0.

This implies that qk
(
T (t)f−f

t −Af
)
→ 0 as t→ 0+. Since f and k are arbitrary,

it follows that (A,X) is the infinitesimal generator of (T (t))t>0.
(6) Since X is reflexive and the C0-semigroup (T (t))t>0 is equicontinuous, the

desired conclusion follows from [6, Corollary 2]. �

If λ ∈ C \ (−∞, 0], then 1/(λ − ϕ) ∈ C(R); recall that ϕ(R) ⊆ (−∞, 0].
Accordingly, the resolvent operators R(λ,A) ∈ L(X) exist for λ ∈ C\ (−∞, 0] and
are the multlipication operators given by

R(λ,A)f =
1

(λ− ϕ)
f, f ∈ X. (4.5)

In particular, C \ (−∞, 0] ⊆ ρ(A).

Proposition 4.9. If ϕ(R) ⊆ (−∞, 0), then τb-limλ→0+ λR(λ,A) = 0. In partic-
ular, the equicontinuous C0-semigroup (T (t))t>0 is uniformly Abel mean ergodic
and hence, also uniformly mean ergodic.

Proof. Since ϕ is continuous and ϕ is strictly negative on R, for every k ∈ N we
have that βk(ϕ) := max|x|6k ϕ(x) < 0. Hence, 1

λ−ϕ(x) 6
1

(λ−βk(ϕ)) for every λ > 0

and x ∈ [−k, k]. For a fixed k ∈ N and B ∈ B(X), it follows via (4.5) that

(qk(λR(λ,A)f))p =

(
qk

(
λ

λ− ϕ
f

))p
=

∫ k

−k

(
λ

λ− ϕ(x)

)p
|f(x)|p dx

= λp
∫ k

−k

|f(x)|p

(λ− ϕ(x))p
dx 6

(
λ

λ− βk(ϕ)

)p
qk(f)p,

for all f ∈ X and λ > 0. This inequality ensures that

sup
f∈B

qk(λR(λ,A)f) 6
λ

(λ− βk(ϕ))
sup
f∈B

qk(f), λ > 0.
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Accordingly, limλ→0+ qk(λR(λ,A)f) = 0. By the arbitrariness of k and B it
follows that τb-limλ→0+ λR(λ,A) = 0, i.e., the semigroup (T (t))t>0 is uniformly
Abel mean ergodic. That (T (t))t>0 is also uniformly mean ergodic follows from
Theorem 3.2 above; see also [7, Theorem 5.5(ii)]. �

In view of Proposition 4.9 all the equivalences of Theorem 3.2 apply to (T (t))t>0.

Remark 4.10. An alternate proof of Proposition 4.9 is as follows. By parts (1)
and (4) of Proposition 4.8 we have A : D(A) = X → X is bijective with A−1 : X →
D(A) continuous. It is routine to check that the equicontinuity of (T (t))t>0 (cf.
Propostion 4.8(5)) implies that τb-limt→∞

T (t)
t = 0. Then Lemma 2.10 yields

that τb-limr→∞ C(r) = 0, i.e., (T (t))t>0 is uniformly mean ergodic. The uniform
Abel mean ergodicity of (T (t))t>0 is then a consequence of Theorem 5.5(i) and
Remark 5.6(i) in [7].

Proposition 4.11. If ϕ−1({0}) is a Lebesgue null set, then τs-limλ→0+ λR(λ,A) =
0, i.e., (T (t))t>0 is Abel mean ergodic and hence, also mean ergodic.

Proof. Since ϕ−1({0}) is a Lebesgue null set and ϕ 6 0 on R, we have 0 6 λ
λ−ϕ 6

1 a.e. on R and for all λ > 0. On the other hand, limλ→0+
λ

λ−ϕ = 0 pointwise a.e.
on R. Fix f ∈ X and k ∈ N. Given any sequence λn → 0+, we can apply the Dom-
inated Convergence Theorem to the sequence

{(
λn

λn−ϕ

)p
|f |p

}∞
n=1
⊆ L1([−k, k])

to obtain that

(qk(λnR(λn, A)f))p =

∫ k

−k

(
λn

λn − ϕ(x)

)p
|f(x)|p dx→ 0

as n→∞, i.e., limn→∞ qk(λnR(λn, A)f) = 0. Since k is arbitrary, it follows that
limn→∞ λnR(λn, A)f = 0 in X. On the other hand, the arbitrariness of f ∈ X
and the sequence λn → 0+ ensures that τs-limλ→0+ λR(λ,A) = 0, i.e., (T (t))t>0

is Abel mean ergodic.
The mean ergodicity of (T (t))t>0 follows from [7, Theorem 5.5(ii)]. �

Lemma 4.12. Let k ∈ N and g ∈ C([−k, k]). Then the multiplication operator

Mg : Lp([−k, k])→ Lp([−k, k]), given by f 7→ gf,

is continuous in the Banach space Lp([−k, k]) with operator norm ‖Mg‖p,k =
max|x|6k |g(x)|.

Proof. It is routine to check thatMg is continuous with ‖Mg‖p,k 6 max|x|6k |g(x)|.
On the other hand, σ(Mg) = g([−k, k]) and so r(Mg) = max|x|6k |g(x)| 6 ‖Mg‖p,k
by the Spectral Radius Theorem (here r(Mg) denotes the spectral radius of Mg),
[23, Ch. IV, Corollary 1.4]. �

Proposition 4.13. If ϕ−1({0}) is a non-empty Lebesgue null set, then (T (t))t>0

is not uniformly mean ergodic.
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Proof. Suppose that (T (t))t>0 is uniformly mean ergodic. By Theorem 3.2 the
limit τb-limλ→0+ λR(λ,A) exists. Then Proposition 4.11 yields that we have
τb-limλ→0+ λR(λ,A) = 0. Fix any k ∈ N. Since λ/(λ − ϕ) ∈ L∞([−k, k]) and
the unit ball B(k) of the Banach space Lp([−k, k]) is (in the natural sense) a sub-
set of U(k) := q−1

k ([0, 1]) ∈ B(X), it follows from (4.5) that

‖Mλ/(λ−ϕ)‖p,k := sup
h∈B(k)

(∫ k

−k

∣∣∣∣ λ

(λ− ϕ(x))
h(x)

∣∣∣∣p dx
)1/p

6 sup
f∈U(k)

qk(λR(λ,A)f)→ 0 as λ→ 0+.

But, λ/(λ− ϕ) ∈ C([−k, k]) and so Lemma 4.12 implies that

lim
λ→0+

sup
|x|6k

∣∣∣∣ λ

(λ− ϕ(x))

∣∣∣∣ = lim
λ→0+

‖Mλ/(λ−ϕ)‖p,k = 0. (4.6)

On the other hand, there exists k0 ∈ N and x0 ∈ [−k0, k0] such that ϕ(x0) = 0.
Then sup|x|6k0

∣∣∣ λ
λ−ϕ(x)

∣∣∣ > λ
λ−ϕ(x0) = 1 for every λ > 0. This contradicts (4.6) for

k = k0. Hence, (T (t))t>0 is not uniformly mean ergodic. �

4.4. A semigroup on ω = CN

Let X = CN be the Fréchet space of all sequences with the increasing seminorms
qk : X → [0,∞), for k ∈ N, where qk(x) = max16j6k |xj |, for x = (xn)n ∈ X, in
which case X is Montel and a quojection. Define A ∈ L(X) by Ax := (µnxn)n,
for x ∈ X, where the real numbers µn < 0 for every n ∈ N are arbitrary and, for
each t > 0, define T (t) ∈ L(X) by T (t)x := (eµntxn)n, for x ∈ X. Then A ∈ L(X)
is a topological isomorphism on X and (T (t))t>0 is semigroup on X.

Proposition 4.14. The following properties hold for (T (t))t>0.
(1) A is power bounded if and only if −1 6 µn < 0 for all n ∈ N.
(2) For every λ 6∈ {µn : n ∈ N} the resolvent operator R(λ,A) exists with

R(λ,A)x =

(
1

λ− µn
xn

)
n

, x ∈ X.

Moreover, σ(A) = {µn}n∈N and each point of σ(A) is an eigenvalue of A.
(3) (T (t))t>0 is an equicontinuous, uniformly continuous C0-semigroup on X.

In particular, the operator (A,X) defined above is its infinitesimal generator.
(4) (T (t))t>0 is uniformly mean ergodic.

Proof. Most of the details are straightforward to verify. We only point out
that the uniform mean ergodicity of (T (t))t>0 is a consequence of the fact that
τb-limt→∞

T (t)
t = 0 follows from the equicontinuity of (T (t))t>0 and so Lemma 2.10

can be applied. Moreover, the uniform continuity of (T (t))t>0 follows from its
strong continuity (which is routine to verify), [7, Proposition 2.3]. �
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4.5. Another semigroup on ω = CN

Let X = CN be as in the previous example and consider the unit right shift
A ∈ L(X) given by A(x) := (0, x1, x2, . . .), for x = (x1, x2, . . .) ∈ X. Clearly, A is
power bounded. Moreover, A is injective but not surjective and ρ(A) = C \ {0}
with the resolvent operators R(λ,A) ∈ L(X), for λ 6= 0, given by

R(λ,A)(x) =

(
1

λ
x1,

1

λ
x2 +

1

λ2
x1,

1

λ
x3 +

1

λ2
x2 +

1

λ3
x1, . . .

)
, x ∈ X. (4.7)

The semigroup T (t) := etA, for t > 0, is given by

T (t)x =

(
x1, x2 + tx1, x3 + tx2 +

t2

2!
x1, x4 + tx3 +

t2

2!
x2 +

t3

3!
x1, . . .

)
, (4.8)

for x ∈ X, and is exponentially (hence, also locally) equicontinuous. These facts
can be found in [7, Remark 3.5(v)].

Let {en}∞n=1 be the standard (absolute) unit basis of X. Via (4.8) we have
T (t)e1 =

(
1, t, t

2

2! , . . .
)
for t > 0 and so {T (t)e1}t>0 6∈ B(X), i.e., (T (t))t>0 is not

equicontinuous. Again from (4.8) we have

T (t)x− x =

(
0, tx1, tx2 +

t2

2!
x1, tx3 +

t2

2!
x2 +

t3

3!
x1, . . .

)
, x ∈ X, t > 0,

which implies that (T (t))t>0 is a C0-semigroup and hence, is also strongly con-
tinuous by the discussion prior to Remark 2.2. Since its infinitesimal generator
A ∈ L(X), it follows that (T (t))t>0 is also uniformly continuous, [7, Proposition
2.3]. Of course, the uniform continuity of (T (t))t>0 also follows from its strong
continuity and the fact that X is Montel, [30, §39.5 Theorem (1)]. For each t > 0
and x ∈ X it follows from (4.8) that

T (t)x

t
=

(
x1

t
,
x2

t
+ x1,

x3

t
+ x2 +

t

2!
x1,

x4

t
+ x3 +

t

2!
x2 +

t2

3!
x1, . . .

)
.

In particular, T (t)e1
t =

(
1
t , 1, t

2! ,
t2

3! , . . .
)
, for t > 0, shows that

{
T (t)e1
t

}
t>0
6∈

B(X) which implies that T (t)
t 6→ 0 in Ls(X) (hence, also in Lb(X)) as t→∞. So,

again Theorem 3.2 is unavailable.
It is routine to verify that KerA = Fix(T (·)) = {0} and that ImA =

span{en}∞n=2 is a proper closed subspace of X. In particular, X 6= ImA ⊕ KerA,
i.e., (2.18) fails to hold.

Proposition 4.15. The exponentially equicontinuous, uniformly continuous
C0-semigroup (T (t))t>0 is neither mean ergodic nor is it Abel mean ergodic.

Proof. Direct calculation from (4.8) shows that

C(r)x =
1

r

∫ r

0

T (t)x dt =

(
x1, x2 +

r

2!
x1, x3 +

r

2!
x2 +

r2

3!
x1, . . .

)
,



Uniform mean ergodicity of C0-semigroups in a class of Fréchet spaces 347

for each x ∈ X and r > 0. In particular, C(r)e1 =
(

1, r
2! ,

r2

3! , . . .
)

for r > 0

shows that the sequence {C(n)e1}∞n=1 6∈ B(X) and so the net {C(r)}r>0 is not
convergent in Ls(X) for r →∞, i.e., (T (t))t>0 is not mean ergodic.

Direct calculation from (4.7) yields, for each λ 6= 0 and x ∈ X, that

λR(λ,A)x = x+

(
0,

1

λ
x1,

1

λ
x2 +

1

λ2
x1,

1

λ
x3 +

1

λ2
x2 +

1

λ3
x1, . . .

)
.

In particular, λR(λ,A)e1 = e1 +
(
0, 1

λ ,
1
λ2 , . . .

)
, for λ 6= 0, shows that{

1
nR
(

1
n , A

)
e1

}∞
n=1

6∈ B(X) and so the net {λR(λ,A)}0<λ61 is not convergent
in Ls(X) for λ→ 0+, i.e., (T (t))t>0 is not Abel mean ergodic. �
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