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Abstract: Let Xa denote the order continuous part of a Banach lattice X, and let Γ be an
uncountable set. We extend Drewnowski’s theorem on the comparison of linear dimensions
between Banach spaces having uncountable symmetric bases to a class of discrete Banach lattices,
the so-called D-spaces.
We show that if X and Y are two D-spaces and there are continuous linear injections (not
necessarily embeddings) from X into Y and vice versa, then X and Y are order-topologically
isomorphic. In the proof we apply a theorem on the extension of an order isomorphism from
Xa onto Ya to an order isomorphism from X onto Y , the classical Drewnowski’s theorem, and
a supplement of Troyanski’s theorem on embeddings of `1(Γ) spaces into a Banach space with
an uncountable symmetric basis.
Our result applies to the class of Orlicz spaces `ϕ(Γ), where ϕ is an Orlicz function.

Keywords: linear dimension, discrete Banach lattice, Levi norm, uncountable symmetric basis,
Orlicz space.

1. Introduction

We use standard notations and for notions undefined below we refer the reader
to the next section and to the monographs [4, 19, 23]. In what follows, Γ and
Θ denote fixed uncountable sets, all Banach spaces are of infinite dimension, and
all operators are linear and continuous. For X a Banach lattice, the symbol Xa

stands for the order continuous part of X.
Following Banach [5, Chap. XII, p. 193], for two Banach spaces X and Y , we

write dim`(X) 6 dim`(Y ) if X embeds isomorphically into Y . If both dim`(X) 6
dim`(Y ) and dim`(Y ) 6 dim`(X), we write dim`(X) = dim`(Y ) and say that X
and Y have the same linear dimension.
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In this paper, we consider theorems of the following form, which we call Cantor-
Bernstein type theorems:

Let B be a fixed class of Banach spaces, and let X,Y ∈ B be such that there
are continuous linear injections from X into Y and from Y into X (in particular,
this is so if dim`(X) = dim`(Y )). Then X and Y are isomorphic.

In Sections 3, 4, and 5 we extend remarkable results obtained in 1987 by
L. Drewnowski (Propositions 1.2 and 1.4 below) concerning the comparison of
linear dimensions between nonseparable Banach spaces having uncountable sym-
metric bases. Notice that, if X is such a real space, it can be considered as
a discrete Banach lattice with X = Xa (see [16, p. 2]). In our main result, stated
in Theorem 4.2, we show that the series of the equivalences in the Drewnowski’s
theorems remain true also in a large class of discrete Banach lattices X with
X 6= Xa.

In 1932, Banach and Mazur [6] proved that dim`(C[0, 1]) = dim`(C[0, 1]⊕ `1),
yet the spaces C[0, 1] and C[0, 1]⊕ `1 are not isomorphic because dim`(C[0, 1]∗) 6=
dim`((C[0, 1]⊕ `1)∗).

It is interesting to note that Banach obtained the following positive result
[5, Lemme and Théorème 4–6 on pp. 202–203]:

Proposition 1.1. If p, q ∈ (1,∞), then dim`(Lp[0, 1]) = dim`(Lq[0, 1]) if and
only if p = q.

Cf. [18]; see also [14] for details of the many contributors to this achievement and
an account of its proof.

In 1987, Drewnowski [8, Theorem] extended the above Banach’s result to a class
of nonseparable Banach spaces as follows:

Proposition 1.2. Let X and Y be nonseparable Banach spaces having uncountable
symmetric bases (xγ)γ∈Γ and (yt)t∈Θ, respectively. Then the following conditions
are equivalent:

(i) X and Y have the same linear dimension.
(ii) X and Y are isomorphic.
(iii) There is a bijection f : Γ → Θ and an isomorphism T : X → Y such that

T (xγ) = yf(γ), for every γ ∈ Γ.

The proof uses the result below, due to Troyanski [20, Corollary 2], which,
roughly speaking, asserts that `1-bases have maximal linear dimension in the family
of uncountable symmetric bases (recall that a symmetric basis (xγ)γ∈Γ for some
Banach space is said to be an `1-basis, whenever the basis (xγ)γ∈Γ is equivalent
to the unit vector basis (eγ)γ∈Γ of `1(Γ)).

Proposition 1.3. Let X be a (nonseparable) Banach space with an uncountable
symmetric basis (xt)t∈Θ. If X contains an isomorphic copy of `1(Γ), then (xt) is
an `1-basis.

(Note that a similar result [20, Corollary 1] holds for c0(Γ) instead of `1(Γ). See
also [9, 10] and the monograph [11] for other results in this direction.)
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In the same paper [8], Drewnowski observes that in some cases the assumptions
in Proposition 1.2 can be weakened: he indicates how to adapt its proof to obtain
the following result [8, Corollary on p. 161], which we extend in Theorem 4.2 to
a larger class of Banach spaces:

Proposition 1.4. Let X and Y be nonseparable Banach spaces having uncountable
symmetric bases (xγ)γ∈Γ and (yt)t∈Θ, respectively. Assume further that both the
bases are non-`1 bases. Then conditions (i)–(iii) in Proposition 1.2 are equivalent
to the condition

(iv) There are continuous linear injections X → Y and Y → X.

This result readily applies to the class of Orlicz spaces `ϕ(Γ), where ϕ is an Or-
licz function fulfilling the ∆2-condition at zero. Then the space `ϕ(Γ) = (`ϕ(Γ))a
has an uncountable symmetric basis, and the basis is an `1-basis if and only if
ϕ is equivalent at zero to the identity.

From our Theorem 4.2 it follows that the equivalence (i) ⇐⇒ (ii) in Propo-
sition 1.2 holds true in the whole class of (real) spaces of the form `ϕ(Γ), where
card(Γ) > 2ℵ0 and the Orlicz function ϕ is arbitrary (see Section 5).

Here one should note that there are separable Orlicz sequence spaces with
uncountably non-equivalent symmetric bases [15, Theorem 4.b.9]. This rules out
the equivalence of conditions (ii) and (iii) in Proposition 1.2 for the separable case.
On the other hand, as far as we know, it is an open question of whether or not
conditions (i) and (ii) in Proposition 1.2 are equivalent for sequence spaces with
a symmetric basis.

The paper is organized as follows. In the next section, we fix notation and
present the basic facts needed for the proof of our main results. In Section 3,
we address the ‘critical’ `1-case : (*) in Theorem 3.1 we supplement Troyanski’s
Proposition 1.3, changing the role of the spaces involved and considering continu-
ous injections instead of isomorphic embeddings, and (**) in Theorem 3.3 we show
that, for every pair G,D of infinite subsets of the interval [0, 1], there exist a con-
tinuous injection from `1(D) into `1(G). These results suggest it makes sense to
restrict our studies to (nonseparable) discrete Banach lattices with a set of atoms
of the cardinality at least continuum. In Section 4, we introduce the notion of
a D-space and prove our main theorem for such spaces. In Section 5 we illustrate
how our results work for a class of “big” discrete Orlicz spaces.

2. Preliminaries

Throughout this section, X denotes either an Archimedean vector lattice or a Ba-
nach space; in the latter case ‖ ‖ denotes a norm on X, and if, additionally, X is
a Banach lattice, the norm is a lattice norm (i.e., the condition |x| 6 |y| implies
that ‖x‖ 6 ‖y‖; here the symbol |x| denotes the modulus of x ∈ X).

Let X be a Banach space, and let J be an infinite set.
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A family (xj)j∈J of elements in X is said to be an unconditional basis of X if,
for every x ∈ X there is a unique family of scalars (aj)j∈J such that the series

x =
∑
j∈J

ajxj (∗)

converges unconditionally in X, i.e., for every ε > 0 there is a finite subset F
of J such that

∥∥∥x−∑j∈F ′ ajxj

∥∥∥ 6 ε for every finite subset F ′ of J such that
F ′ ⊃ F . In particular, for every x ∈ X, at most countably many coordinates aj
are nonzero. Then the support of x ∈ X is defined as s(x) := {j ∈ J : aj 6= 0},
and s(x) is a countable subset of J .

The uniqueness of the representation (∗) of x by means of the family of scalars
(aj)j∈J allows us to define a family (x∗j )j∈J of (continuous) functionals, associated
to the basis (xj)j∈J , by the formula x∗j (x) = aj , j ∈ J . Hence x∗j (xk) = δjk, where
δjk is the Kronecker symbol, and x =

∑
j∈J x

∗
j (x)xj for every x ∈ X.

The basis (xj)j∈J is called symmetric if, for every sequence (jn) in J the basic
sequence (xjn) is symmetric in the usual sense [15, p. 113]: for any sequence (rn) in
J the basic sequences (xjn) and (xrn) are equivalent. For details about uncountable
unconditional and symmetric bases, we refer the reader to the monographs [11, 19].

Now let X denote a vector lattice, and let X+ denote the cone of non-negative
elements of X. The lattice X is said to be [σ−] Dedekind complete if every
nonempty [countable, resp.] subset A of X, with a 6 b for all a ∈ A and some
b ∈ X, has a supremum supA in X.

Two vector lattices X,Y are said to be order-isomorphic if there is a lin-
ear bijection R from X onto Y preserving finite suprema: R(sup{x1, x2}) =
sup{R(x1), R(x2)} for all x1, x2 ∈ X; then R is referred to as an order isomor-
phism. If, additionally, X,Y are Banach lattices and R is a topological isomor-
phism, then we say that these spaces are order-topologically isomorphic.

An element 0 < e ∈ X+ is said to be discrete (or an atom) if, for every x ∈ X
such that 0 < x 6 e, there exists a real number λ > 0 such that x = λa. The
symbol AX stands for the set of all discrete elements of X. A vector lattice X is
said to be discrete (or atomic) whenever AX is a maximal disjoint system in X
(i.e., the condition |x| ∧ e = 0 for all e ∈ AX implies x = 0). This is equivalent
to the requirement that X is order-isomorphic to an order dense (i.e., cofinal)
sublattice of the vector lattice of the form RΓ. Here, Γ can be chosen so that
AX = {eγ : γ ∈ Γ} (see [3, Theorem 2.17, pp. 17–18]).

An order ideal J of X is said to be [super-] order dense in X if, for every
x ∈ X+, there is a [countable, resp.] subset A of J such that x = supA; then
x = sup([0, x] ∩ J). Without loss of generality we may assume that A is directed
upward, and if A = {un}∞n=1, then un 6 un+1 6 x for all n.

An element x in a Banach lattice X is said to be order-continuous if for every
net (xα) in X with |x| > |xα| ↓ 0, we have that ‖xα‖ → 0. The order ideal Xa, of
all order-continuous elements of X, is referred to as the order-continuous part of
X, and Xa is norm-closed in X (see e.g. [22, p. 60]). The ideal Xa is Dedekind
complete (with the ordering inherited form X). If X = Xa, we say that X has
order continuous norm, or that X is order continuous (o.c.).
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It is easy to check that, for X a discrete Banach lattice, the order continuous
part Xa is an order dense ideal in X. In this case, we have

Xa = lin(AX) (norm closure),

and AX is an unconditional basis for Xa.
The classical Banach latticesX = `p(Γ), 1 6 p <∞ are o.c., and for Y = `∞(Γ)

we have Ya = c0(Γ). Here the set of the standard unit vectors eγ : γ ∈ Γ, forms
a symmetric basis for the respective spaces X and Ya. For other examples see
Section 5.

The norm ‖ ‖ on a Banach lattice X is said to be Levi [resp., σ-Levi] if every
norm-bounded increasing net [resp., sequence] in X+ has a supremum (cf., [3,
Definition 9.3, p. 61]). In this case, we also say that X has the Levi [resp., σ-
Levi] property. As it is pointed out in [2] (see also [1]), this property appears
in the literature under many different names. For example, the terms monotone
complete norm and σ-Levi norm are identical.

It is known that, for every Banach lattice X, its dual X∗ has the Levi property
[17, Theorems 2.4.19 and 2.4.21], and it is obvious that every Banach lattice X
with the Levi [resp., σ-Levi] property is also [resp., σ-]Dedekind-complete.

The following extension theorem will be applied in the proof of Theorem 4.2.

Theorem 2.1. Let X,Y be two Banach lattices with the [σ-]Levi property, and let
J1, J2 be two [super-]order dense and norm-closed ideals of X and Y , respectively.
Then every order isomorphism R from J1 onto J2 can be extended to an order
isomorphism R̃ from X onto Y . The extension is of the form

R̃(x) = supR([0, x] ∩ J1), x ∈ X+. (2.1)

Proof. By following the lines of the proof of Veksler’s Theorem [4, Theorem 4.12],
if we establish that, for every x ∈ X+, the supremum R̃(x) := supR([0, x] ∩ J1)

exists in Y , then we can conclude R̃ is an additive and positively homogeneous
operator on X+ which extends to a positive operator on X (denoted also by R̃)
by the formula R̃(x) = R̃(x+)− R̃(x−). Let us note that then R̃(x+)∧ R̃(x−) = 0,
whence |R̃(x)| = R̃(|x|), thus R̃ is an order homomorphism.

The proof of (2.1) will be given only for the case when X and Y are σ-Levi
and the ideals J1, J2 are super-order dense in X and Y , respectively, as the proof
of the other case is similar. Let us fix x ∈ X+.

Claim. If x = sup{un : n ∈ N} for a nondecreasing sequence (un) in J+
1 , then

supR([0, x] ∩ J1) = supn>1R(un).

The set A = {un : n ∈ N} is topologically bounded in X (i.e. αnun → 0 for
every sequence (αn) ∈ c0), thus from the continuity of R (see [4, Theorem 4.3]) it
follows that the set {Run : n ∈ N} is topologically bounded and directed upward
in Y , too. Since Y is σ-Levi, the element b := sup{Run : n ∈ N} exists in Y +.
Moreover, for every u ∈ [0, x] ∩ J1 we have u = u ∧ x = sup{u ∧ un : n ∈ N},
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thus from the order continuity of R we obtain Ru = sup{R(u ∧ un) : n ∈ N} 6
supn>1Run = b. It follows that b is the least upper bound of the set R([0, x]∩J1),
thus b = supR([0, x]∩J1). This proves our Claim, which shows that formula (2.1)
is well defined.

From the order density of J1 in X we immediately obtain that the operator R̃
is injective. Moreover, R̃ is surjective. Indeed, let Y + 3 y = sup{wn : n ∈ N} for
a sequence (wn) in J+

2 , and set un = R−1(wn), n = 1, 2, . . . . Then 0 6 un 6 un+1

and ‖un‖ 6 ‖R−1‖ · ‖wn‖ 6 ‖R−1‖ · ‖y‖ for all n > 1. Since X is σ-Levi, there
exists x := supn>1 un in X. Now the Claim implies that R̃(x) = supn>1 Tun =

supn>1 wn = y. Thus R̃ maps X onto Y . �

3. The `1-case

The following property of `1(Γ)-spaces will be applied in the proof of our main
result. It supplements Troyanski’s result stated in Proposition 1.3 and seems to
be new.

Theorem 3.1. Let Γ and Θ be two uncountable sets, and let X be a nonseparable
real Banach space with a symmetric basis {xt : t ∈ Θ}. If X can be injected
continuously into `1(Γ), then the basis of X is equivalent to the standard basis
of `1(Θ).

The proof of the above theorem is based on the following combinatorial lemma
[8, Lemma 2]:

Lemma 3.2. Let {St}t∈Θ be an uncountable family of (at most) countable subsets
of a set S such that, for each s ∈ S, the set {t ∈ Θ: s ∈ St} is (at most) countable.
Then there exists a subset Θ′ of Θ such that card(Θ′) = card(Θ) and {St}t∈Θ′ is
a disjoint family.

Proof of Theorem 3.1. Let (eγ)γ∈Γ denote the standard symmetric basis of
`1(Γ), and let (e∗γ)γ∈Γ be the dual family in `1(Γ)∗, biorthogonal to (eγ)γ∈Γ, and
let R : X → `1(Γ) be an injective and continuous mapping. Since the basis
{xt : t ∈ Θ} is symmetric, we have that 0 < A := inft∈Θ ‖xt‖ 6 supt∈Θ ‖xt‖ =:
B < ∞ (see [12, Theorem 5], cf. [15, p. 114]). Set yt = Rxt, t ∈ Θ. Let us
consider two cases:

(a) there is γ0 ∈ Γ such that e∗γ0
(yt) 6= 0 for uncountably many t ∈ Θ,

(b) for every γ ∈ Γ, e∗γ(yt) 6= 0 only for countably many t ∈ Θ.

In case (a), there is an uncountable subset Θ0 of Θ and a positive number ε0

such that |e∗γ0
(yt)| > ε0 for all t ∈ Θ0. It follows that, for every family (at)t∈Θ0 of

real numbers, the convergence of a series
∑
t∈Θ0

atxt implies the convergence of
the series

∑
t∈Θ0

|at|. Since the elements of the symmetric basis {xt : t ∈ Θ} are
norm-bounded (by B), the basic set {xt}t∈Θ0

, and hence the basis {xt}t∈Θ, is an
`1-basis.
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In case (b), we have the uncountable family F := {s(yt) : t ∈ Θ} of (countable)
supports of yt such that each subfamily F ′ of F with

⋂
F ′ 6= ∅ is countable. Now

Lemma 3.2 implies that there is an uncountable subset Θ′ of Θ, with card(Θ′) =
card(Θ), such that the elements of the subfamily {s(yt) : t ∈ Θ′} of F are pairwise
disjoint. Since card(Θ′) > ℵ0, there is an uncountable subset Θ′′ of Θ′ such that
C := inft∈Θ′′ ‖yt‖ > 0. Hence the family {yt : t ∈ Θ′′} is norm-bounded from above
(by B · ‖R‖) and form below (by C) and consists of pairwise disjoint elements of
`1(Γ), thus it is equivalent to the standard basis of `1(Θ′′). It follows that the three
series:

∑
t∈Θ′′ atxt,

∑
t∈Θ′′ atyt and

∑
t∈Θ′′ |at| converge simultaneously. But the

basis {xt : t ∈ Θ} is symmetric, so the latter property implies the basis is equivalent
to the standard basis of `1(Θ).

The proof is complete. �

The next result shows that Proposition 1.4 cannot be extended to “small” `1-
spaces, and that the restriction in our Theorem 4.2 to discrete Banach lattices X
with card(AX) > 2ℵ0 is, in a sense, natural.

Theorem 3.3. Let D,G be two infinite sets of the cardinality 6 2ℵ0 . Then there
is a continuous injection from (real or complex) `1(D) into `1(G). The result is
independent on the Continuum Hypothesis.

Proof. We assume without loss of generality that D ⊂ G ⊂ K, where K denotes
the unit interval.

Let (xn) denote a fixed Schauder basis for C(K). Let us consider a linear
continuous operator R from c0 into C(K) of the form

R((tn)) =

∞∑
n=1

(tn/n
2)xn.

The range of R is norm dense in C(K), thus its conjugate R∗ is a continuous
linear injection from C(K)∗ into `1 = c∗0.

Now let S denote the restriction of R∗ to the atomic part of C(K)∗, which is
isometrically isomorphic to `1(K) (see e.g. [13, Theorem 7 on p. 50, and Theorem 9
on p. 52]). Hence S is a continuous injection S from `1(K) into `1.

Since the restriction S1 of S to `1(G) is injective, and the natural embedding
J of `1 into `1(D) is injective too, the composition JS1 is a continuous injection
from `1(G) into `1(D), as required. �

4. The main result

Throughout this section, X denotes a discrete real Banach lattice with a fixed
uncountable maximal set of discrete and pairwise disjoint elements AX = {xγ :
γ ∈ Γ}. Recall that Xa denotes the order continuous part of X.
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To shorten the text, we shall use the following notion.

Definition 4.1. We say that X is a Drewnowski space, or a D-space, if it fulfils
the following three conditions:

(D1) either X is order continuous (i.e., X = Xa) or X has the σ-Levi property,
(D2) the ideal Xa is super-order dense in X,
(D3) the set AX is a symmetric basis for Xa.

By [16, p. 2], every nonseparable real Banach space X with an uncountable
symmetric basis, endowed with the coordinatewise ordering, may be regarded
as an o.c. Drewnowski space. The name Drewnowski space is justified by the
Drewnowski’s results cited in Section 1.

Now we can present our main result in a concise form.

Theorem 4.2. Let X and Y be two discrete Banach lattices such that both the
sets, AX and AY , are symmetric bases for Xa and Ya, respectively, and that AX
and AY have the cardinality at least continuum.

If there are continuous linear injections from X into Y and from Y into X (in
particular, if X and Y are of the same linear dimension), then:

(1.) the bases AX and AY are permutatively equivalent: there is a bijection
f : Γ→ Θ and an isomorphism R from Xa onto Ya such that R(xγ) = yf(γ),
for every γ ∈ Γ; hence

(2.) Xa and Ya are order-topologically isomorphic.
(3.) Moreover, if X and Y are non-order continuous D-spaces, then X and

Y are order-topologically isomorphic: the above operator R extends to an
order-topological isomorphism from X onto Y .

It should be noted that the isomorphism of the spaces X and Y in Theorem 4.2
is obtained when X and Y are of the same order-continuity type:

(a) From part (1.) (for the case X = Xa and Y = Ya) we immediately obtain
a partial strengthening of Drewnowski’s Proposition 1.4: if the symmetric bases of
X and Y are of the cardinality at least continuum, then the conditions (i) − (iv)
are equivalent also in the case when one of the bases is of `1-type.

(b) In the proof of part (3.) of the theorem we essentially apply the extension
theorem 2.1 forX and Y non-order continuous. We do not know, however, whether
the final conclusion of this part holds true also when X is o.c. and Y is not.

Before proceeding to the proof of the above theorem we shall present below
two, somewhat surprising, properties of D-spaces. Notice first that the classical
(real) space c0(Γ) is an o.c. D-space, and that, for every D-space X, with AX =
{xγ : γ ∈ Γ}, the mapping Xa 3

∑
γ∈Γ aγxγ 7→ (aγ)γ∈Γ ∈ c0(Γ) is well defined

(because the basis AX is norm bounded from below and from above) and it is
a continuous injection. Moreover, the (real) space `c∞(Γ), of the elements of `∞(Γ)
with a countable support, is a D-space, too, with (`c∞(Γ))a = c0(Γ).
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Corollary 4.3. Let X be a D-space with card(AX) = card(Γ). Then:

(i) If the spaces Xa and c0(Γ) are not isomorphic (as Banach spaces), then
there is no continuous injection from c0(Γ) into Xa;

(ii) If X is not o.c. and the spaces Xa and c0(Γ) are isomorphic, then the
Banach lattices X and `c∞(Γ) are order-topologically isomorphic.

Parts (i) and (ii) of the corollary are direct consequences of Theorem 4.2 and
the extension theorem 2.1, respectively.

Proof of Theorem 4.2. Part (1.). Let T : X → Y and S : Y → X be continuous
linear injections.

Step 1. Set fγ := Txγ , γ ∈ Γ. Since T is injective, fγ 6= 0 for all γ. Let y∗t
denote the functional associated to yt, t ∈ Θ.

We consider two cases:

(i) there is t0 ∈ Θ such that y∗t0(fγ) 6= 0 for uncountably many γ;
(ii) for every t ∈ Θ, y∗t (fγ) 6= 0 only for countably many γ.

In case (i), repeating the proof of case (a) in the proof of Theorem 3.1 we obtain
that the basis AX of Xa is equivalent to the standard basis of `1(Γ), i.e., Xa is
order-topologically isomorphic to `1(Γ). In particular, Xa is a KB-space (i.e., every
increasing norm bounded sequence in X+ is norm convergent to an element of X).
Since Xa is super-order dense in X, the latter implies that Xa is topologically
dense in X, whence X = Xa, because Xa is norm-closed in X.

Thus, in case (i), X is order-topologically isomorphic to `1(Γ), and so, by
the hypothesis of our theorem, we may assume without loss of generality that
S maps Y , whence Ya too, into `1(Γ) injectively. By Theorem 3.1, Ya is order
isomorphic to `1(Θ), and by the arguments as above, Y = Ya; thus we may also
assume that Y = `1(Θ).

Now the injectivity of T and S along with the hypothesis that card(AX),
card(AY ) > 2ℵ0 imply that card(Γ) = card(Θ). Hence the Banach latticesX = Xa

and Y = Ya are order-topologically isomorphic (to a “big” `1-space).
Similar arguments employed to the case

(i’) there is γ0 ∈ Γ such that x∗γ0
(gt) 6= 0 for uncountably many t ∈ Θ, where

gt = Syt, t ∈ Θ,

also give us that X = Xa and Y = Ya are order-topologically isomorphic to an
`1-space.

It thus remains to consider case (ii) along with its counterpart:

(ii’) for every γ ∈ Γ, x∗γ(gt 6= 0 only for countably many t ∈ Θ, where
gt = S(yt).

Step 2. Assume (ii) and (ii’). By Lemma 3.2, there are uncountable subsets
Γ0 and Θ0 of Γ and Θ, respectively, such that the elements of either of the sets
{T (xγ) : γ ∈ Γ0} and {S(yt) : t ∈ Θ0} are pairwise disjoint. Now we mimic a part
of Drewnowski’s proof of Case 2 of [8, Theorem]. Let a series

∑
γ∈Γ0

aγxγ be
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convergent in X. Then the series
∑
γ∈Γ0

aγT (xγ) is convergent in Y ; equivalently
(as the elements of {T (xγ) : γ ∈ Γ0} are pairwise disjoint),

the series
∑
γ∈Γ0

|aγ | · |T (xγ)| is convergent in Y. (4.1)

We have that for every uγ := |T (xγ)| ∈ Y + \ {0}, where γ ∈ Γ0, there is y∗t(γ) such
that y∗t(γ)(uγ) > 0 (i.e., t(γ) ∈ s(uγ)) and uγ > y∗t(γ)(yγ) · yt(γ). Now from (4.1) it
follows that the series ∑

γ∈Γ0

|aγ | · y∗t(γ)(uγ) · yt(γ) (4.2)

converges in Y , too. But the set Γ0 is uncountable, so we may assume that the
number infγ∈Γ0

y∗t(γ)(uγ) is positive, thus the convergence of the series (4.2) implies
the convergence of the series

∑
γ∈Γ0

|aγ |yt(γ). Since the elements yt(γ), γ ∈ Γ0, are
pairwise disjoint we have that the basic set {xγ : γ ∈ Γ0} dominates the basic set
{yt(γ) : γ ∈ Γ0} ⊂ {yt : t ∈ Θ} = AY , with card(Γ) = card(Γ0) 6 card(Θ). But
the bases are symmetric, so the latter implies that for every two sequences {γn} ⊂
Γ and {tn} ⊂ Θ the basic sequence {xγn} dominates the basic sequence {ytn}.

Similarly, there is an uncountable basic subset of AY = {yt : t ∈ Θ} of the same
cardinality as Θ, dominating an uncountable basic subset of AY = {xγ : γ ∈ Γ},
and card(Θ) 6 card(Γ). Hence (similarly as above), the basic sequence {ytn}
dominates the basic sequence {xγn}, so that the sequences are equivalent.

We thus have obtained that the sets Γ and Θ are of the same cardinality and
that the bases AX and AY of Xa and Ya, respectively, are equivalent. This means
that there is a bijection f from Γ onto Θ such that, for every family (aγ)γ∈Γ of real
numbers, both the series,

∑
γ∈Γ aγxγ and

∑
γ∈Γ aγyf (γ), converge (topologically)

simultaneously.
It follows that the linear operator R from Xa onto Ya such that R(xγ) = yf (γ),

for all γ ∈ Γ, is well defined and that R is a bijection. Because the orderings of
Xa and Ya are coordinatewise, the operators R and R−1 are positive, whence
continuous [4, Theorem 12.3]. The proof of part (1.) of our theorem is complete.

Part (2.). Both the operators R and R−1, defined above, are positive, hence order
isomorphisms [4, Theorem 7.3]. Thus R is an order-topological isomorphism from
Xa onto Ya.

Part (3.). This part follows from Theorem 2.1 applied to part (2.). �

Remark 4.4. An inspection of Step 1 of the proof of Theorem 4.2 shows that if
Xa (or Ya) is not an `1-space, then we may replace the request for AX and AY
to be of the cardinality at least continuum by the weaker hypothesis: card(AX),
card(AX) > ℵ0.
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5. Applications to Orlicz spaces `ϕ(Γ)

In this section, we present a method of constructing D-spaces from “small” Ba-
nach sequence lattices with the σ-Levi property. The construction is similar to
Drewnowski’s construction of order continuous D-spaces [8, p. 158].

Let W = (W, ‖ ‖W ) be a σ-Dedekind complete Banach sequence lattice, i.e.,
W is an order ideal of the lattice RN such that, if x = (an) ∈ W and |bn| 6 |an|
for all n’s, then y = (bn) ∈ W and ‖y‖W 6 ‖x‖W . Let us assume that W is
a symmetric sequence space: for every x = (an) ∈ W and every permutation π of
the integers, we have

(s1) the element π̂(x) := (aπ(n)) lies in W , and
(s2) ‖x‖ = ‖π̂(x)‖.

These two conditions imply that the sequence (en) of the standard unit vectors is
a symmetric basis of the order continuous partWa ofW , and that, if x = (an) ∈W ,
then ∥∥∥∥∥

∞∑
n=1

anen

∥∥∥∥∥
W

=

∥∥∥∥∥
∞∑
n=1

|an|eπ(n)

∥∥∥∥∥
W

=

∥∥∥∥∥
∞∑
n=1

|aπ(n)|ekn

∥∥∥∥∥
W

(5.1)

for every permutation π and every sequence (kn) of pairwise distinct positive
integers [15, pp. 114-115].

Now we set

W (Γ) := {x ∈ RΓ : s(x) is either finite, or countable infinite and x|s(x) ∈W}

(recall that s(x) denotes the support of x). Then W (Γ), endowed with the coor-
dinatewise ordering, is a σ-Dedekind complete linear lattice.

If x = (aγ)γ∈Γ ∈ W (Γ) has an infinite support, we set ‖x‖ := ‖x|s(x)‖W .
If s(x) = ∅, we set ‖x‖ = 0, and for s(x) finite (nonempty): s(x) = {γ1, . . . , γk}, we
complete s(x) with any infinite sequence (of pairwise distinct elements)
{γk+1, . . .} ⊂ Γ and we set ‖x‖ := ‖(aγn)‖W , where aγn = 0 for n > k + 1.
By property 5.1, (W (Γ), ‖ ‖) is a Banach lattice, and it is easy to check that its
order continuous part (W (Γ))a equals Wa(Γ). Moreover,

(p1) if W is not o.c. and has the σ-Levi property, then W (Γ) is also of this
type (obvious);

(p2) if U is another symmetric sequence space and the spaces Wa(Γ) and Ua(Γ)
are isomorphic, then the (symmetric) bases of Wa and Ua are equivalent
(by Proposition 1.2).

In particular, forW = `∞ we obtain the D-space `c∞(Γ) with (W (Γ))a = Wa(Γ) =
c0(Γ).

Now we come to a larger class of non-o.c. symmetric sequence spaces with the
Levi property.
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An Orlicz function ϕ is a non-negative, non-decreasing, convex function defined
on [0,∞) and satisfying ϕ(0) = 0. We define the convex modular functional
%ϕ : RN → [0,∞] by the formula %ϕ(x) =

∑∞
n=1 ϕ(|an|), x = (an). The Orlicz

space `ϕ is a Banach sequence lattice of the form

`ϕ = {x ∈ RN : %ϕ(x/λ) <∞, for some λ > 0}

endowed with the norm

‖x‖ϕ = inf{λ > 0: %ϕ(x/λ) 6 1}.

It is obvious that `ϕ is a symmetric sequence space, and it is known [21] that the
space

hϕ := {x ∈ RN : %ϕ(x/λ) <∞, for all λ > 0}
is the order continuous part of `ϕ. We have that `ϕ = hϕ if and only if ϕ fulfils
the so-called ∆2-condition at 0: there are positive numbers t0 and K such that
ϕ(2t) 6 Kϕ(t) for all t ∈ [0, t0] (see e.g., [15, Proposition 4.a.4]); then we write
ϕ ∈ ∆2.

It is easy to verify that the Orlicz function ϕ of the form ϕ(x) = x2e−1/x, for
x > 0, and ϕ(0) = 0, does not satisfy the ∆2-condition at 0. For other examples
of Orlicz functions ϕ such that ϕ 6∈ ∆2 see e.g. [7]. In the latter case, `ϕ is a dual
Banach lattice [15, Proposition 4.b.1], thus it has the Levi property [17, Theorems
2.4.19 and 2.4.21]. Summing up,

if ϕ 6∈ ∆2, then W := `ϕ is a symmetric non-o.c. sequence space with the Levi
property.

By property (p1), if ϕ 6∈ ∆2 then `ϕ(Γ) is a non-o.c. D-space and its order con-
tinuous part (`ϕ(Γ))a equals hϕ(Γ). Hence, from Theorem 4.2, property (p2), and
[15, Proposition 4.a.5] we obtain

Corollary 5.1. Let Γ,Θ be two sets of the cardinality at least continuum, and let
ϕ,ψ be two Orlicz functions not fulfilling the ∆2-condition at 0. Then the following
four conditions are equivalent:

(i) There are continuous linear injections from `ϕ(Γ) into `ψ(Θ) and vice
versa.

(ii) The Banach lattices `ϕ(Γ) and `ψ(Θ) (as well as hϕ(Γ) and hψ(Θ)) are
order-topologically isomorphic.

(iii) The natural unit vector bases of hϕ and hψ are equivalent.
(iv) The functions ϕ and ψ are equivalent at 0: there exist constants k,K > 0

and t0 > 0 such that for all t ∈ [0, t0]

K−1ϕ(k−1t) 6 ψ(t) 6 Kϕ(kt).

We end this section with the following observation. If ϕ is an Orlicz func-
tion with ϕ 6∈ ∆2, then `ϕ contains an isomorphic copy of `∞ (see [15, Proposi-
tion 4.a.4]), so `ϕ(R) does. Moreover, the identity embedding of `ϕ(R) into the
D-space `c∞(R) is continuous (e.g., because positive). We claim that:



A generalization of Drewnowski’s result on the Cantor-Bernstein type theorem 295

If ϕ is nondegenerate (i.e., ϕ does not vanish on an interval [0, s] for some
s > 0), then `ϕ(R) contains only isomorphic copies of `∞ and not `c∞(R). In
particular, there is no extension of any isomorphic embedding `∞ → `ϕ(R) to an
isomorphism (and even to a continuous injection) `∞(R)→ `ϕ(R).

Indeed, if there was a continuous injection from `c∞(R) into `ϕ(R) then, by
Theorem 4.2, the bases of c0(R) = (`c∞(R))a and hϕ(R) = (`ϕ(R))a would be
equivalent. By property (p2), we would have hϕ = c0, thus ϕ would be degenerate;
a contradiction.
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