Functiones et Approximatio 50.1 (2014), 191–198 doi: 10.7169/facm/2014.50.1.8

MACKEY TOPOLOGIES AND COMPACTNESS IN SPACES OF VECTOR MEASURES

MARIAN NOWAK

Dedicated to Lech Drewnowski on the occasion of his 70th birthday

Abstract: Let Σ be a σ -algebra of subsets of a non-empty set Ω . Let $B(\Sigma)$ be the space of all bounded Σ -measurable scalar functions defined on Ω , equipped with the natural Mackey topology $\tau(B(\Sigma), ca(\Sigma))$. Let (E, ξ) be a quasicomplete locally convex Hausdorff space and let $ca(\Sigma, E)$ be the space of all ξ -countably additive E-valued measures on Σ , provided with the topology \mathcal{T}_s of simple convergence. We characterize relative \mathcal{T}_s -compactness in $ca(\Sigma, E)$, in terms of the topological properties of the corresponding sets in the space $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$ of all $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous integration operators from $B(\Sigma)$ to E. A generalized Nikodym type convergence theorem is derived.

Keywords: spaces of bounded measurable functions, Mackey topologies, strongly Mackey space, vector measures, integration operators, topology of simple convergence.

1. Introduction and terminology

We denote by $\sigma(L, K)$ and $\tau(L, K)$ the weak topology and the Mackey topology on L with respect to a dual pair $\langle L, K \rangle$. For a locally convex space (L, η) by $(L, \eta)'$ or L'_{η} we denote the topological dual of (L, η) . Recall that (L, η) is a strongly Mackey space if every relatively $\sigma(L'_{\eta}, L)$ -countably compact subset of L'_{η} is η -equicontinuous.

We assume that Σ is a σ -algebra of subsets of a non-empty set Ω . Let $B(\Sigma)$ denote the Banach space of all bounded Σ -measurable scalar functions defined on Ω , provided with the uniform norm $\|\cdot\|$. Denote by $ba(\Sigma)$ the Banach space of all bounded finitely additive scalar measures on Σ with the norm $\|\mu\| = |\mu|(\Omega)$, where $|\mu|(A)$ denotes the variation of μ on $A \in \Sigma$. Then the Banach dual $B(\Sigma)^*$ of $B(\Sigma)$ can be identified with $ba(\Sigma)$ through the integration mapping $ba(\Sigma) \ni$ $\mu \mapsto \Phi_{\mu} \in B(\Sigma)^*$, where $\Phi_{\mu}(f) = \int_{\Omega} f d\mu$ for $f \in B(\Sigma)$. Moreover, $\|\Phi_{\mu}\| = |\mu|(\Omega)$ (see [DU, Chap. 1, Theorem 13]). Let $ca(\Sigma)$ be the subspace of $ba(\Sigma)$ consisting of all countably additive measures.

²⁰¹⁰ Mathematics Subject Classification: primary: 46G10; secondary: 28A25, 28A33, 47B38

Definition 1.1. Let $\mu \in ba(\Sigma)$. A linear functional Φ_{μ} on $B(\Sigma)$ is said to be σ -smooth if $\Phi_{\mu}(f_n) \to 0$ for each uniformly bounded sequence (f_n) in $B(\Sigma)$ such that $f_n(\omega) \to 0$ for all $\omega \in \Omega$.

By $B(\Sigma)_c^*$ we will denote the space of all σ -smooth linear functionals on $B(\Sigma)$.

Proposition 1.1. For $\mu \in ba(\Sigma)$ the following statements are equivalent:

- (i) Φ_{μ} is σ -smooth.
- (ii) $\mu \in ca(\Sigma)$.

Proof. (i) \Longrightarrow (ii) Assume that Φ_{μ} is σ -smooth, and let $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$. Then $\mathbb{1}_{A_n}(\omega) \to 0$ for all $\omega \in \Omega$ and $\sup_n ||\mathbb{1}_{A_n}|| \leq 1$. Hence $\mu(A_n) = \int_{\Omega} \mathbb{1}_{A_n} d\mu \to 0$.

(ii) \Longrightarrow (i) Assume that $\mu \in ca(\Sigma)$ and let $f_n(\omega) \to 0$ for all $\omega \in \Omega$ and $\sup_n ||f_n|| < \infty$. Then by the Lebesgue dominated convergence theorem, $\int_{\Omega} |f_n| d|\mu| \to 0$. Since $|\Phi_{\mu}(f_n)| \leq \int_{\Omega} |f_n| d|\mu| \to 0$, we see that Φ_{μ} is σ -smooth.

For $\omega \in \Omega$ let $\Phi_{\omega}(f) = f(\omega)$ for $f \in B(\Sigma)$. Then $\Phi_{\omega} \in B(\Sigma)_c^*$ and the set $\{\Phi_{\omega} : \omega \in \Omega\}$ separates the points of Ω .

Let (E,ξ) be a locally convex Hausdorff space, briefly lcHs (over the field of complex or real numbers). By $ca(\Sigma, E)$ we denote the space of all ξ -countably additive vector measure $m : \Sigma \to E$, provided with the topology \mathcal{T}_s of simple convergence. By $\mathcal{S}(\Sigma)$ we denote the space of all scalar-valued Σ -simple functions defined on Ω . Then $\mathcal{S}(\Sigma)$ can be endowed with the (locally convex) universal measure topology τ of Graves [G], that is, τ is the coarsest locally convex topology on $\mathcal{S}(\Sigma)$ such that the integration map $T_m : \mathcal{S}(\Sigma) \ni s \mapsto \int_{\Omega} s \, dm \in E$ is continuous for every locally convex space (E,ξ) and every $m \in ca(\Sigma, E)$ (see [G, p. 5]). Let $(L(\Sigma), \hat{\tau})$ stand for the completion of $(\mathcal{S}(\Sigma), \tau)$. It is known that both $(\mathcal{S}(\Sigma), \tau)$ and $(L(\Sigma), \hat{\tau})$ are strongly Mackey spaces (see [G, Corollaries 11.7 and 11.8]). It follows that $\tau = \tau(\mathcal{S}(\Sigma), ca(\Sigma))$ and $\hat{\tau} = \tau(L(\Sigma), ca(\Sigma))$ (see [G], [GR]). We have $\mathcal{S}(\Sigma) \subset B(\Sigma) \subset L(\Sigma)$ and the restriction $\hat{\tau}$ from $L(\Sigma)$ to $B(\Sigma)$ coincides with the Mackey topology $\tau(B(\Sigma), ca(\Sigma))$ (see [GR, §4]). Thus by Proposition 1.1 we get

$$\hat{\tau}|_{B(\Sigma)} = \tau(B(\Sigma), ca(\Sigma)) = \tau(B(\Sigma), B(\Sigma)_c^*).$$

Then $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ is a strongly Mackey space (see [G, Corollary 11.8]). Moreover, if E is complete in its Mackey topology $\tau(E, E'_{\xi})$, then for each $m \in ca(\Sigma, E)$, the integration map T_m can be uniquely extended to a $(\hat{\tau}, \xi)$ -continuous map $\widetilde{T}_m : L(\Sigma) \to E$ (see [GR]).

Graves and Ruess ([GR, Theorem 7]) derived a characterization of relative \mathcal{T}_s -compactness in $ca(\Sigma, E)$ in terms of the corresponding integration operators $T_m : \mathcal{S}(\Sigma) \to E$ (resp. $\widetilde{T}_m : L(\Sigma) \to E$ whenever E is complete in its Mackey topology $\tau(E, E'_{\varepsilon})$).

The aim of this paper is to characterize relative compactness in $(ca(\Sigma, E), \mathcal{T}_s)$ in terms of the corresponding integration operators from $B(\Sigma)$ to E whenever (E, ξ) is a quasicomplete lcHs (see Theorem 2.2 below). As an application, we obtain a generalized Nikodym type convergence theorem (see Theorem 2.3 below).

2. Topological properties of spaces of vector measures

We start with the following useful result.

Proposition 2.1. Assume that (f_n) is a uniformly bounded sequence in $B(\Sigma)$ such that $f_n(\omega) \to 0$ for all $\omega \in \Omega$. Then $f_n \to 0$ for $\tau(B(\Sigma), ca(\Sigma))$.

Proof. Let \mathcal{M} be a relatively $\sigma(ca(\Sigma), B(\Sigma))$ -compact subset of $ca(\Sigma)$. Then in view of [Z, Theorem 1.1] \mathcal{M} is bounded and uniformly countably additive, and hence $|\mathcal{M}| (= \{|\mu| : \mu \in \mathcal{M}\})$ is uniformly countably additive (see [DU, Chap. 1, Proposition 17]). By [K, Theorem 1] we obtain that $\sup_{\mu \in \mathcal{M}} \int_{\Omega} |f_n| d|\mu| \to 0$; hence $\sup_{\mu \in \mathcal{M}} |\int_{\Omega} f_n d\mu| \to 0$. It follows that $f_n \to 0$ for $\tau(B(\Sigma), ca(\Sigma))$, as desired.

For terminology and basic results concerning the integration with respect to vector measures we refer the reader to $[L], [P_1], [P_2].$

Let (E,ξ) be a quasicomplete lcHs (over the field of complex or real numbers) and let \mathcal{P}_{ξ} stand for the set of all ξ -continuous seminorms on E. Let $m: \Sigma \to E$ be a ξ -bounded measure (i.e., the range of m is ξ -bounded in E). Given $f \in B(\Sigma)$, let (s_n) be a sequence of Σ -simple scalar functions that converges uniformly to f on Ω . Following [P₁, Definition 1] we say that f is m-integrable and define

$$\int_{\Omega} f \, dm := \xi - \lim \int_{\Omega} s_n \, dm$$

The $\int_{\Omega} f \, dm$ is well defined (see [P₁, Lemma 5]) and the map $T_m : B(\Sigma) \to E$ given by $T_m(f) = \int_{\Omega} f \, dm$ is $(\|\cdot\|, \xi)$ -continuous and linear, and for each $e' \in E'_{\xi}$

$$e'\left(\int_{\Omega} f\,dm\right) = \int_{\Omega} f\,d(e'\circ m) \qquad \text{for } f\in B(\Sigma) \qquad (\text{see }[\mathbf{P}_1,\,\text{Lemma 5}]).$$

Conversely, let $T: B(\Sigma) \to E$ be a $(\|\cdot\|, \xi)$ -continuous linear operator, and let $m(A) = T(\mathbb{1}_A)$ for $A \in \Sigma$. Then $m : \Sigma \to E$ is a ξ -bounded vector measure, called the representing measure of T and $T_m(f) = T(f)$ for $f \in B(\Sigma)$ (see [P₁, Definition 2]).

Definition 2.1. A linear operator $T : B(\Sigma) \to E$ is said to be σ -smooth if $T(f_n) \to 0$ in ξ for each uniformly bounded sequence (f_n) in $B(\Sigma)$ such that $f_n(\omega) \to 0$ for all $\omega \in \Omega$.

The following characterization of σ -smooth operators from $B(\Sigma)$ into a quasicomplete lcHs (E,ξ) displays the close connection between the Mackey topology $\tau(B(\Sigma), ca(\Sigma))$ on $B(\Sigma)$ and E-valued ξ -countably additive measures.

Proposition 2.2. Assume that (E,ξ) is a quasicomplete lcHs. Then for a ξ bounded measure $m: \Sigma \to E$ the following statements are equivalent:

- $\begin{array}{ll} (\mathrm{i}) & e' \circ m \in ca(\Sigma) \ for \ each \ e' \in E'_{\xi}.\\ (\mathrm{ii}) & e' \circ T_m \in B(\Sigma)^*_c \ for \ each \ e' \in E'_{\xi}.\\ (\mathrm{iii}) & T_m \ is \ (\sigma(B(\Sigma), ca(\Sigma)), \sigma(E, E'_{\xi}))\text{-}continuous. \end{array}$

- (iv) T_m is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous.
- (v) T_m is $(\tau(B(\Sigma), ca(\Sigma)), \xi))$ -sequentially continuous.
- (vi) T_m is σ -smooth.
- (vii) m is ξ -countably additive.

Proof. (i) \iff (ii) For each $e' \in E'_{\xi}$ we have

$$(e' \circ T_m)(f) = \int_\Omega f \, d(e' \circ m) \qquad \text{for all} \ \ f \in B(\Sigma).$$

Hence by Proposition 1.1 we get $e' \circ T_m \in B(\Sigma)_c^*$ if and only if $e' \circ m \in ca(\Sigma)$. (ii) \iff (iii) See [AB, Theorem 9.26].

(iii) \Longrightarrow (iv) Assume that T_m is $(\sigma(B(\Sigma), ca(\Sigma)), \sigma(E, E'_{\xi}))$ -continuous. Then T_m is $(\tau(B(\Sigma), ca(\Sigma)), \tau(E, E'_{\xi}))$ -continuous (see [AB, Ex. 11, p. 149]). It follows that T_m is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous because $\xi \subset \tau(E, E'_{\xi})$.

 $(iv) \Longrightarrow (v)$ It is obvious.

(v) \Longrightarrow (vi) Assume that T_m is $(\tau(B(\Sigma), ca(\Sigma), \xi)$ -sequentially continuous, and let (f_n) be a sequence in $B(\Sigma)$ such that $f_n(\omega) \to 0$ for all $\omega \in \Omega$ and $\sup ||f_n|| < \infty$. Then by Proposition 2.1, $f_n \to 0$ for $\tau(B(\Sigma), ca(\Sigma))$. Hence $T(f_n) \to 0$ for ξ .

(vi) \Longrightarrow (vii) Assume that (vi) holds and let $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$. Then $\mathbb{1}_{A_n}(\omega) \downarrow 0$ for $\omega \in \Omega$ and $\sup_n ||\mathbb{1}_{A_n}|| \leq 1$. It follows that $m(A_n) = T_m(\mathbb{1}_{A_n}) \to 0$ for ξ , i.e., m is ξ -countably additive.

 $(vii) \Longrightarrow (i)$ It is obvious.

Let $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$ stand for the space of all $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -continuous linear operators from $B(\Sigma)$ to E, equipped with the topology \mathcal{T}_s of simple convergence. Then \mathcal{T}_s is generated by the family $\{q_{p,u} : p \in \mathcal{P}_{\xi}, u \in B(\Sigma)\}$ of seminorms on $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$, where

$$q_{p,u}(T) := p(T(u))$$
 for all $T \in \mathcal{L}_{\tau,\xi}(B(\Sigma), E)$.

Denote by \mathcal{T}_s the topology of simple convergence in $ca(\Sigma, E)$. Then \mathcal{T}_s is generated by the family $\{q_{p,A} : p \in \mathcal{P}_{\xi}, A \in \Sigma\}$ of seminorms, where

$$q_{p,A}(m) := p(m(A))$$
 for all $m \in ca(\Sigma, E)$.

Now we establish some terminology (see [P₁, pp. 92–93]). For $p \in \mathcal{P}_{\xi}$, let $E_p = (E, p)$ be the associated seminormed space. Denote by $(\widetilde{E}_p, \|\cdot\|_p^{\sim})$ the completion of the quotient normed space $E/p^{-1}(0)$. Let $\Pi_p : E_p \to E/p^{-1}(0) \subset \widetilde{E}_p$ be the canonical quotient map (see [P₁, p. 92]).

Given a measure $m: \Sigma \to E$, let $m_p: \Sigma \to E_p$ be given by

$$m_p(A) := (\Pi_p \circ m)(A) \quad \text{for } A \in \Sigma.$$

Then m_p is a Banach space-valued measure on Σ . We define the *p*-semivariation $||m||_p$ of *m* by

$$||m||_p(A) := ||m_p||(A) \quad \text{for } A \in \Sigma,$$

where $||m_p||$ denotes the semivariation of $m_p : \Sigma \to E_p$. Note that m is ξ -bounded if and only if $||m||_p(\Omega) < \infty$ for each $p \in \mathcal{P}_{\xi}$. Moreover, we have (see [P₁, Lemma 7])

$$||m||_p(\Omega) = ||T_m||_p = \sup\left\{p\left(\int_{\Omega} f\,dm\right) : f \in B(\Sigma), ||f|| \le 1\right\}.$$
 2.1

The following result will be of importance (see [SZ, Theorem 2]).

Theorem 2.1. Let \mathcal{K} be a \mathcal{T}_s -compact subset of $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$. If C is a $\sigma(E'_{\xi}, E)$ closed and ξ -equicontinuous subset of E'_{ξ} , then $\{e' \circ T : T \in \mathcal{K}, e' \in C\}$ is a $\sigma(B(\Sigma)^*_c, B(\Sigma))$ -compact subset of $B(\Sigma)^*_c$.

Now using Theorem 2.1 we can state a characterization of relative \mathcal{T}_s -compactness in the space $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$.

For a subset \mathcal{M} of $ca(\Sigma, E)$ let

$$\mathcal{K}_{\mathcal{M}} = \{ T_m \in \mathcal{L}_{\tau,\xi}(B(\Sigma), E) : m \in \mathcal{M} \}.$$

Theorem 2.2. Assume that (E, ξ) is a quasicomplete lcHs. Then for a subset \mathcal{M} of $ca(\Sigma, E)$ the following statements are equivalent:

- (i) $\mathcal{K}_{\mathcal{M}}$ is a relatively \mathcal{T}_s -compact set in $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$.
- (ii) $\mathcal{K}_{\mathcal{M}}$ is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -equicontinuous; and for each $f \in B(\Sigma)$, the set $\{\int_{\Omega} f \, dm : m \in \mathcal{M}\}$ is relatively ξ -compact in E.
- (iii) $\int_{\Omega} f_n dm \to 0$ in ξ uniformly for $m \in \mathcal{M}$ whenever (f_n) is a uniformly bounded sequence in $B(\Sigma)$ such that $f_n(\omega) \to 0$ for all $\omega \in \Omega$; and for each $f \in B(\Sigma)$, the set $\{\int_{\Omega} f dm : m \in \mathcal{M}\}$ is relatively ξ -compact in E.
- (iv) \mathcal{M} is uniformly ξ -countably additive; and for each $A \in \Sigma$, the set $\{m(A) : m \in \mathcal{M}\}$ is relatively ξ -compact in E.
- (v) \mathcal{M} is a relatively \mathcal{T}_s -compact set in $ca(\Sigma, E)$.

Proof. (i) \Longrightarrow (ii) Assume that \mathcal{K} is relatively \mathcal{T}_s -compact. Let W be an absolutely convex and ξ -closed neighbourhood of 0 for ξ in E. Then the polar W^0 of W, with respect to the dual pair $\langle E, E'_{\xi} \rangle$, is a $\sigma(E'_{\xi}, E)$ -closed and ξ -equicontinuous subset of E'_{ξ} (see [AB, Theorem 9.21]). Hence in view of Theorem 2.1 the set $H = \{e' \circ T_m : m \in \mathcal{M}, e' \in W^0\}$ in $B(\Sigma)^*_c$ is relatively $\sigma(B(\Sigma)^*_c, B(\Sigma))$ -compact. Since $(B(\Sigma), \tau(B(\Sigma), ca(\Sigma)))$ is a strongly Mackey space, the set H is $\tau(B(\Sigma), ca(\Sigma))$ -equicontiunous. It follows that there exists a $\tau(B(\Sigma), ca(\Sigma))$ -neighborhood V of 0 in $B(\Sigma)$ such that $H \subset V^0$, where V^0 denotes the polar of V with respect to the dual pair $\langle B(\Sigma), B(\Sigma)^*_c \rangle$. Hence for each $m \in \mathcal{M}$ we have that $\{e' \circ T_m : e' \in W^0\} \subset V^0$, i.e., if $e' \in W^0$, then $|e'(T_m(f))| \leq 1$ for all $f \in V$. This means that for each $m \in \mathcal{M}$ we get $W^0 \subset T_m(V)^0$. Hence $T_m(V) \subset T_m(V)^{00} \subset W^{00} = W$ for each $m \in \mathcal{M}$, i.e., $\mathcal{K}_{\mathcal{M}}$ is $(\tau(B(\Sigma), ca(\Sigma)), \xi)$ -equicontinuous. Clearly, for each $f \in B(\Sigma)$, the set $\{T_m(f) : m \in \mathcal{M}\}$ is relatively ξ -compact in E.

(ii) \Longrightarrow (iii) Assume that (ii) holds. Let $p \in \mathcal{P}_{\xi}$ and $\varepsilon > 0$ be given. Then there exists a $\tau(B(\Sigma), ca(\Sigma))$ -neighborhood V of 0 in $B(\Sigma)$ such that for each $m \in \mathcal{M}$ we have $p(T_m(f)) \leq \varepsilon$ for all $f \in V$. Let $f_n(\omega) \to 0$ for all $\omega \in \Omega$ and $\sup_n ||f_n|| < \infty$. Then $f_n \to 0$ for $\tau(B(\Sigma), ca(\Sigma))$ (see Proposition 2.1). Hence there exists $n_{\varepsilon} \in \mathbb{N}$ such that $f_n \in V$ for $n \ge n_{\varepsilon}$. Then $\sup_{m \in \mathcal{M}} p(T_m(f_n)) = \sup_{m \in \mathcal{M}} p(\int_{\Omega} f_n \, dm) \leqslant 1$ ε for all $n \ge n_{\varepsilon}$, as desired.

(iii) \Longrightarrow (iv) Assume that (iii) holds, and let $A_n \downarrow \emptyset$, $(A_n) \subset \Sigma$. Then $\mathbb{1}_{A_n}(\omega) \to$ 0 for all $\omega \in \Omega$ and $\sup_n ||\mathbb{1}_{A_n}|| \leq 1$. Hence for each $p \in \mathcal{P}_{\xi}$ we have

$$\sup_{m \in \mathcal{M}} p(m(A_n)) = \sup_{m \in \mathcal{M}} p\Big(\int_{\Omega} \mathbb{1}_{A_n} dm\Big) \longrightarrow 0$$

 $(iv) \Longrightarrow (v)$ See [GR, Theorem 7].

 $(v) \Longrightarrow (i)$ Assume that \mathcal{M} is relatively \mathcal{T}_s -compact, and let $(T_{m_{\alpha}})$ be a net in $\mathcal{K}_{\mathcal{M}}$. Without loss of generality, we can assume that $m_{\alpha} \to m$ for \mathcal{T}_s , where $m \in ca(\Sigma, E)$. We shall show that $T_{m_{\alpha}} \to T_m$ in $(\mathcal{L}_{\tau,\xi}(B(\Sigma), E), \mathcal{T}_s)$. Indeed, let $p \in \mathcal{P}_{\xi}$ and fix $\varepsilon > 0$. Since \mathcal{M} is a \mathcal{T}_s -bounded subset of $ca(\Sigma, E)$, for each $A \in \Sigma$ we have $\sup_{\alpha} p(m_{\alpha}(A)) = \sup_{\alpha} q_{p,A}(m_{\alpha}) < \infty$. Hence, since the mapping $\Pi_p: E \to \widetilde{E}_p$ is $(p, \|\cdot\|_p^{\sim})$ -continuous, we obtain that $\sup_{\alpha} \|(m_{\alpha})_p(A)\|_p^{\sim} =$ $\sup_{\alpha} \|(\Pi_p \circ m_{\alpha})(A)\|_p^{\sim} < \infty$. In view of the Nikodym boundedness theorem (see [DU, Chap. 1, Theorem 1] and (2.1) we get

$$c = \sup_{\alpha} \|T_{m_{\alpha}}\|_{p} = \sup_{\alpha} \|m_{\alpha}\|_{p}(\Omega) < \infty.$$

Let $f \in B(\Sigma)$ be given and choose a Σ -simple function s_0 such that ||f - f| = 1 $s_0 \| \leq \frac{\varepsilon}{3a}$, where $a = \max(c, \|T_m\|_p)$. Then there exists α_0 such that $p(T_{m_\alpha}(s_0) - c_{\alpha})$ $T_m(s_0) \leq \frac{\varepsilon}{3}$ for $\alpha \geq \alpha_0$. Hence for $\alpha \geq \alpha_0$ we get

$$p(T_{m_{\alpha}}(f) - T_{m}(f)) \\ \leqslant p(T_{m}(f - s_{0})) + p(T_{m}(s_{0}) - T_{m_{\alpha}}(s_{0})) + p(T_{m_{\alpha}}(s_{0}) - T_{m_{\alpha}}(f)) \\ \leqslant \|T_{m}\|_{p} \cdot \|f - s_{0}\| + p(T_{m}(s_{0}) - T_{m_{\alpha}}(s_{0})) + \|T_{m_{\alpha}}\| \cdot \|s_{0} - f\| \\ \leqslant a \cdot \frac{\varepsilon}{3a} + \frac{\varepsilon}{3} + a \cdot \frac{\varepsilon}{3a} = \varepsilon.$$

This means that $T_{m_{\alpha}} \to T_m$ for \mathcal{T}_s , as desired.

Now we derive a generalized Nikodym type convergence theorem for integration operators $T: B(\Sigma) \to E$.

Theorem 2.3. Assume that (E,ξ) is a quasicomplete lcHs. Let $m_k: \Sigma \to E$ be a ξ -countably additive measure for $k \in \mathbb{N}$ and assume that $m(A) = \xi - \lim m_k(A)$ exists for each $A \in \Sigma$. Then the following statements hold:

- (i) $m: \Sigma \to E$ is a ξ -countably additive measure, and the integration operator $T_m: B(\Sigma) \to E \text{ is } \sigma\text{-smooth.}$
- (ii) $\int_{\Omega} f \, dm = \xi \lim_{\Omega} \int_{\Omega} f \, dm_k$ for all $f \in B(\Sigma)$. (iii) $\int_{\Omega} f_n \, dm_k \to 0$ in ξ uniformly for $k \in \mathbb{N}$ whenever (f_n) is a uniformly bounded sequence in $B(\Sigma)$ such that $f_n(\omega) \to 0$ for all $\omega \in \Omega$.

Proof. In view of the Nikodym convergence theorem (see [GR, Theorem 9]) $m : \Sigma \to E$ is ξ -countably additive, and by Proposition 2.2 $T_m : B(\Sigma) \to E$ is σ -smooth. Arguing as in the proof of [N, Theorem 3.3], we obtain that $T_{m_k} \to T_m$ in $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$ for \mathcal{T}_s , i.e., $\int_{\Omega} f \, dm = \xi - \lim_k \int_{\Omega} f \, dm_k$ for all $f \in B(\Sigma)$. Since $\{T_{m_k} : k \in \mathbb{N}\} \cup \{T_m\}$ is a \mathcal{T}_s -compact subset of $\mathcal{L}_{\tau,\xi}(B(\Sigma), E)$, by Theorem 2.2 $\int_{\Omega} f_n \, dm_k \to 0$ in ξ uniformly for $k \in \mathbb{N}$ if (f_n) is a uniformly bounded sequence in $B(\Sigma)$ with $f_n(\omega) \to 0$ for all $\omega \in \Omega$.

Remark 2.1. In case $B(\Sigma)$ is the Banach lattice of bounded Σ -measurable realvalued functions on Ω and (E,ξ) is a quasicomplete real lcHs that is complete in its Mackey topology, the equivalences $(i) \iff (ii) \iff (iv) \iff (v)$ in Theorem 2.2 were derived in [N, Theorem 3.2].

Remark 2.2. One can note that the equivalence (i) \iff (iii) in Theorem 2.2 is related to a Grothedieck's characterization of relative weak compactness in the space of bounded complex Radon measures on a locally compact space (see [Gr, Theorem 2]).

Acknowledgements. The author wishes to thank the referee for useful suggestions that have improved the paper.

References

- [AB] C.D. Aliprantis, and O. Burkinshaw, *Positive Operators*, Academic Press, New York, 1985.
- [B] N. Bourbaki, *Elements of Mathematics, Topological Vector Spaces*, Springer-Verlag, Berlin, 1987, Chap. 1–5.
- [D] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math., vol. 92, Springer-Verlag, 1984.
- [DU] J. Diestel and J.J. Uhl, Vector Measures, Amer. Math. Soc., Math. Surveys 15, Providence, RI, 1977.
- [G] W.H. Graves, On the theory of vector measures, Amer. Math. Soc. Memoirs 195 (1977), Providence, R.I.
- [GR] W.H. Graves and W. Ruess, Compactness in spaces of vector-valued measures and a natural Mackey topology for spaces of bounded measurable functions, Contemp. Math. 2 (1980), 189–203.
- [Gr] A. Grothendieck, Sur les applications lineaires faiblement compactes d'espaces de type C(K), Canad. J. Math. 5 (1953), 129–173.
- [K] S.S. Khurana, A topology associated with vector measures, J. Indian Math. Soc. 45 (1981), 167–179.
- [L] D.R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), no. 1, 157–165.
- [N] M. Nowak, Vector measures and Mackey topologies, Indag. Math. 23 (2012), 113–122.
- [P₁] T.V. Panchapagesan, Applications of a theorem of Grothendieck to vector measures, J. Math. Anal. Appl. 214 (1997), 89–101.

- [P₂] T.V. Panchapagesan, Characterizations of weakly compact operators on $C_0(T)$, Trans. Amer. Math. Soc. **350** (1998), no. 12, 4849–4867.
- [SZ] H. Schaefer and Xiao-Dong Zhang, On the Vitali-Hahn-Saks Theorem, in: Operator Theory: Advances and Applications, vol. 75, Birkhäuser, Basel, 1995, pp. 289–297.
- [Z] Xiao-Dong Zhang, On weak compactness is spaces of measures, J. Func. Anal. 143 (1997), 1–9.
- Address: Marian Nowak: Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65–516 Zielona Góra, Poland.

E-mail: M.Nowak@wmie.uz.zgora.pl

Received: 16 April 2013; revised: 4 November 2013