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PRIME-LIKE SEQUENCES LEADING TO THE CONSTRUCTION
OF NORMAL NUMBERS

Jean-Marie De Koninck, Imre Kátai

Abstract: Given an integer q > 2, a q-normal number is an irrational number η such that any
preassigned sequence of k digits occurs in the q-ary expansion of η at the expected frequency,
namely 1/qk. Given an integer q > 3, we consider the sequence of primes reduced modulo q
and examine various possibilities of constructing normal numbers using this sequence. We create
a sequence of independent random variables that mimics the sequence of primes and then show
that for almost all outcomes this allows to obtain a normal number.
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1. Introduction

Given an integer q > 2, a q-normal number, or simply a normal number, is an
irrational number whose q-ary expansion is such that any preassigned sequence,
of length k > 1, of base q digits from this expansion, occurs at the expected
frequency, namely 1/qk.

In earlier papers [3], [4], [5], [6], we used the complexity of the factorization of
integers to create large families of normal numbers. In this paper, given an integer
q > 3, we consider the sequence of primes reduced modulo q and examine various
possibilities of constructing normal numbers using this sequence.

Let Aq := {0, 1, . . . , q − 1}. Given an integer t > 1, an expression of the form
i1i2 . . . it, where each ij ∈ Aq, is called a finite word of length t. The symbol Λ
will denote the empty word. We let Atq stand for the set of all words of length t
and A∗

q stand for the set of all the words regardless of their length. An infinite
sequence of digits a1a2 . . ., where each ai ∈ Aq, is called an infinite word.

An infinite sequence of base q digits a1a2 . . . will be said to be a normal sequence
if any preassigned sequence of k digits occurs at the expected frequency of 1/qk.
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Given a fixed integer q > 3, let

fq(n) =

{
Λ if (n, q) ̸= 1,

ℓ if n ≡ ℓ (mod q), (ℓ, q) = 1.

Further, letting φ stand for the Euler function, set

Bφ(q) = {ℓ1, . . . , ℓφ(q)}

be the set of reduced residues modulo q.
Let ℘ stand for the set of all primes, writing p1 < p2 < · · · for the sequence of

consecutive primes, and consider the infinite word

ξq = fq(p1)fq(p2)fq(p3) . . .

We first state the following conjecture.

Conjecture 1. The word ξq is a normal sequence over Bφ(q) in the sense that
given any integer k > 1 and any word β = r1 . . . rk ∈ Bkφ(q), then, setting

ξ(N)
q = fq(p1)fq(p2) . . . fq(pN ) for each N ∈ N

and
MN (ξq|β) := #{(γ1, γ2)|ξ(N)

q = γ1βγ2},
we have

lim
N→∞

MN (ξq|β)
N

=
1

φ(q)k
.

Now, with the above notation, consider the following weaker conjecture.

Conjecture 2. For every finite word β, there exists a positive integer N such that
MN (ξq|β) > 0.

Remark 1. Observe that, in 2000, Shiu [10] provided some hope in the direction
of a proof of this last conjecture by proving that given any positive integer k, there
exists a string of congruent primes of length k, that is a set of consecutive primes
pn+1 < pn+2 < · · · < pn+k (where pi stands for the i-th prime) such that

pn+1 ≡ pn+2 ≡ · · · ≡ pn+k ≡ a (mod q),

for some positive integer n, for any given modulus q and positive integer a relatively
prime with q.

Let εn be a real function which tends monotonically to 0 as n → ∞ but in
such a way that (log log n)εn → ∞ as n→ ∞. Letting p(n) stand for the smallest
prime factor of n, consider the set

N (εn) := {n ∈ N : p(n) > nεn} = {n1, n2, . . .}. (1.1)

We then have the following conjecture.
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Conjecture 3. Let n1 < n2 < · · · be the sequence defined in (1.1). Then the
infinite word

ξq := fq(n1)fq(n2) . . .

is a normal sequence over the set {ℓ mod q : (ℓ, q) = 1}.

Although the problem of generating normal numbers using the sequence of
primes does seem inaccessible, we will nevertheless manage to create large families
of normal numbers, in the direction of Conjectures 1, 2 and 3, but this time using
prime-like sequences.

2. Main results

Theorem 1. Let n1 < n2 < · · · be the sequence defined in (1.1). Then the infinite
word

ηq := resq(n1) resq(n2) . . . ,

where resq(n) = ℓ if n ≡ ℓ (mod q), contains every finite word whose digits belong
to Bφ(q) infinitely often.

Remark 2. It is now convenient to recall a famous conjecture concerning the
distribution of primes.

Let F1, . . . , Fg be distinct irreducible polynomials in Z[x] (with positive leading
coefficients) and assume that the product F := F1 · · ·Fg has no fixed prime divisor.
Then the famous Hypothesis H of Schinzel and Sierpinski [9] states that there exist
infinitely many integers n such that each Fi(n) (i = 1, . . . , g) is a prime number.
The following quantitative form of Hypothesis H was later given by Bateman and
Horn ([1],[2]):

Bateman-Horn Hypothesis. If Q(F1, . . . , Fg;x) stands for the number of pos-
itive integers n 6 x such that each Fi(n) (i = 1, . . . , g) is a prime number, then

Q(F1, . . . , Fg;x) = (1 + o(1))
C(F1, . . . , Fg)

h1 · · ·hg
x

logg x
(x→ ∞),

where hi = degFi and

C(F1, . . . , Fg) =
∏
p

((
1− 1

p

)−g (
1− ρ(p)

p

))
,

with ρ(p) denoting the number of solutions of F1(n) · · ·Fg(n) ≡ 0 (mod p).

Theorem 2. Let β be an arbitrary word belonging to Bkφ(q) and let ξq be defined
as in Conjecture 3. If the Bateman-Horn Hypothesis holds, then

MN (ξq|β) → ∞ as N → ∞.
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Let

λm =

{
0 if m = 1, 2, . . . , 10,

1/ logm if m > 11.

Let ξm be a sequence of independent random variables defined by P (ξm = 1) = λm
and P (ξm = 0) = 1−λm. Let Ω be the set of all possible events ω in this probability
space.

Let ω be a particular outcome, say m1,m2, . . ., that is one for which ξmj = 1
for j = 1, 2, . . . and ξℓ = 0 if ℓ ̸∈ {m1,m2, . . .}. Now, for a fixed integer q > 3, set
resq(m) = ℓ if m ≡ ℓ (mod q), with ℓ ∈ Aq. Then, let ηq(ω) be the real number
whose q-ary expansion is given by

ηq(ω) = 0. resq(m1) resq(m2) . . .

We then have the following result.

Theorem 3. The number ηq(ω) is a q-normal number for almost all outcomes ω.

3. Preliminary results

For here on, the letter c will be used to denote a positive constant, but not neces-
sarily the same at each occurrence.

Lemma 1. Let q > 2, k > 1 and M > 1 be fixed integers. Given any nonnegative
integer n < qM , write its q-ary expansion as

n =
M−1∑
j=0

εj(n)q
j , εj(n) ∈ Aq

and, given any word α = b1 . . . bk ∈ Akq , set

Eα(n) := #{j ∈ {0, 1, . . . ,M − k} : εj(n) . . . εj+k−1(n) = α}.

Then, there exists a constant c = c(k, q) such that

∑
06n<qM

(
Eα(n)−

M

qk

)2

6 c qM M.

Proof. Let

f(c1, . . . , ck) =

{
1 if (c1, . . . , ck) = (b1, . . . , bk),

0 otherwise.

Then,

Σ1 :=
∑

06n<qM
Eα(n) =

∑
06n<qM

M−k−1∑
j=0

f(εj(n), . . . , εj+k−1(n)) = qM−k(M − k).
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Similarly,

Σ2 :=
∑

06n<qM
Eα(n)

2

=
∑

06n<qM

M−k−1∑
j1=0

M−k−1∑
j2=0

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

=
∑

06n<qM

∑
|j1−j2|6k

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

+
∑

06n<qM

∑
|j1−j2|>k

f(εj1(n), . . . , εj1+k−1(n)) · f(εj2(n), . . . , εj2+k−1(n))

= Σ2,1 +Σ2,2,

say.
On the one hand, it is clear that

0 6 Σ2,1 6 (2k + 1)qM−k(M − k) 6 cqMM. (3.1)

On the other hand, to estimate Σ2,2, first observe that for fixed j1, j2 with |j1−j2| >
k, we have to sum 1 over those n ∈ [0, qM − 1[ for which

εj1(n) . . . εj1+k−1(n) = α = εj2(n) . . . εj2+k−1(n).

But this occurs exactly for qM−2k many n’s. Thus,

Σ2,2 = qM−2k
∑

|j1−j2|>k
06j1,j26M−k−1

1 = qM−2kM2 +O(qMM). (3.2)

In light of (3.1) and (3.2), it follows that

∑
06n<qM

(
Eα(n)−

M

qk

)2

= Σ2 − 2
M

qk
Σ1 +

M2

q2k
qM

= qM−2kM2 +O(qMM)− 2
M2

q2k
qM +

M2

q2k
qM

= O(qMM),

thus completing the proof of the lemma. �

Lemma 2. Given a fixed positive integer R, consider the word κ = c1 . . . cR ∈
ARq . Fix another word α = b1 . . . bk ∈ Akq , with k 6 R. Let K1 stand for the
number of solutions (γ1, γ2) of κ = γ1αγ2, that is the number of those j’s for
which cj+1 . . . cj+k = α. Then, given fixed indices i1, . . . , iH , let K2 be the number
of solutions of cj+1 . . . cj+k = α for which {j + 1, . . . , j + k} ∩ {i1, . . . , iH} = ∅
holds. Then,

0 6 K1 −K2 6 2kH.
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Proof. The proof is obvious. �

Lemma 3 (Borel-Cantelli Lemma). Let {En}n∈N be an infinite sequence of
events in some probability space. Assuming that the sum of the probabilities of
the En’s is finite, that is,

∑∞
n=1 P (En) < +∞, then the probability that infinitely

many of them occur is 0.

Proof. For a proof of this result, see the book of Janos Galambos [8]. �

Lemma 4. Let F1, . . . , Fg be distinct irreducible polynomials in Z[x] (with positive
leading coefficients) and set F := F1 · · ·Fg. Let ρ(p) stand for the number of
solutions of F (n) ≡ 0 (mod p) and assume that ρ(p) < p for all primes p. Write
p(n) for the smallest prime factor of the integer n > 2 and assume that u and x
are real numbers satisfying u > 1 and x1/u > 2. Then,

#{n 6 x : Fi(n) = qi for i = 1, . . . , k}

= x
∏

p<x1/u

(
1− ρ(p)

p

)
×
{
1 +OF (exp(−u(log u− log log 3u− log k − 2))) +OF (exp(−

√
log x))

}
.

Proof. This is Theorem 2.6 in the book of Halbertsam and Richert [7]. �

4. Proof of Theorem 1

Theorem 1 is essentially a consequence of Lemma 4. Indeed, letting a1 < . . . < ak
be positive integers coprime to q and considering the product of linear polynomials

F (n) := (qn+ a1) · · · (qn+ ak),

we have that

#{n ∈ [x, 2x] : p(F (n)) > (2qx+ ak)
εx} = (1 + o(1))x

∏
p<xεx

(
1− ρ(p)

p

)
. (4.1)

If n is counted in (4.1), we certainly have that p(qn + aj) > (qn + aj)
εqn+aj for

j = 1, . . . , k. On the other hand, the desired numbers qn + aj , j = 1, . . . , k, are
consecutive integers with no small prime factors for all but a negligible number.
Indeed, if they were not consecutive, then there would be an integer b ∈ (a1, ak)
such that p(qn+ b) > xεx . Set Gb(n) := qn+ b. Then we would have

#{n ∈ [x, 2x] : p(F (n)Gb(n)) > xεx} = (1 + o(1))x
∏
p<xεx

(
1− ρb(p)

p

)
, (4.2)

where ρb(p) stands for the number of solutions of F (n)Gb(n) ≡ 0 (mod p). Since
ρ(p) = k (recall that the Fi’s are linear) and ρb(p) = k + 1 if p - q, p > ak, it
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follows that we have the following two “opposite” inequalities:∏
p<xεx

(
1− ρ(p)

p

)
> C(a1, . . . , ak) (εx log x)

−k
,

∏
p<xεx

(
1− ρb(p)

p

)
6 C(a1, . . . , ak) (εx log x)

−k−1
.

Now, for the choice of b, we clearly have ak − a1 + 1 − k possible values. We
have thus proved that for every large number x, there is at least one n ∈ [x, 2x]
for which the numbers qn+ a1, . . . , qn+ ak are consecutive integers without small
prime factors, that is for which p(qn+ aj) > (qn+ aj)

εqn+aj , thus completing the
proof of Theorem 1.

5. Proof of Theorem 2

The proof of Theorem 2 is almost similar to the one of Theorem 1. Indeed assume
that the Bateman-Horn Hypothesis holds (see Remark 2 above). Then, let a1
be a positive integer such that a1 ≡ b1 (mod q) and a1 ≡ 0 (mod D), where
D =

∏
π6k, π-q π, where π are primes. Similarly, let a2 be a positive integer such

that a2 ≡ b2 (mod q) and a2 ≡ 0 (mod D), with a2 > a1. Continuing in this
manner, that is if a1, . . . , aℓ−1 have been chosen, we let aℓ ≡ bℓ (mod q) with
D|aℓ and aℓ > aℓ−1. Then, applying the Bateman-Horn Hypothesis, we get that
if 0 < a1 < · · · < ak are k integers satisfying (aj , q) = 1 for j = 1, . . . , k, then for
each positive integer n, setting

F (n) = (qn+ a1) · · · (qn+ ak),

letting
ρ(m) = #{ν (mod m) : F (ν) ≡ 0 (mod m)},

so that ρ(m) = 0 if (m, q) > 1 and ρ(p) < p for each prime p, and further setting

Πx :=
∏
p∈℘

p6√
qx+ak

p,

we have that, as x→ ∞, letting µ stand for the Moebius function,∑
n6x

(F (n),Πx)=1

1 =
∑
n6x

∑
δ|(F (n),Πx)

µ(δ) =
∑
δ|Πx

µ(δ)
∑
n6x

F (n)≡0 (mod δ)

1

= (1 + o(1))x
∑
δ|Πx

µ(δ)ρ(δ)

δ
= (1 + o(1))x

∏
p6√

qx+ak

(
1− ρ(p)

p

)
= (1 + o(1))c

x

logk x
, (5.1)

where c is a positive constant which depends only on a1, . . . , ak.
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Now, we can show that almost all prime solutions π1 < · · · < πk represent
a chain of consecutive primes. To see this, assume the contrary, that is that the
primes π1 < · · · < πk are not consecutive, meaning that there exists a prime π
satisfying π1 < π < πk and π ̸∈ {π2, . . . , πk−1}. Assume that πℓ < π < πℓ+1 for
some ℓ ∈ {1, . . . , k − 1}. We then have

π2 = π1 + a2 − a1,

π3 = π1 + a3 − a1,

... =
...

πℓ = π1 + aℓ − a1,

... =
...

πk = π1 + ak − a1,

π = π1 + d, where aℓ − a1 < d < aℓ+1 − a1.

We can now find an upper bound for the number of such k + 1 tuples. Indeed,
by using the Brun-Selberg sieve, one can obtain that the number of such solutions
up to x is no larger than c x

logk+1 x
, which in light of (5.1) proves our claim, thus

completing the proof of Theorem 2.

6. Proof of Theorem 3

Let N > 3. Choose a positive integer R which is such that S := qN + qR < qN+1.
Then, set

YN,S =
∑

qN6n<S
ξn and θN,S =

∑
qN6n<S

ξn(ξn+1 + · · ·+ ξn+q−1).

Then

E(YN,S) =
∑

qN6n<S

1

log n
=

(
S

logS
− qN

log qN

)
+O

(
qN

N2

)
,

while

E(YN,S − E(YN,S))
2 6 c

∑
qN6n<S

λn 6 c
qN

N
.

From the Tchebyshev inequality, we then get that

P

|YN,S − E(YN,S)| >

√
qN+1

log qN+1

 <
c

N2
. (6.1)

Similarly

P

(
θN,S > c1

qN

N2

)
<

1

N2
. (6.2)
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Now, given T integers n1 < · · · < nT located in the interval [qN , S − 1], consider
the set

Bn1,...,nT = {ω : ξnj = 1 for j = 1, . . . , T and

ξm = 0 if m ̸∈ {n1, . . . , nT }, m ∈ [qN , S − 1]}.

Further set

σn =
λn

1− λn
=

1

log(n/e)
and WN,S =

∏
qN6n<S

(1− λn).

From the above definitions of Bn1,...,nT , σn and WN,S , it follows that

P (Bn1,...,nT
) = σn1 · · ·σnT

WN,S . (6.3)

Let us now introduce the intervals

Ja = [qN + aq, qN + (a+ 1)q − 1] (a = 0, 1, . . . , R− 1),

so that

[qN , S] =

qN−qN−1−1∪
a=0

Ja.

Given n1, . . . , nT , let JM1 , . . . ,JMH be those intervals which contain at least
two elements (say, JMj contains kj > 2 elements) from the set {n1, . . . , nT }.

Then it follows from (6.2) that∑
∑H

j=1 kj>cqN/N2

P (Bn1,...,nT
) <

c1
N2

.

Let us now consider those n1, . . . , nT for which
∑H
j=1 kj < cqN/N2. Consider

those elements amongst n1, . . . , nT which have kj > 2 fixed elements in JMj

(j = 1, . . . , H) and exactly one element in the intervals Ja1 , . . . ,JaU .
Define the quantities L and U by

H∑
j=1

kj = L and U = T − L.

Here 0 6 a1 < · · · < aU 6 R− 1 are such that

{a1, . . . , aU} ∩ {M1, . . . ,MH} = ∅.

We shall denote that particular set of n1, . . . , nT by D(a1, . . . , aUN
), that is a set

that contains exactly qU disjoint sets.
Since, for j = 1, . . . , q − 1, we have

0 6 σn − σn+j 6
c

n log2 n
6 c1
qNN2

,
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it follows from (6.3) that

P (Bn1,...,nT
) =

U∏
j=1

σqN+ajq ·
H∏
ℓ=1

σqN+Mℓq ·WN,S

(
1 +O

(
1

N2qN

))T
.

Since T/N2qN → 0 as N → ∞, it follows that(
1 +O

(
1

N2qN

))T
= 1 + o(1) as N → ∞.

All this means that

P (Bn1,...,nT
) = (1 + o(1))P (Bn′

1,...,n
′
T
) (6.4)

if n1, . . . , nT and n′1, . . . , n′
T belong to the same set D(a1, . . . , aU ).

For a given outcome ω, we now consider

η(N,S)q (ω) := resq(n1) . . . resq(nT ) (6.5)

and we let Fβ(η
(N,S)
q (ω)) be the number of occurrences of the word β as a subword

in η(N,S)q (ω). Now, setting

ZN,S :=

ω : |YN,S − E(YN,S)| > N

√
qN+1

log qN+1


and

VN,S :=

{
ω : θN,S > c1

qN

N2

}
,

it follows from (6.1) and (6.2) that

P (ZN,S) + P (VN,S) <
c

N2
.

Now, assume that ω ̸∈ ZN,S ∪ VN,S . Then, recall definition (6.5) and set

Sβ(n1, . . . , nT ) = #{η(N,S)q = γ1βγ2 : γ1, γ2 ∈ A∗
q}.

In the set D(n1, . . . , nT ), the elements from Jaj can be written as qN+qaj+ℓj ,
where ℓj ∈ Aq (j = 1, . . . , U). Furthermore, write each integer µ 6 qU − 1 as

µ = ℓ1 + ℓ2q + · · ·+ ℓUq
U−1.

Then we get

Eβ(µ) = #{(γ1, γ2) ∈ A∗
q ×A∗

q : ℓ1 . . . ℓU = γ1βγ2}.
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Using Lemma 2, we then obtain that

|Sβ(n1, . . . , nT )− Eβ(µ)| 6 2k(H + 1).

Now D(a1, . . . , aU ) is characterized by choosing all possible values ℓ1 . . . ℓU ∈ AUq .
Hence, letting δN = 1/N , we can apply Lemma 1 and obtain that the number of
those ℓ1 . . . ℓU for which ∣∣∣∣Eβ(µ)− U

qk

∣∣∣∣ > UδN

is less than cqN

Uδ2N
. Hence, from (6.4), we obtain that∑

(n1,...,nT )∈D(a1,...,aU )∣∣∣Eβ(µ)− U

qk

∣∣∣>UδN
P (Bn1,...,nT

) <
c1

E(YN,S)δ2N

∑
(n1,...,nT )∈D(a1,...,aU )

P (Bn1,...,nT
).

(6.6)
Now, summing the inequality (6.6) over all possible values of n1, . . . , nT for

which ω ̸∈ ZN,S ∪ VN,S , the “new” right hand side of (6.6) is then no larger than
c1

E(YN,S)N
2.

Collecting the above inequalities, we obtain that if

KN,S :=

{
ω : ω ̸∈ ZN,S ,

∣∣∣∣Eβ(η(N,S)q )− T

qk

∣∣∣∣ > 2T

N

}
,

then
P (KN,S) <

c

N2
.

Hence, if we let

Sj = qN + qN · j

⌊logN⌋
(j = 1, . . . ,mN ),

where mN = (q2 − q)⌊logN⌋, we then have

P

mN∪
j=1

(
KN,Sj ∪ ZN,Sj ∪ VN,Sj

) <
c logN

N2
. (6.7)

Let Q be the set of those ω which belong to infinitely many of the sets KN,Sj ∪
ZN,Sj

∪ VN,Sj
. Now, summing (6.7) on N = 1, . . . ,∞, we obtain a finite sum.

We may therefore apply the Borel-Cantelli Lemma (Lemma 3) and conclude that
P (Q) = 0.

Now let M1 < M2 < · · · be the sequence of integers which are the members of
the set

{
qN + a

⌊logN⌋q
N−1 : a = 0, . . . ,mN , N = 3, 4, . . .

}
, and let ω ̸∈ Q. Then,

regarding the sequence

ξR = resq(m1) . . . resq(mR),
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we have that
Fβ(ξMj (ω))

Mj
→ 1

qk
(j → ∞). (6.8)

Since 1 6 Mj+1

Mj
→ 1 as j → ∞, it follows from (6.8) that the relation

Fβ(ξn(ω))

n
→ 1

qk
(n→ ∞)

also holds. Since this assertion is true for every finite word β, the proof of the
theorem is complete.
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