ON SOME COMPLEX EXPLICIT FORMULÆ CONNECTED WITH DIRICHLET COEFFICIENTS OF INVERSES OF SPECIAL TYPE L-FUNCTIONS FROM THE SELBERG CLASS

Karol Gierszewski

Abstract

We obtain, by means of the technique introduced in by J. Kaczorowski, a meromorphic continuation and the functional equation for the function $m(F, \cdot)$, where F is from the Selberg class with a functional equation expressible with exactly one Γ function.

Keywords: coefficients of L-functions, Selberg class.

1. Introduction

Let S^{Γ} denote the subset of the Selberg class [9] consisting of the functions with a functional equation expressible with exactly one Γ function. That is a function $F \in \mathrm{~S}^{\Gamma}$ satisfies the following five axioms ($s=\sigma+i t$ here and futher on)

1. (Dirichlet series) For $\sigma>1, F$ is an absolutely convergent Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{a_{F}(n)}{n^{s}} .
$$

2. (Analytic continuation) For some $m \geqslant 0,(s-1)^{m} F(s)$ is an entire function of finite order.
3. (Functional equation) F satisfies a functional equation of the form

$$
\Phi_{F}(s)=\omega \bar{\Phi}_{F}(1-s)
$$

where

$$
\Phi_{F}(s)=\mathrm{Q}^{s} \Gamma(\lambda s+\mu) F(s)
$$

with $\mathrm{Q}>0, \lambda>0, \Re \mu \geqslant 0$ and $|\omega|=1$.
4. (Ramanujan hypothesis) For every $\varepsilon>0, a_{F}(n) \ll_{\varepsilon} n^{\varepsilon}$.

[^0]5. (Euler product) For $\sigma>1$
$$
F(s)=\prod_{p} F_{p}(s)
$$
where
\[

$$
\begin{equation*}
\log F_{p}(s):=\sum_{m=1}^{\infty} \frac{b\left(p^{m}\right)}{p^{m s}} \tag{1.1}
\end{equation*}
$$

\]

and $b(n) \ll n^{\theta}$ for some $\theta<\frac{1}{2}$.
The known invariants of functions from the Selberg class S, the degree, the ξ-invariant, the parity and the shift, may be written as

$$
d_{F}=2 \lambda, \quad \xi_{F}+1=2 \mu, \quad \eta_{F}+1=2 \Re \mu \quad \text { and } \quad \theta_{F}=2 \Im \mu
$$

for such F.
We note that, although the data in the functional equation in S are, in general, not unique, see for example Section 4 of Vignéras [14], Section 2 of Conrey--Ghosh [4], Section 3 of Kaczorowski [9] and Kaczorowski-Perelli [12], they are unique in the special case of the functional equation from S^{Γ} as a immediate consequence of a simple form of invariants given above. Throughout this paper we fix $F \in \mathrm{~S}^{\Gamma}$ and data $\mathrm{Q}, \lambda, \mu, \omega$.

We denote by $\mu_{F}(n)$ the Dirichlet convolution inverse of $a_{F}(n)$, i.e. we formally have

$$
\begin{equation*}
\frac{1}{F(\sigma+i t)}=\sum_{n=1}^{\infty} \frac{\mu_{F}(n)}{n^{\sigma+i t}} . \tag{1.2}
\end{equation*}
$$

From [11, Lemma 1] it follows that for every $\varepsilon>0$ there exists $M=M(\varepsilon)$ such that $\mu_{F}(n)<_{\varepsilon} n^{\varepsilon}$ for ($\left.n, M\right)=1$. By this estimation it follows that

$$
\begin{equation*}
\prod_{(p, M)>1} F_{p}(s) \frac{1}{F(s)}=\sum_{\substack{n=1 \\(n, M)=1}}^{\infty} \frac{\mu_{F}(n)}{n^{s}} \tag{1.3}
\end{equation*}
$$

converges absolutely and uniformly for $\sigma \geqslant 1+\varepsilon$ for every $\varepsilon>0$. Using axiom (5) one obtains

$$
\mu_{F}\left(p^{m}\right) \ll p^{m \theta} \sum_{k=1}^{m} \frac{1}{k!}\binom{m-1}{k-1} \ll p^{m \theta} e^{2 \sqrt{m}}, \quad m \geqslant 1 .
$$

Hence the Dirichlet series

$$
\frac{1}{F_{p}(s)}=\sum_{m=0}^{\infty} \mu_{F}\left(p^{m}\right) p^{-m s}
$$

converges absolutely and uniformly on compact sets for $\sigma>\theta$. As a consequence we obtain the absolute and uniform convergence of the whole series (1.2) in the half-plane $\sigma \geqslant 1+\varepsilon$ for every $\varepsilon>0$.

For brevity of notation we put

$$
\varkappa_{F}:= \begin{cases}-\frac{\eta_{F}+1}{2 d_{F}} & \text { if } \eta_{F}>-1 \\ -\frac{1}{d_{F}} & \text { if } \eta_{F}=-1 .\end{cases}
$$

Then, for z from the upper half-plane $\mathbb{H}:=\{z \in \mathbb{C} \mid \Im(z)>0\}$, the function $m(F, z)$ is defined as follows:

$$
\begin{equation*}
m(F, z)=\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{e^{s z}}{F(s)} d s \tag{1.4}
\end{equation*}
$$

where $F \in \mathrm{~S}^{\Gamma}$. The path of integration consists of the half-line $s=\varkappa_{F}+i t$, $\infty>t \geqslant 0$, the smooth arc \mathcal{A} on the upper half-plane joining points \varkappa_{F} and $3 / 2$ separating possible real zeros of $F \bar{F}$ from the zeros above the real line, and the half-line $s=3 / 2+i t, 0 \leqslant t<\infty$. Since from axiom (3) and the Stirling formula it easily follows that $1 / F(s)$ is bounded on \mathcal{C}, the integral converges absolutely and uniformly on compact subsets of \mathbb{H}, and hence represents a holomorphic function on this half-plane. To formulate the main result of this paper we need two auxiliary functions

$$
\begin{align*}
R(F, z) & =\sum_{\substack{F(\beta)=0 \\
0 \leqslant \beta \leqslant 1}} \operatorname{Res}_{s=\beta} \frac{e^{s z}}{F(s)} \tag{1.5}\\
J_{\nu}(z) & =\sum_{k=0}^{\infty} \frac{(-1)^{k}(z / 2)^{2 k+\nu}}{k!\Gamma(k+\nu+1)} \tag{1.6}
\end{align*}
$$

where $J_{\nu}(z)$ denotes the familiar Bessel function of the first kind of order $\nu \in \mathbb{R}$ [8, formula (2), p. 4] that we only use for $z \neq 0$, choosing the standard real branch on the positive part of the real axis. As usual, δ_{a}^{b} denotes the Kronecker delta. We also use the notation $\bar{m}(F, z):=\overline{m(F, \bar{z})}$.

Theorem 1. Let $F \in \mathrm{~S}^{\Gamma}$. Then $m(F, \cdot)$ has a meromorphic continuation to \mathbb{C} with simple poles at the points $z=\log n, \mu_{F}(n) \neq 0, n \in \mathbb{N}$, and residues

$$
\underset{z=\log n}{\operatorname{Res}} m(F, z)=-\frac{\mu_{F}(n)}{2 \pi i} .
$$

Moreover, it satisfies the following functional equation

$$
\begin{align*}
m(F, z)+\bar{m}(\bar{F}, z)= & -\frac{2 \bar{\omega}}{d_{F} \mathrm{Q}^{1+2 i \frac{\theta_{F}}{d_{F}}}} e^{-i \frac{\theta_{F}}{d_{F}} z} \sum_{n=1}^{\infty} \frac{\overline{\mu_{F}(n)}}{n^{1+i \frac{\theta_{F}}{d_{F}}}} \tag{1.7}\\
& \times\left(\left(\mathrm{Q}^{2} n e^{z}\right)^{\frac{1}{2}-\frac{1}{d_{F}}} J_{\frac{1}{2} d_{F}+\eta_{F}}\left(2\left(\mathrm{Q}^{2} n e^{z}\right)^{-\frac{1}{d_{F}}}\right)-\delta_{-1}^{\eta_{F}} \frac{1}{\Gamma\left(\frac{1}{2} d_{F}\right)}\right) \\
& -R(F, z) .
\end{align*}
$$

This theorem generalises a result of K. Bartz [2] since the Riemann zeta function belongs to S^{Γ}. It also generalises a result of A. Łydka [13, Theorem 1.3] since by the results contained in $[3,5,6]$ the function $L\left(s+\frac{1}{2}, E\right)$ belongs to S^{Γ}, where $L(s, E)$ denotes the global L-function of an elliptic curve over \mathbb{Q}.

In fact the class S^{Γ} contains many more functions. Let χ be a primitive, non principal Dirichlet character. Then for every $\theta \in \mathbb{R}$ the Dirichlet L-function $L(s+i \theta, \chi)$ belongs to S^{Γ}. Let f be a normalised newform of weight k and level N, i.e. $f \in \mathbf{S}_{k}^{\text {new }}(N)$, such that f is a common eigenvector for all Hecke operators T_{p}. Then the associated L-function $L\left(f, s+\frac{k-1}{2}\right)$ belongs to $S^{\Gamma}[5,6,9]$.

Neither the complete structure of the Selberg class S, nor even the structure of S^{Γ} is known, although many conjectures are formulated [9, 12]. We note here that our result is completely independent of those conjectures.

Let us explicitly state here that the function $m(F, \cdot)$ is just a tool aimed at proving Ω and $\Omega_{ \pm}$results for the summatory functions of the function μ_{F}. So far this aim was achieved for the summatory function of the function μ_{ζ} i.e. the classical arithmetic Möbius function [10, Theorem 1]. Therefore our research is primarily motivated by the arithmetical nature of the elements of the Selberg class and the main result of this paper is just a step towards obtaining Ω results for the summatory function of μ_{F} where $F \in \mathrm{~S}^{\Gamma}$.

Acknowledgement. The author wishes to thank professors Jerzy Kaczorowski and Kazimierz Wiertelak for their valuable comments while writing this article.

2. Auxiliary results

First we state some technical lemmas.
Lemma 1. Let $F \in \mathrm{~S}^{\Gamma}$ and let $\rho=\beta+i \gamma$ run through non-trivial zeros of the function F. Then for $|t|>1$ we have the following formulce

$$
\begin{equation*}
\frac{F^{\prime}}{F}(s)=\sum_{|t-\gamma| \leqslant 1} \frac{1}{s-\rho}+\mathrm{O}_{F}(\log t) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\log F(s)=\sum_{|t-\gamma| \leqslant 1} \log (s-\rho)+\mathrm{O}_{F}(\log t), \tag{2.2}
\end{equation*}
$$

uniformly for $-1 \leqslant \sigma \leqslant 2$, where the implied constants depend only on F (cf. [1, Lemma 2.4]) and $-\pi<\Im \log (s-\rho)<\pi$.

The proof of Lemma 1 follows, mutatis mutandis, by the argument in the proof of Theorem 9.6 (B) [15]. As a corollary we have

$$
\begin{equation*}
\log F(\sigma+i t)<_{\varepsilon, F} \log (|t|+2), \quad \text { as } \quad|t| \rightarrow \infty \tag{2.3}
\end{equation*}
$$

for every $\varepsilon>0$, in the strip $1+\varepsilon \leqslant \sigma \leqslant 2$.

For brevity of notation we put

$$
v_{F}:=\frac{\left|\theta_{F}\right|}{d_{F}}+1 .
$$

Then we have
Lemma 2. Let $z=x+i y, y>0, s=R e^{i \varphi}, R \sin \varphi \geqslant v_{F}, R|\cos \varphi| \geqslant \frac{1}{2}\left|\varkappa_{F}\right|$, where $\frac{\pi}{2}<\varphi<\pi$ and let $F \in \mathrm{~S}^{\Gamma}$. Then for $R \geqslant R_{0}(x, y)$ we have

$$
\begin{equation*}
\left|\frac{e^{s z}}{F(s)}\right| \leqslant e^{-y \frac{R}{2}} \tag{2.4}
\end{equation*}
$$

Proof. Using the asymmetric form of the functional equation for $F \in \mathrm{~S}^{\Gamma}$

$$
\begin{equation*}
F(s)=\omega \frac{1}{h_{F}(s)} \bar{F}(1-s), \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{F}(s)=\mathrm{Q}^{2 s-1} \frac{\Gamma(\lambda s+\mu)}{\Gamma(\lambda(1-s)+\bar{\mu})} \tag{2.6}
\end{equation*}
$$

we obtain

$$
\log \left|\frac{e^{s z}}{F(s)}\right|=\Re(s z)-\log |\bar{F}(1-s)|+\log \left|h_{F}(s)\right|
$$

Since $\Re(1-s)=1+R|\cos \varphi| \geqslant 1+\frac{1}{2}\left|\varkappa_{F}\right|$, by (2.3) we have $\log |\bar{F}(1-s)| \ll \varkappa_{F}$ $\log R$. Since $R \sin \varphi \geqslant v_{F}$, we have

$$
\begin{equation*}
\log |\sin (\pi(\lambda s+\mu))|=\frac{d_{F}}{2} \pi R \sin \varphi+\mathrm{O}(1) \tag{2.7}
\end{equation*}
$$

Using the well-known formula

$$
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin (\pi s)}
$$

and the Stirling formula we estimate

$$
\begin{align*}
\log \left|h_{F}(s)\right|= & (2 R \cos \varphi) \log \mathrm{Q}+\left(d_{F} R \cos \varphi\right) \log \left(\frac{1}{2} d_{F} R\right) \tag{2.8}\\
& +d_{F} R\left(\varphi-\frac{3}{2} \pi\right) \sin \varphi-d_{F} R \cos \varphi+\mathrm{O}(\log R)
\end{align*}
$$

Consequently

$$
\begin{equation*}
\log \left|\frac{e^{s z}}{F(s)}\right|=d_{F} R \log \left(\frac{d_{F}}{2} R\right) \cos \varphi+R f(\varphi, x, y)+\mathrm{O}(\log R) \tag{2.9}
\end{equation*}
$$

where

$$
f(\varphi, x, y):=\left(x+2 \log \mathrm{Q}-d_{F}\right) \cos \varphi+\left(-y+d_{F}\left(\varphi-\frac{3}{2} \pi\right)\right) \sin \varphi .
$$

Since

$$
f\left(\frac{\pi}{2}, x, y\right)=-\left(y+d_{F} \pi\right)
$$

and

$$
\frac{\partial f}{\partial \varphi}(\varphi, x, y)<_{x, y} 1, \quad \frac{\pi}{2}<\varphi<\pi
$$

we have for $\frac{\pi}{2}<\varphi \leqslant \frac{\pi}{2}+1 / \sqrt{\log R}$

$$
f(\varphi, x, y)=-\left(y+d_{F} 2 \pi\right)+\mathrm{O}_{x, y}\left(\frac{1}{\sqrt{\log R}}\right)
$$

Hence, for such φ and sufficiently large R, we have

$$
\log \left|\frac{e^{s z}}{F(s)}\right| \leqslant-y \frac{R}{2}
$$

For $\frac{\pi}{2}+1 / \sqrt{\log R} \leqslant \varphi \leqslant \pi$ we have $|\cos \varphi| \gg 1 / \sqrt{\log R}$ and hence using (2.9) we have

$$
\log \left|\frac{e^{s z}}{F(s)}\right|=-d_{F} R \log \left(\frac{d_{F}}{2} R\right)|\cos \varphi|+\mathrm{O}_{x, y}(R) \leqslant-y \frac{R}{2}
$$

for sufficiently large R, and the lemma follows.

3. Proof of Theorem 1

We split the proof of the theorem into two parts. First we prove that function $m(F, \cdot)$ has a meromorphic continuation to the whole complex plane, then we show the functional equation.

Using Lemma 2 we can shift the path of integration in (1.4) as follows:

$$
\begin{align*}
m(F, z) & =\frac{1}{2 \pi i}\left(\int_{\mathcal{D}}+\int_{\mathcal{A}}+\int_{\frac{3}{2}}^{\frac{3}{2}+i \infty}\right) \frac{e^{s z}}{F(s)} d s \tag{3.1}\\
& =m_{\mathcal{D}}(F, z)+m_{\mathcal{A}}(F, z)+m_{\mathcal{L}}(F, z)
\end{align*}
$$

where \mathcal{D} consists of the half-line $s=\sigma+i v_{F},-\infty<\sigma \leqslant \varkappa_{F}$ and the vertical line segment $\left[\varkappa_{F}+i v_{F}, \varkappa_{F}\right], \mathcal{A}$ is the arc part of \mathcal{C} and $\mathcal{L}=[3 / 2,3 / 2+i \infty)$. For $s=\sigma+i v_{F}$ with $\sigma \leqslant \varkappa_{F}$ and $z=x+i y$ we have

$$
\left|e^{s z}\right|=e^{\sigma x-v_{F} y}
$$

and using (2.9)

$$
\left|\frac{1}{F\left(\sigma+i v_{F}\right)}\right| \ll e^{-c|\sigma| \log (|\sigma|+2)}
$$

for a positive c depending only on F. Hence $m_{\mathcal{D}}(F, \cdot)$ is an entire function. Since \mathcal{A} is compact and omits zeros of F it follows that the function $m_{\mathcal{A}}(F, z)$ is also
entire. Let $\Im(z)>0$. Since the series $1 / F\left(\frac{3}{2}+i t\right)=\sum_{n=1}^{\infty} \mu_{F}(n) n^{-\frac{3}{2}-i t}$ converges absolutely and uniformly for $0 \leqslant t<\infty$, and

$$
\begin{align*}
& \sum_{n=1}^{\infty} \int_{0}^{\infty}\left|\mu_{F}(n) e^{(z-\log n)\left(\frac{3}{2}+i t\right)}\right||d t| \\
& \quad \leqslant e^{\frac{3}{2} x} \sum_{n=1}^{\infty}\left|\mu_{F}(n)\right| n^{-\frac{3}{2}} \int_{0}^{\infty} e^{-y t} d t<_{F, x} \frac{1}{y} \ll 1 \tag{3.2}
\end{align*}
$$

therefore in $m_{\mathcal{L}}(F, \cdot)$ we can interchange the order of summation and integration obtaining

$$
m_{\mathcal{L}}(F, z)=\sum_{n=1}^{\infty} \mu_{F}(n) \frac{1}{2 \pi i} \int_{\frac{3}{2}}^{\frac{3}{2}+i \infty} e^{(z-\log n) s} d s
$$

We have

$$
m_{\mathcal{L}}(F, z)=-\frac{e^{\frac{3}{2}} z}{2 \pi i} m_{0}(F, z)
$$

where

$$
\begin{equation*}
m_{0}(F, z)=\sum_{n=1}^{\infty} \frac{\mu_{F}(n)}{n^{3 / 2}} \frac{1}{z-\log n} \tag{3.3}
\end{equation*}
$$

Because (3.3) is uniformly convergent on any compact subset of $\mathbb{C} \backslash\left\{z=\log n \mid \mu_{F}(n) \neq 0, n \in \mathbb{N}\right\}$ we obtain a meromorphic continuation of $m_{\mathcal{L}}(F, z)$ and, consequently, $m(F, z)$ to the whole complex plane. The only singularities are those generated by $m_{0}(F, z)$ i.e. simple poles at $\log n, n \in \mathbb{N}$, $\mu_{F}(n) \neq 0$, with residues

$$
\underset{z=\log n}{\operatorname{Res}} m(F, z)=-\frac{\mu_{F}(n)}{2 \pi i} .
$$

Let us now consider $\bar{m}(\bar{F}, z)$, where $\Im(z)<0$. Changing the variable $s \mapsto \bar{s}$ in (1.4), we have

$$
\bar{m}(\bar{F}, z)=\frac{1}{2 \pi i} \int_{-\overline{\mathcal{C}}} \frac{e^{s z}}{F(s)} d s
$$

where $\overline{\mathcal{C}}$ denotes the contour conjugate to \mathcal{C} and the minus sign indicates the reversed orientation. As in the first part of the proof, we replace the half-line $\left[\varkappa_{F}, \varkappa_{F}+i \infty\right)$, by the contour $-\overline{\mathcal{D}}$ consisting of the vertical line segment $\left[\varkappa_{F}, \varkappa_{F}-\right.$ $\left.i v_{F}\right]$ and the half line $s=\sigma-i v_{F}, 0 \geqslant \sigma>-\infty$. Therefore we have as in (3.1) that

$$
\begin{align*}
\bar{m}(\bar{F}, z) & =\frac{1}{2 \pi i}\left(\int_{-\overline{\mathcal{D}}}+\int_{-\overline{\mathcal{A}}}+\int_{\frac{3}{2}-i \infty}^{\frac{3}{2}}\right) \frac{e^{s z}}{F(s)} d s \tag{3.4}\\
& =m_{-\overline{\mathcal{D}}}(F, z)+m_{-\overline{\mathcal{A}}}(F, z)+\frac{e^{\frac{3}{2}} z}{2 \pi i} m_{0}(F, z)
\end{align*}
$$

and the equality extends to $z \in \mathbb{C}$ by analytic continuation. From (3.1) and (3.4) we obtain for $z \in \mathbb{C} \backslash\left\{\log n \mid \mu_{F}(n) \neq 0, n \in \mathbb{N}\right\}$

$$
\begin{equation*}
m(F, z)+\bar{m}(\bar{F}, z)=\frac{1}{2 \pi i} \int_{\mathcal{E}} \frac{e^{s z}}{F(s)} d s+\frac{1}{2 \pi i} \int_{\mathcal{A}_{2}} \frac{e^{s z}}{F(s)} d s \tag{3.5}
\end{equation*}
$$

where \mathcal{E} is the path consisting of $\left(-\infty+i v_{F}, \varkappa_{F}+i v_{F}\right]$, $\left[\varkappa_{F}+i v_{F}, \varkappa_{F}-i v_{F}\right]$ and $\left[\varkappa_{F}-i v_{F},-\infty-i v_{F}\right)$ and $\mathcal{A}_{2}=\mathcal{A} \cup-\overline{\mathcal{A}}$ is a closed loop. Since \mathcal{A} separates the real zeros of $F \bar{F}$ from the zeros above the real line, there are no points inside the loop \mathcal{A}_{2}, apart from the interval $[0,1]$, where $e^{z \cdot} / F(\cdot)$ could have singularity. Computing residues and noting that the orientation of \mathcal{A}_{2} is clockwise, we obtain

$$
\frac{1}{2 \pi i} \int_{\mathcal{A}_{2}} \frac{e^{s z}}{F(s)} d s=-R(F, z)
$$

By (2.8) we have

$$
\begin{align*}
& \int_{\varkappa_{F}}^{-\infty} \sum_{n=1}^{\infty}\left|\frac{\mu_{F}(n)}{n^{1-s}}\right|\left|h_{F}\left(\sigma \pm i v_{F}\right)\right|\left|e^{\left(\sigma \pm i v_{F}\right)} z\right||d \sigma| \\
& \ll \int_{\varkappa_{F}}^{-\infty} e^{-c_{1}|\sigma|} e^{-|\sigma| x \mp y v_{F}}|d \sigma| \ll 1 \tag{3.6}
\end{align*}
$$

where $c_{1}>0$. By the functional equation (2.5), the expansion of $1 / \bar{F}(1-s)$ into the absolutely and uniformly convergent Dirichlet series, and by the estimation (3.6) we obtain

$$
\frac{1}{2 \pi i} \int_{\mathcal{E}} \frac{e^{s z}}{F(s)} d s=\frac{\bar{\omega}}{\mathrm{Q}} \sum_{n=1}^{\infty} \frac{\overline{\mu_{F}}(n)}{n} \frac{1}{2 \pi i} \int_{\mathcal{E}} \frac{\Gamma(\lambda s+\mu)}{\Gamma(\lambda(1-s)+\bar{\mu})}\left(\mathrm{Q}^{2} n e^{z}\right)^{s} d s
$$

Under the substitution $\lambda s \mapsto s$, we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\mathcal{E}} \frac{\Gamma(\lambda s+\mu)}{\Gamma(\lambda(1-s)+\bar{\mu})}\left(\mathrm{Q}^{2} n e^{z}\right)^{s} d s \\
&=\frac{2}{d_{F}} \frac{1}{2 \pi i} \int_{\lambda \mathcal{E}} \frac{\Gamma(s+\mu)}{\Gamma(\lambda+\bar{\mu}-s)}\left(\left(\mathrm{Q}^{2} n e^{z}\right)^{\frac{2}{d_{F}}}\right)^{s} d s
\end{aligned}
$$

Evaluating the last integral by means of [7, formulæ (9), p. 205 \& (3), p. 211] we obtain

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\mathcal{E}} \frac{\Gamma(\lambda s+\mu)}{\Gamma(\lambda(1-s)+\bar{\mu})}\left(\mathrm{Q}^{2} n e^{z}\right)^{s} d s \\
= & -\frac{2}{d_{F}}\left(\mathrm{Q}^{2} n e^{z}\right)^{-i \frac{\theta_{F}}{d_{F}}}\left(\left(\mathrm{Q}^{2} n e^{z}\right)^{\frac{1}{2}-\frac{1}{d_{F}}} J_{\frac{1}{2} d_{F}+\eta_{F}}\left(2\left(\mathrm{Q}^{2} n e^{z}\right)^{-\frac{1}{d_{F}}}\right)-\delta_{-1}^{\eta_{F}} \frac{1}{\Gamma\left(\frac{1}{2} d_{F}\right)}\right)
\end{aligned}
$$

and the theorem follows.

References

[1] A. Akbary, M.R. Murty, Uniform distribution of zeros of Dirichlet series, in 'Anatomy of Integers', CRM Proceedings \& Lecture Notes 46, AMS, Providence, RI, 2008, 143-158.
[2] K. Bartz, On some complex explicit formulce connected with the Möbius function. I, Acta Arith. 57 (1991), no. 4, 283-293.
[3] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over \mathbb{Q}, Journal of AMS 14 (2001), 843-939.
[4] J.B. Conrey, A. Ghosh, On the Selberg class of Dirichlet series: small degries, Duke Math. J. 72 (1993), 673-693.
[5] P. Deligne, La conjecture de Weil. I, Publicationes mathématique de'l I.H.É.S. 43 (1974), 273-307.
[6] P. Deligne, J.-P. Serre, Formes modulaires de poids 1, Annales scientifiques de l'É.N.S. 7(4) (1974), 507-530.
[7] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, vol. I, McGraw-Hill, New York, 1953.
[8] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental functions, vol. II, McGraw-Hill, New York, 1953.
[9] J. Kaczorowski, Axiomatic Theory of L-Functions: the Selberg class, Analytic Number Theory eds. A. Perelli \& C. Viola, 133-209, Springer-Verlag, 2006.
[10] J. Kaczorowski, Results on the Möbius function, J. London Math. Soc. 75(2) (2007), 509-521.
[11] J. Kaczorowski, A. Perelli, On the prime number theorem for the Selberg class, Arch. Math. 80 (2003), 255-263.
[12] J. Kaczorowski, A. Perelli, On the structure of the Selberg class, II: invariants and conjectures, J. reine angew. Math. 524 (2000), 73-96.
[13] A. Łydka, On complex explicit formuloe connected with the Möbius function of an elliptic curve, to appear in Canadian Math. Bulletin.
[14] M.-F. Vignéras, Facteurs gamma et équations fonctionnelles, Modular Functions of One Complex Variable eds. J.-P. Serre \& D. B. Zagier, Springer Lect. Notes Math. 627 (1977), 79-103.
[15] E.C. Titchmarch, The theory of the Riemann zeta function, Clarendon Press, Oxford, 1951.

Address: Karol Gierszewski: Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland.
E-mail: kgiersz@amu.edu.pl
Received: 12 June 2012; revised: 13 June 2012

[^0]: Partially supported by the National Science Center grant No. N N201 605940
 2010 Mathematics Subject Classification: primary: 11M26; secondary: 11M36, 11M41

