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TWINS OF POWERFUL NUMBERS

Valentin Blomer, Anita Schöbel

Abstract: For k > 2 we bound the number of pairs of consecutive k-full numbers.
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1. Introduction

A positive integer n is called k-full for some integer k > 2 if p | n implies pk | n for
every prime p. This is a natural generalization of k-th powers, and it is easy to see
that the sequence of k-full numbers is not much denser than the sequence of k-th
powers: the number of k-full integers not exceeding x is ∼ ckx

1/k for some constant
ck > 1 as x → ∞ (see e.g. [7, Section 14.4]). There are many interesting open
questions associated with powerful numbers, and in particular additive problems
often turn out to be hard.

In this note we want to consider a binary problem in k-full numbers, and for
fixed l ∈ Z\{0} estimate the number Nk(x; l) of solutions to the equation n−m = l
with k-full numbers n,m 6 x. The trivial bound is Nk(x; l) ≪ x1/k. The usual
heuristic arguments based on density considerations predict

N2(x; l) ≪ xε, Nk(x; l) ≪ 1, k > 3. (1.1)

Using the theory of Pell’s equation one can show [8] that N2(x; l) → ∞ as x→ ∞,
for any fixed l ̸= 0. Proving (1.1) seems extraordinarily hard; it should be noted
that even ternary additive problems in squarefull numbers are not well-understood
(see [2]). The bounds in (1.1) follow essentially from the abc-conjecture: Chan has
shown [3, Theorem 6] that the abc-conjecture implies N2(x; l) ≪l,ε x

ε and hence
a fortiori Nk(x; l) ≪l,ε x

ε for all k > 2. Recently (August 2012), Mochizuki has
announced a proof of the abc-conjecture. While this breakthrough result is still
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under review, we investigate in this note how far one can get with comparatively
elementary methods. We follow a recent paper of Chan who showed [3, Theorem 4]

N2(x; l) ≪l x
7/19 log x (1.2)

where 7/19 = 0.368 . . . For k > 2, no non-trivial results have been obtained so
far. We will improve (1.2) in a moment, but first we give a simple argument that
provides non-trivial bounds for all k > 2.

Theorem 1. For l ̸= 0, k > 2 and ε > 0 one has Nk(x; l) ≪ε,k x
2

2k+1+ε. The
implied constant is independent of l.

Proof. We can write each k-full number n as n = nk1n
k+1
2 · · ·n2k−1

k . This repre-
sentation is unique if we require n2, . . . , nk to be squarefree and pairwise coprime,
but even without this requirement a k-full number n has, by a standard divisor
estimate, at most O(nε) representations of this form.

For two k-tuples N = (N1, . . . , Nk), M = (M1, . . . ,Mk) of positive real num-
bers let Nk(N,M; l) be the number of solutions to the equation

nk1 · · ·n2k−1
k −mk

1 · · ·m2k−1
k = l

where all variables are restricted to dyadic boxes nj ∈ [Nj , 2Nj ], mj ∈ [Mj , 2Mj ].
Let N ∗

k (N,M; l) denote the number of those 2k-tuples in Nk(N,M; l) that satisfy
in addition (nj ,mj) = 1 for j = 1, . . . , k. Then clearly

Nk(x; l) ≪ xε max
Nk

1 ···N2k−1
k 6x

Mk
1 ···M2k−1

k 6x

Nk(N,M; l) ≪ (xl)ε max
Nk

1 ···N2k−1
k 6x

Mk
1 ···M2k−1

k 6x

max
d|l

N ∗
k (N,M; d).

(1.3)
Here and in the following, all estimates are uniform in l, and implied constants
depend on ε and k at most. Obviously

N ∗
k (N,M; d) ≪ min(N1 · · ·Nk,M1 · · ·Mk)

1+ε, (1.4)

since fixing (n1, . . . , nk) leaves O((m1 · · ·mk)
ε) choices for m1, . . . ,mk, and the

same argument holds with the roles of nj and mj reversed.
Alternatively, let us fix n2, . . . , nk,m2, . . .mk. In the case k > 3 we are left

with a Thue equation in n1,m1, and by the main theorem in [1] the number of
primitive (i.e. with n1 and m1 coprime) solutions is O(lε), uniformly in the other
variables. In the case k = 2, we obtain a Pell-type equation n21n

3
2 −m2

1m
3
2 = d.

Since (n2,m2) = 1, the product n32m3
2 is a square if and only if n2 and m2 are

squares in which case there are O(dε) solutions. If n32m3
2 is not a square, then we

bound the number of solutions by O((xd)ε), again uniformly in the other variables,
since the fundamental unit of real quadratic fields is bounded below by an absolute
constant, see e.g. [5, Hilfssatz 2] for a detailed proof. Hence we have the additional
bound

N ∗
k (N,M; d) ≪ (xd)εN2 · · ·NkM2 · · ·Mk. (1.5)
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Combining (1.3) – (1.5) we obtain

Nk(x; l) ≪ (xl)ε max
Nk

1 ···N2k−1
k 6x

Mk
1 ···M2k−1

k 6x

min
(
N1 · · ·Nk, M1 · · ·Mk, N2 · · ·NkM2 · · ·Mk

)

6 (xl)ε max
Nk,Mk6x

min

(
N
( x

Nk

) 1
k+1

,M
( x

Mk

) 1
k+1

,
( x2

NkMk

) 1
k+1

)
since N2 · · ·Nk 6 (x/Nk

1 )
1/(k+1) and similarly for M2 · · ·Mk. Using min(a, b, c) 6

(ab)
k

2k+1 c
1

2k+1 we complete the proof of Theorem 1. �

The bounds are uniform in l and the argument is not sensitive to signs (the
number of solutions to n21n32 +m2

1m
3
2 = d is still O(dε)), hence the same argument

shows:

Corollary 2. The number of representations of an integer N as a sum of two
k-full numbers is O(N

2
2k+1+ε).

This seems to be the first non-trivial result of this kind.
The rest of the paper is devoted to refinements of Theorem 1. Following [3], we

change the argument leading to (1.5) by fixing only 2k−3 variables and considering
the remaining count as a problem of bounding the number of rational points close
to an (algebraic, but irrational) curve. To this end we use a result of Huxley
which finally leads to an explicit, but non-trivial optimization problem. For k = 2
this can be solved by hand, for k > 2 we transform it into a linear mixed integer
optimization problem. For 3 6 k 6 5 we use FICO Xpress to find a numerical
solution. This gives the following sharpening of Theorem 1.

Theorem 3. For fixed l ̸= 0 and 2 6 k 6 5 we have Nk(x; l) ≪ xγk for γ2 >
61/180, γ3 = 0.2665, γ4 = 0.21, γ5 = 0.174.

Note that 61/180 = 0.338 . . ., so that Theorem 3 improves the main result
of [3], cf. (1.2) above. As mentioned above, the bound for k = 2 does not use
a computer search. For k > 5 the same method works, but the improvement
compared to Theorem 1 becomes marginal. For relatively large values of k, recent
work of Heath-Brown and Salberger on the Bombieri-Pila determinant method
should be able to provide stronger improvements.

Remark. While the present article was in press, a paper by Chan [4] appeared
in which the bound N3(x; l) ≪ x45/139(log x)2 is proved. This is weaker than the
corresponding bounds in Theorems 1 and 3 of the present paper. A recent preprint
of Reuss [9] improves our value of γ2 in Theorem 3 to 29/100.

2. Rational points close to a curve

For positive real numbers M,T,∆ and s ∈ N define

Hs(M,T,∆) := (M−s−1T )
1

2s+1 + (∆
1
sM−sT )

1
2s+1 +∆

1
2s+1

+ (∆s2+2s−1T s(s−1))
1

s(s+1)(2s−1) .
(2.1)
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For positive real numbers λ > 0, M > 2, α ̸∈ Z let f : [0,M ] → R be defined by

f(x) = λ(1 + x/M)α.

We quote the following theorem of Huxley [6, Theorem 1] whose assumptions are
easily verified for the present choice of f .

Proposition 1. Let λ,M,α and f be as above. Fix s ∈ N. Let 0 < ∆ < 1/2 and
Q > 2 + 4/λ1/2. Then the number of integer triples (m, r, q) with 0 6 m 6 M ,
1 6 q 6 Q, (r, q) = 1 satisfying ∣∣∣∣f(m)− r

q

∣∣∣∣ 6 ∆

Q2

is at most
≪s,α (M(1 + λ)Q)ε ·M ·Hs(M,λQ2,∆).

Now let (n1, . . . , nk,m1, . . . ,mk) be a 2k-tuple counted by N ∗(N,M; d) and
let us write

X = Nk
1 · · ·N2k−1

k

for notational simplicity. We recall that nj ∈ [Nj , 2Nj ] and mj ∈ [Mj , 2Mj ]. We
can assume without loss of generality that X is sufficiently large. The equation

nk1 · · ·n2k−1
k −mk

1 · · ·m2k−1
k = d (2.2)

implies Mk
1 · · ·M2k−1

k ≍ X. Fix an index j ∈ {1, . . . , k}. Then we conclude from
(2.2) that

nk+j−1
j

mk+j−1
j

−
mk

1 · · · m̂j
k+j−1 · · ·m2k−1

k

nk1 · · · n̂j
k+j−1 · · ·n2k−1

k

=
d

mk+j−1
j nk1 · · · n̂j

k+j−1 · · ·n2k−1
k

where a hat denotes omission of the respective factor. Since

|a− b| 6 |ak+j−1 − bk+j−1|a2−j−k for any a, b > 0,

we obtain ∣∣∣∣∣ njmj
−

(mk
1 · · · m̂j

k+j−1 · · ·m2k−1
k )

1
k+j−1

(nk1 · · · n̂j
k+j−1 · · ·n2k−1

k )
1

k+j−1

∣∣∣∣∣ 6 2d

M2
j

· NjMj

X
. (2.3)

Now fix another index i ̸= j and write

(mk
1 · · · m̂j

k+j−1 · · ·m2k−1
k )

1
k+j−1

(nk1 · · · n̂j
k+j−1 · · ·n2k−1

k )
1

k+j−1

= λ

(
1 +

m̃i

Mi

) k+i−1
k+j−1

where

m̃i = mi −Mi, λ =

(
Mi

mi

) k+i−1
k+j−1 (mk

1 · · · m̂j
k+j−1 · · ·m2k−1

k )
1

k+j−1

(nk1 · · · n̂j
k+j−1 · · ·n2k−1

k )
1

k+j−1

.
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Without loss of generality we can assume that Mi is an integer. Then m̃i ∈ [0,Mi]
is an integer, and we can count the number of triples (nj ,mj , m̃i) satisfying (2.3)
using Proposition 1 with

α =
k + i− 1

k + j − 1
̸∈ Z, Q = 2Mj , M =Mi, ∆ ≍ NjMj

X
, λ ≍ Nj

Mj

(where implicit constants may depend on d and k). The assumptions M > 2,
Q > 2+ 4/λ1/2 can be satisfied by multiplying Q and/or M with a fixed constant
if necessary. If X is sufficiently large, the condition ∆ < 1/2 will be satisfied
automatically, unless possibly k = 2 and N2M2 ≪ 1, in which case Theorem 3 is
trivial by (1.5). Proposition 1 now implies

N ∗(N,M; d) ≪ε,d,k,s X
εN1 · · ·NkM1 · · ·Mk

NjMj
Hs

(
Mi, NjMj ,

NjMj

X

)
(2.4)

for any choice of i ̸= j ∈ {1, . . . , k} and any fixed s ∈ N. By symmetry we can
interchange the roles of N and M and obtain in the same way

N ∗(N,M; d) ≪ε,d,k,s X
εN1 · · ·NkM1 · · ·Mk

NjMj
Hs

(
Ni, NjMj ,

NjMj

X

)
. (2.5)

Combining (1.3), (1.4), (2.4) and (2.5), we obtain Nk(x; l) ≪k,l,s0,ε x
εmax
X6x

Mk(X)

where

Mk(X) = max
Nk

1 ···N2k−1
k =X

Mk
1 ···M2k−1

k =X

min
(
N1 · · ·Nk, M1 · · ·Mk,

min
16i ̸=j6k

min
s6s0

N1 · · ·NkM1 · · ·Mk

NjMj
Hs

(
max(Ni,Mi), NjMj ,

NjMj

X

))
(2.6)

for any fixed s0. Here we used that Hs is decreasing in the first variable. We are
now left with solving the minimax problem (2.6).

3. A minimax problem with disjunctive constraints

For k = 2 it is easy to solve (2.6) by hand. We substitute N2 = X1/3N
−2/3
1 ,

M2 = X1/3M
−2/3
1 and write for notational simplicity N = N1, M = M1. We

consider only the case s = 4 and obtain

M2(X) 6 max
N,M6X1/2

min

(
(XN)1/3, (XM)1/3, NMH4

(
max(N,M),

X2/3

(NM)2/3
,

1

X1/3(NM)2/3

)
,

X2/3

(NM)2/3
H4

( X1/3

min(N2/3,M2/3)
, NM,

NM

X

))
.
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On any given hyperbola NM = Y , the expression min(. . .) takes its maximum at
N =M = Y 1/2. Hence

M2(X) 6 max
N6X1/2

min

(
(XN)1/3, N2H4

(
N,

X2/3

N4/3
,

1

X1/3N4/3

)
,

X2/3

N4/3
H4

(X1/3

N2/3
, N2,

N2

X

))
.

A lengthy, but straightforward calculation shows that the expression min(. . .) is
given by 

N2, N 6 X2/19,

X2/27N35/27, X2/19 6 N 6 X1/8,

X7/108N37/27, X1/8 6 N 6 X1/5,

X53/108N−41/54, X1/5 6 N 6 X19/62,

X2/3N−4/3, X19/62 6 N 6 N1/2.

and hence M2(X) 6 X61/180 as claimed.
For k > 2 it becomes complicated to solve (2.6) by hand. In order to prepare

for a computer search we linearize the problem by writing Nj = Xνj , Mj = Xµj .
For notational simplicity we write ν := ν1+ . . .+νk, µ := µ1+ . . .+µk. This gives
Mk(X) ≪ Xβ where

β = max
kν1+...+(2k−1)νk=1
kµ1+...+(2k−1)µk=1

νj ,µj>0

min
(
ν, µ, min

16i ̸=j6k
min
s6s0

(
ν + µ− νj − µj

+min(Li,j,s(ν,µ), Li,j,s(µ,ν))
)) (3.1)

with

Li,j,s(ν,µ) = max

(
−(s+ 1)νi + νj + µj

2s+ 1
,
(s+ 1)(νj + µj)− s− s2νi

s(2s+ 1)
,

νj + µj − 1

2s+ 1
,
(s2 + 2s− 1)(νj + µj − 1) + s(s− 1)(νj + µj)

s(s+ 1)(2s− 1)

)
by (2.6) and (2.1). Using kν1 + . . .+ (2k − 1)νk = kµ1 + . . .+ (2k − 1)µk = 1 we
can eliminate the variables νk and µk and define the polyhedron

D := {(ν1, . . . , νk−1, µ1, . . . , µk−1) ∈ [0, 1]2k−2 |kν1 + . . .+ (2k − 2)νk−1 6 1,

kµ1 + . . .+ (2k − 2)µk−1 6 1}.

An inspection of (3.1) shows that we need to maximize a function of the type

min
i∈I

max
j∈J

fij(ν,µ) −→ max, (ν,µ) ∈ D, (3.2)
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where fij(ν,µ) = (aij)
tν +(bij)

tµ+ cij are certain linear functions with matrices
(aij), (bij), (cij) with 1 6 j 6 4, 1 6 i 6 2k(k − 1)s0 + 2 that are determined by
(3.1). The nested occurrence of min and max requires some preparation. It is not
hard to see that 0 6 fij(ν,µ) 6 1 for (ν,µ) ∈ D and each pair (i, j). For each
pair (i, j) we introduce an integer (in fact boolean) variable zij ∈ {0, 1}. Then
(3.2) is equivalent to the following linear mixed-integer program

(MIP) max f

s.t. fij(ν,µ) = aijν + bijµ+ cij for all i ∈ I, j ∈ J

fi > fij for all i ∈ I, j ∈ J

fi 6 fij +M(1− zij) for all i ∈ I, j ∈ J

f > fi for all i ∈ I∑
j∈J

zij > 1 for all i ∈ I

(ν,µ) ∈ D

zij ∈ {0, 1} for all i ∈ I, j ∈ J

f, fi, fij free

if M > fij(ν, µ)− fi′j′(ν, µ) for all i, i′ ∈ I, j, j′ ∈ J and for all (ν,µ) ∈ D. In our
case we chose M = 1 and s0 = 20.

In order to solve the above mixed-integer program (MIP) we used FICO Xpress
v7.2. Without any help, Xpress was not even able to find a feasible solution. From
symmetry considerations and motivated by the case k = 2, one may conjecture
that the optimal solution should occur on the diagonal ν = µ. In order to generate
a feasible solution we did a pre-run in which we added this additional symmetry
condition. This type of variable fixing made the problem tractable and generated
an optimal solution under the extra condition ν = µ. Using this solution as start-
ing solution Xpress was then able to solve (MIP) and justified that the symmetry
we required indeed holds.

We remark on the side that it would be interesting to find a proof for the general
validity of this symmetry assumption. In this case the optimization problem (3.2)
for k = 3 can be solved by hand rather easily leading to the exponent 105/394 ≈
0.26649 . . .
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