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A MAXIMALLY SEPARATED SEQUENCE

John Bentin

Abstract: The paper builds on earlier published work by the author in which a measure for
the slowness of clustering of a bounded real sequence, called separation, was introduced. Here
a conjecture of the earlier paper is proved: that a particular sequence of rational numbers – the
f sequence – defined in that paper is of maximal separation.
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1. Introduction

Following the notation of [1], a sequence of natural numbers ai ( i ∈ N ) is defined
by the recurrence relation ai+1 − 3ai + ai−1 = 0 ( i = 1, 2, . . . ) with a0 = 0 and
a1 = 1. The same paper introduced, and showed to be well defined, a rational
sequence f = ( fi : i ∈ N ) specified by

fn =

r∑
i=1

ci
ai

iff n =

r∑
i=1

ci ai,

where the coefficients ci ∈ { 0, 1, 2 } ( i = 1, . . . , r ) are chosen to be as large as
possible from the highest-indexed term downwards.

Definition 1. Given any bounded real sequence x = (x0, x1, . . . ), its spacing and
span are defined by

spacx = inf{ |i− j||xi − xj | : i ̸= j; i, j ∈ N },
spanx = sup{ |xi − xj | : i, j ∈ N }.

The separation of a nonconstant sequence x is the ratio

sepx =
spacx

spanx
.
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For completeness, the separation of a constant sequence is defined to be 0. The
spacing, span, and separation of a finite sequence may be defined similarly in the
obvious way. A sequence is unit-spaced if its spacing is 1, and it is maximally
separated (ms) if no sequence has greater separation.

In [1], we proved that f is unit-spaced and conjectured that it is also a maxi-
mally separated sequence. The purpose of the present paper is to show that f is
indeed an ms sequence.

The spacing, span, and separation of a sequence are clearly invariant under
uniform shifting, say by xi ← xi+c (i ∈ N) with c a constant. The uniform scaling
of a sequence, say by xi ← cxi (i ∈ N), with c a nonzero constant, scales the spacing
and span equally, leaving the separation unchanged. Truncating a sequence, say by
xi ← xn+i (i ∈ N) with n ∈ N a constant, cannot reduce the spacing or increase the
span, and so cannot reduce the separation. Thus a truncated ms sequence is still
an ms sequence. Starting with an arbitrary bounded sequence of nonzero spacing,
by subtracting its infimum from each of its terms, we can shift the sequence to
one with infimum 0; next, scaling the sequence by the reciprocal of its spacing
yields a unit-spaced sequence; and, observing that such a sequence can have at
most one null term since all the terms are different, we may truncate the sequence
to remove its null term (if any) to produce a positive unit-spaced sequence whose
separation is at least as great as that of the original sequence. Therefore, when
considering maximality of separation, it will be sufficient to focus on unit-spaced
positive sequences.

2. The proof of maximality

We will use the notation

bn = 1 +
n∑

i=1

1

ai
(n ∈ N).

The following definition is the key idea of the present paper, although it will prove
to be ephemeral.

Definition 2. For n ∈ N, a finite sequence will be called left (resp. right) limboic
of order n if it is a segment of a unit-spaced positive sequence and comprises
an+1 + 1 terms, none exceeding bn, of which the initial (resp. final) term is the
greatest.

As in [1], we denote by α and ᾱ respectively the larger and the smaller root of
the quadratic equation x2 − 3x + 1 = 0. The following three results will be used
in the proof of our key lemma (Lemma 3).

Lemma 1. an < ᾱan+1 < an + 1 (n ∈ N).

Proof. Since 0 < ᾱ < 1, the result holds for n = 0. Suppose now that it has been
proved for n = k − 1:

ak−1 < ᾱak < ak−1 + 1.
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Then the recurrence relation ak+1 − 3ak + ak−1 = 0 gives

3ak − ak+1 < ᾱak < 3ak − ak+1 + 1.

Adding ak+1 − ᾱak throughout yields

(3− ᾱ)ak < ak+1 < (3− ᾱ)ak + 1.

After multiplying through by ᾱ and using the identity ᾱ(3− ᾱ) = 1, we get

ak < ᾱak+1 < ak + ᾱ < ak + 1,

which is the result for n = k. The general result follows by induction. �

Corollary 1. an+1 > 2an (n ∈ N).

Lemma 2. a2n − 3anan+1 + a2n+1 = 1 (n ∈ N).

Proof. The result obviously holds for n = 0. Suppose that it holds for n = k− 1.
Then

1 = a2k−1 − 3ak−1ak + a2k = (3ak − ak+1)
2 − 3(3ak − ak+1)ak + a2k

= a2k − 3akak+1 + a2k+1,

which is the result for n = k, as required for induction. �

Lemma 3. There are no limboic segments, left or right, of any order.

Proof. A limboic segment of order 0, if it exists, comprises two terms, both pos-
itive and at least 1 apart. So the greater exceeds 1, contrary to the condition of
being bounded above by 1 (= b0). So there is no limboic segment of order 0. Now
suppose, contrary to the lemma, that there is some n ∈ { 1, 2, . . . } such that there
is a limboic segment of order n but none of any lower order. We consider just the
case when this is left limboic; the argument in the right-hand case is essentially
the same by looking at the terms of the considered sequence segment in reverse
order. Thus we have a finite sequence of terms, which for convenience we will label
x0, . . . , xp, where

p = an+1

and 0 < x1, . . . , xp < x0 6 bn, such that

x0 − xj >
1

j
for j = 1, . . . , p.

Let xm be the largest of x1, . . . xp. Then

xm − xj >
1

m− j
for j = 1, . . . ,m− 1.
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For convenience, we will now write

q = an.

Consider the case when m 6 q. By Corollary 1, we have 2q < p, and so m+ q < p.
Hence

xm+1, . . . , xm+q < xm 6 x0 −
1

m
6 bn −

1

q
= bn−1.

That is, (xm, . . . , xm+q ) is left limboic of order n−1, contrary to our supposition.
Thus only the case m > q+1 remains to be considered. In this case, the terms

x1, . . . , xm−1, and so xm−q, . . . , xm−1, are bounded according to

xj 6 x0 −
1

j
and xj 6 xm −

1

m− j
for j = 1, . . . ,m− 1.

If we plot these (j, xj) points in the cartesian (t, x) plane, we see that they are
confined to the region

{
(t, x) ∈ R2 : 0 < t < m; 0 < x 6 x0 −

1

t
; 0 < x 6 xm −

1

m− t

}
.

Note that x0 6 bn and m 6 p, so that xm 6 x0 − 1/m 6 bn − 1/p. Then (j, xj)
(j = 1, . . . ,m− 1) must lie within the region

{
(t, x) ∈ R2 : 0 < t < p; 0 < x < bn −

1

t
; 0 < x < bn −

1

p
− 1

p− t

}

(see Fig. 7). Since the curve x = bn − 1/t (t > 0) is strictly increasing, while the
curve x = bn − 1/p − 1/(p − t) (t < p) is strictly decreasing, the curves meet at
a point whose ordinate (x) value bounds all the xi (i = 1, . . . ,m−1). This x value
corresponds to the t value given by

1

t
=

1

p
+

1

p− t

or t2 − 3pt + p2 = 0. The solution of this equation in the range 0 < t < p is
t = ᾱp. Now ᾱp lies between q and q + 1, by Lemma 1. Since m > q + 1 > ᾱp,
the downward-sloping curve x = bn − 1/p − 1/(p − t) (t < p) to the right of
t = ᾱp provides the effective bound for xm. That is, xm is bounded by the curve’s
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x

t0

t = p

t = q t = q+1

t = 0

q q+1 p

Hq, bn-1L q+1, bn-1-

1

pq

x = bn -

1

t

Ᾱ p, bn-1+

Ᾱ p- q

pq

meet at:

x = bn -

1

p
-

1

p- t

Figure 7: The bounding region for the points (j, xj) (j = 1, . . . ,m− 1).

ordinate at the leftmost integral value q + 1 of the abscissa t above ᾱp:

xm 6 bn −
1

p
− 1

p− (q + 1)

= bn −
1

q
−
(
1

p
− 1

q
+

1

p− q − 1

)
= bn −

1

q
− p− q − (p2 − 3pq + q2)

pq(p− q − 1)

= bn −
1

q
− 1

pq
(by Lemma 2)

< bn −
1

q
= bn−1.

It follows that (xm−q, . . . , xm ) is right limboic of order n − 1, and so does not
exist, giving our sought contradiction. �

From [1], each fn is of the form
∑r

i=1 ci/ai, where ci ∈ { 0, 1, 2 } (i = 1, . . . , r)
and all choices of ci are possible provided that a digit 0 appears between any
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two occurrences of the digit 2 in the string c1 · · · cr. Thus, by Corollary 1, the
successively highest terms of f after the initial term are 1

1 ,
2
1 ,

2
1 +

1
3 ,

2
1 +

1
3 +

1
8 ,

2
1 +

1
3 +

1
8 +

1
21 , . . . and generally 1+

∑r
i=1 1/ai (r = 0, 1, . . .). The supremum of these

is

β = lim
n→∞

bn = 1 +
∞∑
i=1

1

ai
.

Now the infimum of the terms of f is 0 (the initial term, and also the infimum of
its terms 1/an), and so span f = β. Also spac f = 1 since, by Theorem 2 of [1],
spac f > 1 and this bound is attained: for example, f1 − f0 = 1− 0 = 1. It follows
that sep f = 1/β.

Theorem 1. The sequence f is of maximal separation.

Proof. Let x = (xi : i ∈ N ) be any bounded unit-spaced positive sequence of
zero infimum. Then sepx = 1/xs, where

xs = sup{xi : i ∈ N }.

Let us suppose, for the purpose of contradiction, that sepx > 1/β. Then xs <
β = sup{bj : j ∈ N }, which implies that xs 6 bn for some n ∈ N, and so
xi 6 bn for all i ∈ N. Now take any segment of 2an+1 + 1 terms of x. Wherever
the greatest term xm of this segment lies, there will be a subsegment of an+1

terms either immediately below or immediately above xm which, together with
xm, constitutes a limboic segment of order n. By Lemma 3, this is impossible, and
so our contradiction is reached. �

3. A question of density

When we look at the terms of f , we notice that there are none in the intervals [β−
5
3 , 1) or [β − 2

3 , 2) just below 1 and 2. Indeed, there is a gap below (though never
above) every term. Thus { fi : i ∈ N } is nowhere dense in [0 ,β]. The sequence
α = (αi : i ∈ N ), specified in [1] by αi ≡ i (mod α) with αi ∈ [0 ,α) (i ∈ N), has
slightly lower-than-maximal separation (sepα = ᾱ ≈ 0.38197; cf. 1/β ≈ 0.39442)
and is dense in the interval that it spans. So a question arises: does any dense
sequence have a separation exceeding ᾱ?
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