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Abstract: Let Fqe be a finite field, and let Fqd be a subfield of Fqe . The value set of a polynomial
f lying within Fqd is defined as the set of images {f(c) ∈ Fqd : c ∈ Fqe}. This work is concerned
with the cardinality of value sets of polynomials lying within subfields.

Keywords: Dickson polynomial, linearized polynomial, power polynomial, value set, permuta-
tion polynomial, König-Rados Theorem.

1. Introduction

Let q be a prime power, let Fq denote the finite field of order q, and let F∗
q denote

the (cyclic) multiplicative group of Fq. For integers 1 6 d 6 e, Fqd is a subfield of
the finite field Fqe if and only if d divides e.

In this paper we consider the value set of a polynomial f ∈ Fqe [x] lying within
a subfield Fqd of Fqe , or simply the subfield value set. The subfield value set is
defined as the set of images f(c) ∈ Fqd , where c runs over Fqe . When the subfield
is omitted, the value set of f is simply the set of images of f . Das and Mullen [2]
study value sets of polynomials over finite fields; in particular, they obtain a lower
bound for the cardinality of the value set of a polynomial over Fq.

The idea of studying functions on extension fields with their images in subfields
is a very natural one. For example, the absolute trace function defined for α ∈ Fqe

by
Tr(α) = α+ αq + · · ·+ αqe−1

The first author would like to thank the National Science Council of Taiwan for partial
support of this work under grant number NSC 92-2115-M-001-026. The third and fifth authors
would like to sincerely thank Gary McGuire and the Claude Shannon Institute of University
College Dublin, Dublin, Ireland, for their support during the Jan.–Mar., 2011 period, where part
of this work took place. The fourth and fifth authors are partially supported by NSERC of
Canada.

2010 Mathematics Subject Classification: primary: 11T06; secondary: 12F99



148 Wun-Seng Chou, Javier Gomez-Calderon, Gary L. Mullen, Daniel Panario, David Thomson

maps onto the subfield Fq uniformly in the sense that it maps onto each element
of the subfield Fq equally often. More generally, for each d dividing e, the trace
function defined for α ∈ Fqe by

Trd(α) = α+ αqd + · · ·+ αqe−d

maps onto the subfield Fqd uniformly in the sense that it maps onto each element
of the subfield Fqd equally often. These subfield ideas can be used to construct
sets of mutually orthogonal frequency squares (MOFS); see [7]. A connection to
maximal curves is given in [3].

From now on, let Vf (qe; qd) = {f(c) ∈ Fqd : c ∈ Fqe} denote the subfield value
set of f that lies in the subfield Fqd as c ranges over the extension field Fqe . Further
let |Vf (qe; qd)| denote the cardinality of Vf (qe; qd), that is, the number of distinct
elements in the image of f that lie in Fqd as c ranges over the extension field Fqe .
As a special case we note that Vf (qe; qe) denotes the usual value set {f(c) : c ∈ Fqe}
of a polynomial f over the field Fqe .

Further let Nf (q
e; qd) denote the number of images f(c) (counting multiplic-

ities) of f : Fqe → Fqe that lie in the subfield Fqd , as c ranges over the elements
of the extension field Fqe . We clearly have |Vf (qe; qd)| 6 Nf (q

e; qd), and of course
Nf (q

e; qe) = qe for any polynomial f over the field Fqe .
In this paper, we develop the notion of stratifying the image set of polyno-

mial mappings over finite fields by considering images laying within subfields. We
present formulas for the cardinalities of subfield value sets of basic polynomials
over finite fields, namely linearized polynomials (comprising all linear maps over
finite fields) in Section 2 and power polynomials (or monomials) in Section 3. The
main contribution of this paper, in Section 4, is determining the subfield value
sets of some Dickson polynomials, subject to a constraint on the parameter of the
polynomial. We conclude in Section 5 with an open problem on the general case
of the subfield value set of a Dickson polynomial.

2. König-Rados and linearized polynomials

The König-Rados theorem gives a way of determining the number of zeroes of
a polynomial over a finite field in terms of the rank of a matrix. In this section, we
use the König-Rados theorem to determine the subfield value set of a linearized
polynomial over a finite field. First, we present a subfield analogue of the König-
Rados theorem.

2.1. König-Rados theorem for subfields

Let n > 0, let f(x) =
∑n

i=0 aix
i ∈ Fq[x] and consider the equation f(x) = 0.

The distinct roots of f can be found as the roots of gcd(f, xq − x), which have
multiplicity 1. Thus, the number of distinct solutions of f(x) = 0 is equal to the
degree of gcd(f, xq − x). It is trivial to determine if f(0) = 0 and so we consider
only the solutions to gcd(f, xq−1− 1). Furthermore, since αq−1 = 1 for all α ∈ Fq,
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the number of nonzero solutions of f(x) = 0 is the same as the number of nonzero
solutions of

(a0 + aq−1) + a1x+ a2x
2 + · · ·+ aq−2x

q−2 = 0.

Thus, without loss of generality, we assume that n 6 q − 2.
The König-Rados Theorem expresses the number of nonzero roots of a poly-

nomial in terms of the rank of a coefficient matrix.

Theorem 2.1. [6, Theorem 6.1] Let q be a power of a prime, let

f(x) =

q−2∑
s=0

asx
s ∈ Fq[x]

and denote by C the left circulant matrix

C =


a0 a1 · · · aq−3 aq−2

a1 a2 · · · aq−2 a0
...

...
. . .

...
...

aq−2 a0 · · · aq−4 aq−3

 .
The number of nonzero solutions of the equation f(x) = 0 in Fq is equal to
q − 1− rk(C), where rk(C) is the rank of the matrix C.

We further extend the König-Rados Theorem to determine the number of roots
of the polynomials occurring within a subfield.

Theorem 2.2. Let q be a power of a prime, and let e, d be positive integers with
d dividing e. Let

f(x) =

qe−2∑
s=0

asx
s ∈ Fqe [x],

and denote by C and B the matrices

C =


a0 a1 · · · aqe−3 aqe−2

a1 a2 · · · aqe−2 a0

...
...

. . .
...

...
aqe−2 a0 · · · aqe−4 aqe−3

 , B =



1 1 · · · 1

b1 b2 · · · bqe−1

b21 b22 · · · b2qe−1

...
...

. . .
...

bq
e−2

1 bq
e−2

2 · · · bq
e−2

qe−1


,

where b1, b2, . . . , bqe−1 are the distinct elements of F∗
qe . Denote by Bd the

(qe − 1) × (qd − 1) submatrix of B defined by the columns of B corresponding
to the elements of F∗

qd . Then, the number of non-zero solutions of the equation
f(x) = 0 in Fqd is equal to qd − 1− rk(CBd).
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Proof. Let N be the number of solutions of f(x) = 0 and let Nd be the number
of solutions of f(x) = 0 occurring within F∗

qd . We may assume that N < qe − 1,

otherwise f is the zero polynomial. In addition, suppose xq
d−1−1 does not divide

f and thus Nd < qd − 1.
Let b1, b2, . . . , bqe−1 be the distinct elements of F∗

qe , ordered so f(bi) ̸= 0 for
1 6 i 6 qe−1−N and bqe−Nd

, bqe−Nd+1, . . . , bqe−1 ∈ F∗
qd . Define the Vandermonde

matrix B as in the statement of the theorem. Then det(B) ̸= 0 since the elements
b1, b2, . . . , bqe−1 are distinct.

Using αqe−1 = 1 for all α ∈ F∗
qe , we obtain

CB =



f(b1) f(b2) · · · f(bqe−1)

b−1
1 f(b1) b−1

2 f(b2) · · · b−1
qe−1f(bqe−1)

b−2
1 f(b1) b−2

2 f(b2) · · · b−2
qe−1f(bqe−1)

...
...

. . .
...

b
−(qe−2)
1 f(b1) b

−(qe−2)
2 f(b2) · · · b

−(qe−2)
qe−1 f(bqe−1)


.

The final N columns of CB are all zero, and so rk(CB) 6 qe − 1−N , since B is
non-singular.

Let Bd be the (qe − 1)× (qd − 1) submatrix of B defined by taking the qd − 1
columns of B corresponding to the elements of F∗

qd . Since the elements of F∗
qd

which are solutions of f(x) = 0 appear in the final columns of B, they also appear
as the final columns of Bd. Thus, the final Nd columns of CBd are equal to 0 and
the rank of CBd is at most qd − 1−Nd.

Let the nonzero solutions of f(x) = 0 in Fqd be c1, c2, . . . , cqd−1−Nd
and consider

the submatrix of CBd

E =



f(c1) f(c2) · · · f(cqd−1−Nd
)

c−1
1 f(c1) c−1

2 f(c2) · · · c−1
qd−1−Nd

f(cqd−1−Nd
)

c−2
1 f(c1) c−2

2 f(c2) · · · c−2
qd−1−Nd

f(cqd−1−Nd
)

...
...

. . .
...

c
−(qd−2−Nd)
1 f(c1) c

−(qd−2−Nd)
2 f(c2) · · · c

−(qd−2−Nd)

qd−1−Nd
f(cqd−1−Nd

)


.

The matrix E is invertible since det(E) = f(c1)f(c2) · · · f(cqd−1−Nd
) det(E′),

where E′ is the Vandermonde matrix with defining row (c−1
1 , c−1

2 , . . . , c−1
qd−1−Nd

).

Thus, rk(CBd) = qd − 1−Nd. �

We comment that if e = d, then Bd = B. Since Bd has full rank, rk(CBd) =
rk(C), and Theorem 2.2 reduces to Theorem 2.1.
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2.2. Linearized polynomials

Definition 2.3. Let Fqe be the finite field with qe elements. A linearized polyno-
mial over Fqe is a polynomial of the form

L(x) =

e−1∑
i=0

αix
qi ∈ Fqe [x].

An affine polynomial over Fqe is given by A(x) = L(x) + α, where L(x) is
a linearized polynomial over Fqe and α ∈ Fqe .

Suppose L is a linearized polynomial over Fqe . Then L is indeed linear over
Fq, that is, L(α1 +α2) = L(α1)+L(α2) and L(cα1) = cL(α1), for all α1, α2 ∈ Fqe

and c ∈ Fq. Since linearized polynomials over Fqe define linear transformations
Fqe → Fqe , we can consider L as a linear operator Fqe → Fqe , when Fqe is seen
as a vector space over Fq. For the remainder of this paper we use the notation
Fqe both to denote the finite field of degree e over Fq and to denote the vector
space Fe

q over Fq. In addition, we do not make the distinction between a linearized
polynomial L ∈ Fqe [x] and the linear operator Fe

q → Fe
q.

To study the value sets of linearized polynomials, we need the following result
that determines when a set of elements forms a basis for a finite field.

Theorem 2.4. [6, Corollary 2.38] Denote by Fqe the finite field with qe elements.
The elements β0, β1, . . . , βe−1 ∈ Fqe form a basis of Fqe over Fq if and only if∣∣∣∣∣∣∣∣∣∣

β0 βq
0 · · · βqe−1

0

β1 βq
1 · · · βqe−1

1
...

...
. . .

...
βe−1 βq

e−1 · · · βqe−1

e−1

∣∣∣∣∣∣∣∣∣∣
̸= 0. (2.1)

It is well known when linearized polynomials define permutations over finite
fields, see [6, Theorem 7.9]. We use a technique similar to an alternate discussion,
given in [6, Page 362], to determine the value set of a linearized polynomial.

Theorem 2.5. Let q be a power of a prime, and let e be a positive integer. Denote
by Fqe the finite field with qe elements and let L(x) =

∑e−1
s=0 αix

qi be a linearized
polynomial over Fqe . Denote by M the e× e matrix

α0 αq
e−1 · · · αqe−1

1

α1 αq
0 · · · αqe−1

2
...

...
. . .

...
αe−1 αq

e−2 · · · αqe−1

0

 .
Then, L is a permutation polynomial if and only if det(M) ̸= 0, where det(M)
denotes the determinant of the matrix M . Furthermore, the value set of L, denoted
VL, satisfies |VL| = qrk(M).
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Proof. The statement of the theorem is proven in [6, Page 362], except for the
final line. For the final assertion, we fix a basis {β0, β1, . . . , βe−1} of Fqe over Fq

and let γi = L(βi), i = 0, 1, . . . , e− 1.
For 0 6 i, j 6 e− 1 we have

γq
j

i =

e−1∑
s=0

αqj

s β
qs+j

i ,

and taking subscripts (mod e), we have

γq
j

i =
e−1∑
s=0

αqj

s−jβ
qs

i .

We therefore have a matrix equation relating the conjugates of the γi, βi and αs−j

of the following form
γ0 γq0 · · · γq

e−1

0

γ1 γq1 · · · γq
e−1

1
...

...
. . .

...
γe−1 γqe−1 · · · γq

e1

e−1



=


β0 βq

0 · · · βqe−1

0

β1 βq
1 · · · βqe−1

1
...

...
. . .

...
βe−1 βq

e−1 · · · βqe−1

e−1




α0 αq
e−1 · · · αqe−1

1

α1 αq
0 · · · αqe−1

2
...

...
. . .

...
αe−1 αq

e−2 · · · αqe−1

0

 .

Labelling the corresponding matrices Γ, B and M respectively, by Theorem 2.4
the matrix B is non-singular and thus the rank of Γ is equal to the rank of M .
Since the value set of the linearized polynomial L is equal to the image set of the
linear operator, we have |VL| = qrk(M). �

Corollary 2.6. Let L ∈ Fqe [x] be a linearized polynomial with value set of cardi-
nality qrk(M), as given in Theorem 2.5. Every image is repeated qe−rk(M) times.
Furthermore, NL(q

e; qd) = |VL(qe; qd)|qe−rk(M), where NL(q
e; qd) denotes the total

number of images of L in Fqd , including repetitions.

Proof. Since L defines a linear operator Fqe → Fqe , we have, by the first iso-
morphism theorem, Fqe/ ker(L) ∼= VL. Since dim(ker(L)) = e− rk(M), the claim
follows. �

Suppose L ∈ Fqe [x] is a linearized polynomial and let A(x) = L(x) + α, for
some α ∈ Fqe . Consider the subfield value set of A, VA(qe; qd), for any d dividing
e. We have trivially that |VA(qe; qe)| = |VL(qe; qe)|. If α ∈ Fqd , then |VA(qe; qd)| =
|VL(qe; qd)|.
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Example 2.7. Let L(x) = Trd(x). Then L is a linearized polynomial and L
maps Fqe onto Fqd . Let α ∈ Fqe with α ̸∈ Fqd and let A(x) = L(x) + α. Then
VA(q

e; qd) = ∅.

If α ∈ VL(qe; qe), that is, if α is an image of L, then for all β ∈ Fqe , A(β) =
L(β) + α = L(β + γ), where α = L(γ). Thus, running over all β ∈ Fqe , we have
that VL(qe; qd) = VA(q

e; qd) for all d dividing e. If α is not an image of L, then
the subfield value set of A depends on the additive cosets of the subfield value set
of L. It can be easily verified with a computer algebra program, such as SAGE or
Maple, that the cardinalities of subfield value sets of affine polynomials most often
vary from the subfield value sets of their corresponding linearized polynomials.

Lemma 2.8. Let q be a power of a prime, and let e be a positive integer. Let Fqe

be the finite field with qe elements and let L be a linearized polynomial over Fqe

defined by L(x) =
∑e−1

i=0 aix
qi . Then

NL(q
e; qd) =

∣∣∣∣∣
{
β :

e−1∑
i=0

(
aq

d

e−d+i − ai
)
βqi = 0

}∣∣∣∣∣
and

|VL(qe; qd)| = NL(q
e; qd)/qe−rk(M),

where M is the matrix given in Theorem 2.5.

Proof. Let

L(x) =

e−1∑
i=0

aix
qi

and suppose that L(α) lies in Fqd . That is,

L(α)q
d

=

e−1∑
i=0

aq
d

i α
qi+d

= L(α) =

e−1∑
i=0

aiα
qi .

Rearranging, we find

e−1∑
i=0

aq
d

i α
qi+d

−
e−1∑
i=0

aiα
qi =

e−1∑
i=0

(aq
d

e−d+i − ai)α
qi = 0,

where the subscripts are taken (mod e). Thus L(α) lies in the subfield Fqd of Fqe

if and only if α is a root of the polynomial

b(x) =

e−1∑
i=0

(aq
d

e−d+i − ai)x
qi . (2.2)

The final expression for |VL(qe; qd)| is given by Corollary 2.6. �
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Counting the number of zeroes of the polynomial b in Equation (2.2) can be
done by the König-Rados theorem, see Theorem 2.1.

Theorem 2.9. Let L be a linearized polynomial over Fqe given by L(x) =∑qe−1
i=0 aix

i, that is aj = 0 for j ̸= 1, q, q2, . . . , qe−1. Let C be the left-circulant
matrix of size qe − 1 with defining row0 b0 0 · · · 0︸ ︷︷ ︸

q − 2 times

b1 0 · · · 0︸ ︷︷ ︸
q2 − q − 1 times

b2 · · · be−2 0 · · · 0︸ ︷︷ ︸
qe−1 − qe−2 − 1 times

be−1 0 · · · 0︸ ︷︷ ︸
qe − qe−1 − 2 times

 ,

where b0 are the coefficients of b in Equation (2.2). Then,

|VL(qe; qd)| =
qe − rk(C)

qe−rk(M)
,

where M is given by Corollary 2.6.

Proof. Theorem 2.1 gives the number of non-zero roots of b is qe − 1 − rk(C).
Since 0 is a root of b, the claim follows. �

3. Power polynomials

We now consider the subfield value set Vxn(qe; qd) of the polynomial f(x) = xn.
Power polynomials are a special case of Dickson polynomial Dn(x, a) with a = 0,
as we will see in the next section. It is well known and easy to see that

|Vxn(qe; qe)| = qe − 1

(n, qe − 1)
+ 1.

We first show the number of preimages of the subfield value set of a power
polynomial.

Theorem 3.1. The number of preimages of the power polynomial xn is given by
Nxn(qe; qd) = (n(qd − 1), qe − 1) + 1.

Proof. Recall that if α ∈ Fqe , then α ∈ Fqd if and only if αqd = α. For c ∈ F∗
qe ,

if (cn)q
d

= cn, we have cn(q
d−1) = 1. The number of solutions of this equation for

c ∈ F∗
qe , is given by (n(qd − 1), qe − 1), and the result follows. �

Since the multiplicative group F∗
qe is cyclic, we have in F∗

qe

|Vxn(qe; qd)| = Nxn(qe; qd)

(n, qe − 1)
+ 1 =

(n(qd − 1), qe − 1)

(n, qe − 1)
+ 1.

We note that if (n, qe − 1) = 1 so that xn is a permutation polynomial on
Fqe , then |Vxn(qe; qd)| = Nxn(qe; qd) = qd since xn must map Fqd onto itself.
In fact, if (n, qd − 1) = 1, then xn is a permutation polynomial on Fqd and so
|Vxn(qe; qd)| = qd.
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Example 3.2. Let f(x) = x2 with q = 3, d = 1, e = 2. Then we have

|Vx2(3; 3)| = 2

(2, 2)
+ 1 = 2;

|Vx2(32; 3)| = (2(3− 1), 8)

(2, 8)
+ 1 = 3;

|Vx2(32; 32)| = 8

(2, 8)
+ 1 = 5;

Nx2(32; 3) = (2(3− 1), 8) + 1 = 5;

Nx2(32; 32) = (2(32 − 1), 8)) + 1 = 9.

We note, however, that the 5 elements counted in the third and fourth lines do
not represent the same five elements.

4. Dickson polynomials

For a ∈ Fqe , the Dickson polynomial Dn(x, a) of degree n and parameter a is
defined by

Dn(x, a) =

⌊n/2⌋∑
i=0

n

n− i

(
n− i
i

)
(−a)ixn−2i.

Dickson polynomials have been studied extensively since they play very important
roles in the theory of permutation polynomials over finite fields, and in the Schur
conjecture; see [5]. In [4], the use of Dickson polynomials in cryptographic systems,
particularly over finite fields, is generalized by considering Dickson polynomials
over Galois rings. Dickson polynomials have many properties which are closely re-
lated to properties of the power polynomial xn = Dn(x, 0), see [5]. For example, for
a ∈ F∗

q , Dn(x, a) induces a permutation on the field Fq if and only if (n, q2−1) = 1.
Moreover, from [1] we have

|VDn(x,a)(q; q)| =
q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)
+ α,

where α can be explicitly stated and is usually 0. In [3], if n is odd and n divides q−
1, it was shown thatNDn(x,1)(q

2; q) = (q(n+1)−(n−1))/2, andNDq−1(x,1)(q
2; q) =

(q2 + 1)/2.
Let a ∈ F∗

qe . If c ∈ Fqe , then we can write c = y + a/y for some y ∈ Fq2e , and
we obtain a functional equation for Dickson polynomials, Dn(c, a) = yn + an/yn.
Thus, in order to have the image Dn(c, a) in the subfield Fqd , we must have(

yn +
an

yn

)qd

= yn +
an

yn
. (4.1)

If an ∈ Fqd , Equation (4.1) becomes, after simplification,

(yn(q
d−1) − 1)(yn(q

d+1) − an) = 0; (4.2)

that is, either yn(q
d−1) = 1 or yn(q

d+1) = an. The following lemma is essential but
has an elementary proof which is omitted.
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Lemma 4.1. For a ∈ F∗
qe , let Ca be the set Ca = {y+a/y : y ∈ F∗

qe or yq
e+1 = a}.

Then, Ca = Fqe .

We consider only the case when an ∈ Fqd , for otherwise, when an ̸∈ Fqd , Equa-
tion (4.1) does not seem to lead to a convenient factorization as in Equation (4.2);
see Section 5. We derive |VDn(x,a)(q

e; qd)| in detail for q odd and note that the
derivation for q even is similar and therefore omitted.

In the following lemma, ηqℓ is the quadratic character on Fqℓ , so that ηqℓ(a) = 1
if a ∈ F∗

qℓ is a non-zero square and ηqℓ(a) = −1 if a ∈ F∗
qℓ is not a square. Moreover√

a is a square root in Fq2ℓ of a ∈ F∗
qℓ . For any number m, let rm be the non-

negative integer satisfying 2rm ||m, that is, rm is the highest non-negative power
of 2 dividing m.

Lemma 4.2. Let Fqd be a subfield of Fqe with q odd. If an ∈ F∗
qd , then c ∈

VDn(x,a)(q
e; qd) if and only if c = yn + an/yn, where y satisfies at least one of the

following requirements:

I. y(q
e−1,n(qd−1)) = 1,

II. a. for ηqe(a) = 1 and ηqd(an) = 1,

1. ( y√
a
)(q

e+1,n(qd−1)) = 1,

2. ( y√
a
)(q

e−1,n(qd+1)) = 1,

3. ( y√
a
)(q

e+1,n(qd+1)) = 1,

b. for ηqe(a) = −1 and ηqd(an) = 1,

1. ( y√
a
)(q

e+1,n(qd−1)) = −1 and rqe+1 < rn(qd−1),

2. ( y√
a
)(q

e−1,n(qd+1)) = −1 and rqe−1 < rn(qd+1),

3. ( y√
a
)(q

e+1,n(qd+1)) = −1 and rqe+1 < rn(qd+1),

c. for ηqe(a) = 1 and ηqd(an) = −1,

1. ( y√
a
)(q

e+1,n(qd−1)) = −1 and rn(qd−1) < rqe+1,

2. ( y√
a
)(q

e−1,n(qd+1)) = −1 and rn(qd+1) < rqe−1,

3. ( y√
a
)(q

e+1,n(qd+1)) = −1 and rn(qd+1) < rqe+1,

d. for ηqe(a) = −1 and ηqd(an) = −1,

1. ( y√
a
)(q

e+1,n(qd−1)) = −1 and rqe+1 = rn(qd−1),

2. ( y√
a
)(q

e−1,n(qd+1)) = −1 and rqe−1 = rn(qd+1),

3. ( y√
a
)(q

e+1,n(qd+1)) = −1 and rqe+1 = rn(qd+1).
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Proof. By Lemma 4.1,

{Dn(c, a) : c ∈ Fqe} = {yn + (a/y)n : y ∈ Fqe or yq
e+1 = a}.

Since an ∈ Fqd , yn+(a/y)n ∈ VDn(x,a)(q
e; qd) if and only if yq

e−1 = 1 or yq
e+1 = a

and yn(q
d−1) = 1 or yn(q

d+1) = an by Equation (4.2).

If yq
e−1 = 1 and yn(q

d−1) = 1, then y(q
e−1,n(qd−1)) = 1 and Case I holds. In

Case II, we prove only (b.1). All other cases can be proved in similar ways.
Suppose ηqd(an) = 1 and ηqe(a) = −1. Then (

√
a)n(q

d−1) = 1 and (
√
a)q

e−1 =

−1. The last equality is equivalent to (
√
a)q

e+1 = −a.
Case II.b.1: Suppose yq

e+1 = a and yn(q
d−1) = 1. These two equations

are equivalent to
(

y√
a

)qe+1

= −1 and
(

y√
a

)n(qd−1)

= 1, respectively. Thus,(
y√
a

)(2(qe+1),n(qd−1))

= 1 but
(

y√
a

)(qe+1,n(qd−1))

= −1, and so rqe+1 < rn(qd−1).
�

We can now evaluate NDn(x,a)(q
e; qd).

Theorem 4.3. Let q be odd and let a ∈ Fqe with an ∈ Fqd . For integers m and
k, let δm<k = 1, if m < k, and δm<k = 0, if m > k. Also, let δm=k = 1, if m = k,
and δm=k = 0, if m ̸= k.

a. If ηqe(a) = 1 and ηqd(an) = 1, then

NDn(x,a)(q
e; qd)

=
(qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))− (qe − 1, 2n)

2

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))− (qe + 1, 2n)

2
.

b. If ηqe(a) = −1 and ηqd(an) = 1, then

NDn(x,a)(q
e; qd)

=
(qe − 1, n(qd − 1)) + δrqe−1<r

n(qd+1)
(qe − 1, n(qd + 1))

2

+
−(1− δrn<rqe−1

)(qe − 1, n) + δrqe+1<r
n(qd−1)

(qe + 1, n(qd − 1))

2

+
δrqe+1<r

n(qd+1)
(qe + 1, n(qd + 1))− (1− δrn<rqe+1

)(qe + 1, n)

2
.
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c. If ηqe(a) = 1 and ηqd(an) = −1, then

NDn(x,a)(q
e; qd)

=
(qe − 1, n

(
qd − 1

)
) + δr

n(qd+1)<rqe−1
(qe − 1, n(qd + 1))

2

+
δr

n(qd−1)<rqe+1
(qe + 1, n(qd − 1)) + δr

n(qd+1)
<rqe+1

(qe + 1, n(qd + 1))

2
.

d. If ηqe(a) = −1 and ηqd(an) = −1, then

NDn(x,a)(q
e; qd)

=
(qe − 1, n(qd − 1)) + δrqe−1=r

n(qd+1)
(qe − 1, n(qd + 1))

2

+
δrqe+1=r

n(qd−1)
(qe + 1, n(qd − 1)) + δrqe+1=r

n(qd+1)
(qe + 1, n(qd + 1))

2
.

Proof. We prove this theorem according to the cases in Lemma 4.2. We only
prove Case b and comment that the proof of this case is a typical example of the
proofs of the remaining cases.

Case b: ηqe(a) = −1 and ηqd(an) = 1. Let

E1 =
{
y ∈ Fqe : y(q

e−1,n(qd−1)) = 1
}
,

E2 =

{
y ∈ Fq2e :

(
y√
a

)(qe+1,n(qd−1))
= −1 and rqe+1 < rn(qd−1)

}
,

E3 =

{
y ∈ Fqe :

(
y√
a

)(qe−1,n(qd+1))
= −1 and rqe−1 < rn(qd−1)

}
, and

E4 =

{
y ∈ Fq2e :

(
y√
a

)(qe+1,n(qd+1))
= −1 and rqe+1 < rn(qd+1)

}
.

The definition of E1 comes from Case I of Lemma 4.2. We note that |E1| =
(qe − 1, n(qd − 1)), |E2| = (qe + 1, n(qd − 1)), |E3| = (qe − 1, n(qd + 1)), and
|E4| = (qe + 1, n(qd + 1)).

For y ∈ E2, y can be written as y = u
√
a with u(2(q

e+1),n(qd−1)) = 1 and
uq

e+1 = −1. This implies that 2r2(qe+1) divides the order of u. Moreover, if
y ∈ E3, then 2r2(qe−1) divides the order of u. Since either qe − 1 ≡ 0 (mod 4) or
qe + 1 ≡ 0 (mod 4), 8 divides the order of u. However u2(q

e+1) = 1 = u2(q
e−1)

would imply u4 = 1, a contradiction. So, E2

∩
E3 = ∅. Similar arguments show

that E1

∩
E2 = E1

∩
E4 = E3

∩
E4 = ∅.

Let y = u
√
a. Then y ∈ E2

∩
E4 if and only if u(2(q

e+1),n(qd−1)) = 1, uq
e+1 =

−1 and u(2(q
e+1),n(qd+1)) = 1. These are equivalent to u(2(q

e+1),2n) = 1 and
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uq
e+1 = −1. So, if rqe+1 > rn, then |E2

∩
E4| = 0, while if rqe+1 6 rn, then

|E2

∩
E4| = (qe + 1, n). By similar arguments, we have that |E1

∩
E3| = 0 if

rqe−1 > rn, and |E1

∩
E3| = (qe − 1, n) if rqe−1 6 rn.

Combining all of the results above together, we have, by the inclusion-exclusion
principle,

NDn(x,a)(q
e; qd)

=
|E1

∪
E2

∪
E3

∪
E4|

2

=
(qe − 1, n(qd − 1)) + δrqe−1<r

n(qd−1)
(qe − 1, n(qd + 1))

2

+
−(1− δrn<rqe−1

)(qe − 1, n) + δrqe+1<r
n(qd−1)

(qe + 1, n(qd − 1))

2

+
δrqe+1<r

n(qd+1)
(qe + 1, n(qd + 1))− (1− δrn<rqe+1

)(qe + 1, n)

2
.

This completes the proof. �

The result of Theorem 4.3, Case a is a generalization of the results in [3] stated
before. Indeed, if n is an odd divisor of q − 1 (and so n properly divides q − 1),
then (q2 − 1, n(q − 1)) = (q − 1)(q + 1, n) = q − 1, (q2 − 1, n(q + 1)) = n(q + 1),
(q2 − 1, 2n) = 2n, and (q2 + 1, n(q − 1)) = 2 = (q2 + 1, n(q + 1)) = (q2 + 1, 2n).
So, NDn(x,1)(q

2; q) = (q(n+ 1)− (n− 1))/2. Moreover, in the case n = q − 1, we
obtain NDq−1(x,1)(q

2; q) = (q2 + 1)/2 using similar arguments.
We now present some lemmas for computing |VDn(x,a)(q

e; qd)|.

Lemma 4.4 ([1, Lemma 7]). If x ∈ Fqe with x = y + a/y for y ∈ F∗
q2e , then

yn = (a/y)n if and only if Dn(x, a) = ±2an/2 where an/2 is a square root of an
in F∗

q2e .

Lemma 4.5 ([1, Theorem 9]). For x0 ∈ Fqe , let D−1
n (Dn(x0, a)) be the preimage

of Dn(x0, a) with a ∈ F∗
qe . Suppose that 2r||(q2e−1). Let condition A hold if either

1. 2t||n with 1 6 t 6 r − 1, ηqe(a) = −1 and Dn(x0, a) = ±2an/2, or
2. 2t||n with 1 6 t 6 r − 2, ηqe(a) = 1 and Dn(x0, a) = −2an/2.

Then

|D−1
n (Dn(x0, a))|

=



(n, qe − 1), if ηqe(x20 − 4a) = 1 and Dn(x0, a) ̸= ±2an/2,
(n, qe + 1), if ηqe(x20 − 4a) = −1 and Dn(x0, a) ̸= ±2an/2,
(n,qe−1)

2 , if ηqe(x20 − 4a) = 1 and condition A holds,
(n,qe+1)

2 , if ηqe(x20 − 4a) = −1 and condition A holds,
(n,qe−1)+(n,qe+1)

2 , otherwise.
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We are now ready to compute |VDn(x,a)(q
e; qd)| with an ∈ Fqd .

Theorem 4.6. Let q be odd and let a ∈ F∗
qe with an ∈ Fqd . For integers m and k,

let δm<k = 1, if m < k, and δm<k = 0, if m > k. Also, let δm=k = 1, if m = k,
and δm=k = 0, if m ̸= k. Suppose that 2r||(q2e − 1).

a. If ηqe(a) = 1 and ηqd(an) = 1, then

|VDn(x,a)(q
e; qd)| = (qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))

2(qe + 1, n)

− 3 + (−1)n+1

2
.

b. If ηqe(a) = −1 and ηqd(an) = 1, then

|VDn(x,a)(q
e; qd)|

= −δr−1<rn +
(qe − 1, n(qd − 1)) + δrqe−1<r

n(qd+1)
(qe − 1, n(qd + 1))

2(qe − 1, n)

+
δrqe+1<r

n(qd−1)
(qe + 1, n(qd − 1)) + δrqe+1<r

n(qd+1)
(qe + 1, n(qd + 1))

2(qe + 1, n)
.

c. If ηqe(a) = 1 and ηqd(an) = −1, then

|VDn(x,a)(q
e; qd)|

=
(qe − 1, n(qd − 1)) + δr

n(qd+1)<rqe−1
(qe − 1, n(qd + 1))

2(qe − 1, n)

+
δr

n(qd−1)<rqe+1
(qe + 1, n(qd − 1)) + δr

n(qd+1)<rqe+1
(qe + 1, n(qd + 1))

2(qe + 1, n)
.

d. If ηqe(a) = −1 and ηqd(an) = −1, then

|VDn(x,a)(q
e; qd)|

=
(qe − 1, n(qd − 1)) + δrqe−1=r

n(qd+1)
(qe − 1, n(qd + 1))

2(qe − 1, n)

+
δrqe+1=r

n(qd−1)
(qe + 1, n(qd − 1)) + δrqe+1=r

n(qd+1)
(qe + 1, n(qd + 1))

2(qe + 1, n)
.
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Proof. We prove only Case a. The proofs of the remaining cases are similar. Let

E1 =
{
y ∈ Fqe : y(q

e−1,n(qd−1)) = 1
}
,

E2 =

{
y ∈ Fq2e :

(
y√
a

)(qe+1,n(qd−1))
= 1

}
,

E3 =

{
y ∈ Fqe :

(
y√
a

)(qe−1,n(qd+1))
= 1

}
, and

E4 =

{
y ∈ Fq2e :

(
y√
a

)(qe+1,n(qd+1))
= 1

}
.

Similar to the proof of Theorem 4.3, we have y = u
√
a ∈ E1

∩
E3 if and only if the

order of u divides (qe − 1, 2n) and y = u
√
a ∈ E2

∩
E4 if and only if the order of

u divides (qe +1, 2n). In both situations, we have yn = (a/y)n. From Lemma 4.4,
for x0 = y0 + a/y0, y0 ∈ (E1

∩
E3)

∪
(E2

∩
E4) if and only if Dn(x0, a) = ±2an/2.

Every element x0 = y0 + a/y0 with y0 ∈ (E1

∪
E3) \ (E1

∩
E3) satisfies

ηqe(x
2
0− 4a) = 1 and Dn(x0, a) ̸= 2an/2. From Lemma 4.5, the total number I1 of

images Dn(x0, a) with x0 = y0 + a/y0 for all y0 ∈ (E1

∪
E3) \ (E1

∩
E3) is

I1 =
(qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))− 2(qe − 1, 2n)

2(qe − 1, n)
.

Similarly, the total number I2 of images Dn(x0, a) with x0 = y0 + a/y0 for all
y0 ∈ (E2

∪
E4) \ (E2

∩
E4) is

I2 =
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))− 2(qe + 1, 2n)

2(qe + 1, n)
.

We have seen that |E1

∩
E3| = (qe − 1, 2n), |E2

∩
E4| = (qe + 1, 2n), and

(E1

∩
E3)

∩
(E2

∩
E4) = {±

√
a}. Let t be the non-negative integer satisfying 2t||n,

and let r be as in Lemma 4.5. If 1 6 t 6 r−2, then either (qe−1, 2n) = 2(qe−1, n)
and (qe + 1, 2n) = (qe + 1, n) or (qe − 1, 2n) = (qe − 1, n) and (qe + 1, 2n) =
2(qe+1, n). Furthermore, (qe−1, 2n) = 2(qe−1, n) and (qe+1, 2n) = 2(qe+1, n)
if t = 0, while (qe − 1, 2n) = (qe − 1, n) and (qe + 1, 2n) = (qe + 1, n) if t > r − 1.

For x0 = y0+a/y0 ∈ Fqe , if y0 ∈ E1

∩
E3, then ηqe(x20−4a) = 1, while if ±

√
a ̸=

y0 ∈ E2

∩
E4, then ηqe(x

2
0 − 4a) = −1. Moreover, every element y0 ∈ E1

∩
E3

can be written as y0 = u
√
a with u(q

e−1,2n) = 1. So, if x0 = y0 + a/y0 ∈ Fqe

with y0 ∈ E1

∩
E3, then Dn(x0, a) = yn0 + an/yn0 = 2u(q

e−1,n)(
√
a)n. Hence, if

(qe − 1, 2n) = (qe − 1, n), then for all elements y0 ∈ E1

∩
E3, Dn(y0 + a/y0, a) =

2(
√
a)n. If (qe − 1, 2n) = 2(qe − 1, n), then for half of elements y0 ∈ E1

∩
E3,

Dn(y0 + a/y0, a) = 2(
√
a)n and for all other elements y0 ∈ E1

∩
E3, Dn(y0 +

a/y0, a) = −2(
√
a)n. Similarly, if (qe + 1, 2n) = (qe + 1, n) then for all elements

y0 ∈ E2

∩
E4, Dn(y0 + a/y0, a) = 2(

√
a)n, and if (qe + 1, 2n) = 2(qe + 1, n) then

for half of elements y0 ∈ E2

∩
E4, Dn(y0 + a/y0, a) = 2(

√
a)n and for all other
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elements y0 ∈ E2

∩
E4, Dn(y0 + a/y0, a) = −2(

√
a)n. Combining all of these

results together, we have, from Lemma 4.5, that the total number I3 of images
Dn(y0 + a/y0, a) with y0 ∈ (E1

∩
E3)

∩
(E2

∩
E4) equals either 1 if 2t||n and

t > r − 1, or 2 otherwise.
We have for the value set |VDn(x,a)(q

e; qd)| = I1 + I2 + I3. We now compute
|VDn(x,a)(q

e; qd)| according to the value of t.
Case 1: t = 0 (n is odd). We have (qe − 1, 2n) = 2(qe − 1, n), (qe + 1, 2n) =

2(qe + 1, n) and I3 = 2. From the result above, we have

|VDn(x,a)(q
e; qd)|= 2 +

(qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1)−2(qe − 1, 2n)

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))− 2(qe + 1, 2n)

2(qe + 1, n)

=
(qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))

2(qe + 1, n)
− 2.

Case 2: 1 6 t 6 r − 2. We have either (qe − 1, 2n) = 2(qe − 1, n) and
(qe+1, 2n) = (qe+1, n), or (qe−1, 2n) = (qe−1, n) and (qe+1, 2n) = 2(qe+1, n).
In this case, I3 = 2 and

I1 + I2 =
(qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))

2(qe + 1, n)
− 3.

Thus,

|VDn(x,a)(q
e; qd)| = (qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))

2(qe + 1, n)
− 1.

Case 3: t > r− 1. We have (qe − 1, 2n) = (qe − 1, n), (qe +1, 2n) = (qe +1, n)
and I3 = 1. Therefore, the value set satisfies

|VDn(x,a)(q
e; qd)| = (qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))

2(qe + 1, n)
− 1.

This completes the proof. �
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The following corollary is the most important special case, which appears as
[1, Theorem 10].

Corollary 4.7. Let q be odd and let a ∈ F∗
q . Suppose that 2r||(q2 − 1). Then we

have
|VDn(x,a)(q; q)| =

q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)
+ α,

where

α =


1 if 2e−1||n and ηq(a) = −1,
1
2 if 2t||n with 1 6 t 6 r − 2,
0 otherwise.

Proof. This is a special case of Theorem 4.6 with qe = qd = q. Determining
the value of α depends on the parity of n and the value of ηq(a); the details are
omitted. �

We now state the results of NDn(x,a)(qe;qd) and |VDn(x,a)(q
e; qd)| for q even.

The derivation of these results is similar, but slightly simpler, to those of q odd
and is therefore omitted.

Theorem 4.8. Let q be even and let a ∈ F∗
qe with an ∈ Fqd . Then

NDn(x,a)(q
e; qd) =

(qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))− (qe − 1, n)

2

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))− (qe + 1, n)

2
.

Theorem 4.9. Let q be even and let a ∈ F∗
qe with an ∈ Fqd . Then

|VDn(x,a)(q
e; qd)| = (qe − 1, n(qd − 1)) + (qe − 1, n(qd + 1))

2(qe − 1, n)

+
(qe + 1, n(qd − 1)) + (qe + 1, n(qd + 1))

2(qe + 1, n)
− 1.

Corollary 4.10. Let q be even and let a ∈ F∗
q . Then we have

|VDn(x,a)(q; q)| =
q − 1

2(n, q − 1)
+

q + 1

2(n, q + 1)
.

5. Open problem

We conclude with an open problem. In all of our work concerning Dickson poly-
nomials, we have assumed that the parameter a has the property that an ∈ Fqd .
The reason for this assumption is that in this case, Equation (4.1) leads to the
simple factorization in Equation (4.2). For this equation, we are able to calculate
the number of solutions to each factor as well as the number of solutions which
simultaneously satisfy both factors.



164 Wun-Seng Chou, Javier Gomez-Calderon, Gary L. Mullen, Daniel Panario, David Thomson

For an ̸∈ Fqd , we do not know how to find
∣∣VDn(x,a)(q

e; qd)
∣∣ in general. How-

ever, we know that if gcd(n, q2e−1) = 1, then |VDn(x,a)(q
e; q)| = q = NDn(x,a)(q

e; q)
because Dn(x, a) is a permutation polynomial over Fqe . The following is an ex-
ample in the other extreme case, namely |VDn(x,a)(q

e; q)| = 0 = NDn(x,a)(q
e; q).

Proposition 5.1. Let q ≡ 7 (mod 8) be a prime power and let a ∈ F∗
q2 be a prim-

itive element of Fq2 . Then |VD(q−1)(q2+1)(x,a)
(q2; q)| = 0.

Proof. Since a ∈ F∗
q2 is a primitive element, a(q−1)(q2+1) ̸∈ Fq. At first, we

consider D(q−1)(q2+1)

(
y + a

y , a
)

with y ∈ F∗
q2 . In this case, yq

2−1 = 1 and so

we have D(q−1)(q2+1)

(
y + a

y , a
)
= y(q−1)(q2+1) + a(q−1)(q2+1)

y(q−1)(q2+1)
= y2(q−1) + a2(q−1)

y2(q−1) .

Hence, D(q−1)(q2+1)

(
y + a

y , a
)
∈ Fq if and only if

y2(q−1) +
a2(q−1)

y2(q−1)
=

(
y2(q−1) +

a2(q−1)

y2(q−1)

)q

= y2(q
2−q) +

a2(q
2−q)

y2(q2−q)

= y−2(q−1) +
a−2(q−1)

y−2(q−1)
=

1

a2(q−1)

(
y2(q−1) +

a2(q−1)

y2(q−1)

)
.

This implies that D(q−1)(q2+1)

(
y + a

y , a
)
∈ Fq if and only if either a2(q−1) = 1 or

y4(q−1) = −a2(q−1). We have that a2(q−1) = 1 cannot hold because a is primitive
in Fq2 . Also, y4(q−1) = −a2(q−1) cannot hold because a is primitive in Fq2 and
−a2(q−1) = a(q−1)(2+(q+1)/2) with the fact that 2 + (q + 1)/2 ≡ 2 (mod 4) from
q ≡ 7 (mod 8). So, what we have shown is that D(q−1)(q2+1)

(
y + a

y , a
)
̸∈ Fq in

this case.
Finally, we consider yq

2+1 = a. In this case,

D(q−1)(q2+1)

(
y +

a

y
, a

)
= y(q−1)(q2+1) +

a(q−1)(q2+1)

y(q−1)(q2+1)
= 2aq−1,

is trivally not in Fq. Combining this with the result above, we have

|VD(q−1)(q2+1)(x,a)
(q2; q)| = 0. �

In general, a ∈ Fqe is such that an ̸∈ Fqd , then Equation (4.1) seems to not
yield a simple factorization like that occurring in Equation (4.2). In such a set-
ting, how does one proceed to calculate the cardinality of the subfield value set
|VDn(x,a)(q

e; qd)|?
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