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NEAR-PRIMITIVE ROOTS

Pieter Moree

Abstract: Given an integer t > 1, a rational number g and a prime p ≡ 1(mod t) we say that g
is a near-primitive root of index t if νp(g) = 0, and g is of order (p − 1)/t modulo p. In the
case g is not minus a square we compute the density, under the Generalized Riemann Hypothesis
(GRH), of such primes explicitly in the form ρ(g)A, with ρ(g) a rational number and A the Artin
constant. We follow in this the approach of Wagstaff, who had dealt earlier with the case where
g is not minus a square. The outcome is in complete agreement with the recent determination of
the density using a very different, much more algebraic, approach due to Hendrik Lenstra, the
author and Peter Stevenhagen.
Keywords: near-primitive root, density, Euler product.

1. Introduction

Let g ∈ Q\{−1, 0, 1}. Let p be a prime. Let νp(g) denote the exponent of p in the
canonical factorization of g. If νp(g) = 0, then we define

rg(p) = [(Z/pZ)∗ : ⟨g mod p⟩],

that is rg(p) is the residual index modulo p of g. Note that rg(p) = 1 iff g is
a primitive root modulo p. For any natural number t, let Ng,t denote the set of
primes p with νp(g) = 0 and rg(p) = t (that is Ng,t is the set of near-primitive
roots of index t). Let δ(g, t) be the natural density of this set of primes (if it
exists). For arbitrary real x > 0, we let Ng,t(x) denote the number of primes p in
Ng,t with p 6 x.

In 1927 Emil Artin conjectured that for g not equal to −1 or a square, the set
Ng,1 is infinite and that Ng,1(x) ∼ cgAπ(x), with cg an explicit rational number,

A =
∏
p

(
1− 1

p(p− 1)

)
≈ 0.3739558,

and π(x) the number of primes p 6 x. The constant A is now called Artin’s
constant. On the basis of computer experiments by the Lehmers in 1957 Artin
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had to admit that ‘The machine caught up with me’ and provided a modified
version of cg. See e.g. Stevenhagen [12] for some of the historical details. On GRH
this modified version was shown to be correct by Hooley [2].

Thus δ(g, 1) is explicitly known (under GRH). Determining similarly δ(g, t)
turns out to be rather more difficult and for ease of exposition we first consider
the case where g > 1 is square free. In this case work of Lenstra [3] and Mu-
rata [9] suggests the following conjecture (with as usual µ the Möbius function and
ζk = e2πi/k).

Conjecture 1.1. Let g > 1 be a square free integer and t > 1 an integer. The set
Ng,t has a natural density δ(g, t) which is given in Table 1. We have

Ng,t is finite iff δ(g, t) = 0 iff g ≡ 1(mod 4), 2 - t, g|t.

We note that if g ≡ 1(mod 4), 2 - t and g|t, then Ng,t is finite. To see this
note that in this case we have ( gp ) = 1 for the primes p ≡ 1(mod t) by the law of
quadratic reciprocity and thus rg(p) must be even, contradicting the assumption
2 - t.

Note that if a set of primes is finite, then its natural density is zero. The
converse is often false, but for a wide class of Artin type problems (including the
one under consideration in this note) is true (on GRH) as first pointed out by
Lenstra [3].

Given an integer a and a prime q, we write aq to denote the q-part of a (that
is aq = qβ with qβ |a and qβ+1 - a). We put

B(g, t) =
∏

p|g, p-t

−1
p2 − p− 1

, E(t) =
A

t2

∏
p|t

p2 − 1

p2 − p− 1
. (1)

Note that if g|t, then in the definition of B(g, t) we have the empty product and
hence B(g, t) = 1. It follows that if further t is odd and g ≡ 1(mod 4), then
δ(g, t) = 0. The maximal value of δ(g, t) that occurs is 2E(t). Table 1 we took
from a paper by Murata [9]. We will show that the densities in Table 1 can be
compressed into one equation, namely (7).

Table 1: The density δ(g, t) of Ng,t (on GRH)

g t2 δ(g, t)
g ≡ 1(mod 4) t2 = 1 (1−B(g, t))E(t)

2|t2 (1 +B(g, t))E(t)
g ≡ 2(mod 4) t2 < 4 E(t)

t2 = 4 (1−B(g, t)/3)E(t)
t2 > 4 (1 +B(g, t))E(t)

g ≡ 3(mod 4) t2 = 1 E(t)
t2 = 2 (1−B(g, t)/3)E(t)
t2 > 4 (1 +B(g, t))E(t)
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Theorem 1.1. Conjecture 1.1 holds true on GRH.

The proof is postponed untill Section 2.

2. Generalization to rational g

A natural next problem is to study what happens if one relaxes the condition that
g should be square free. Our starting point here will be a result due to Wagstaff
[13]. We need some notation. We put

S(h, t,m) =
∞∑

n=1
m|nt

µ(n)(nt, h)

ntφ(nt)
,

with φ Euler’s totient function.

Theorem 2.1 ([13] (GRH)). Let g ∈ Q\{−1, 0, 1} and t > 1 be an arbitrary
integer. Write g = ±gh0 , where g0 ∈ Q is positive and not an exact power of
a rational and h > 1 an integer. Let d(g0) denote the discriminant of Q(

√
g0).

The natural density of the set Ng,t, δ(g, t), exists and is given by
∞∑

n=1

µ(n)

[Q(ζnt, g1/nt) : Q]
, (2)

which equals a rational number times the Artin constant A. Write g0 = g1g
2
2,

where g1 is a square free integer and g2 is a rational. If g > 0, set m =
lcm(2h2, d(g0)). For g < 0, define m = 2g1 if 2 - h and g1 ≡ 3(mod 4), or
h2 = 2 and g1 ≡ 2(mod 4); let m = lcm(4h2, d(g0)) otherwise. If g > 0, we have
δ(g, t) = S(h, t, 1) + S(h, t,m). If g < 0 we have

δ(g, t) = S(h, t, 1)− 1

2
S(h, t, 2) +

1

2
S(h, t, 2h2) + S(h, t,m). (3)

In case g > 0 or 2 - h, Wagstaff expressed δ(g, t) as an Euler product. By the
work of Lenstra [3] we know this is also possible in general. The next theorem
achieves this. Partial inspiration for it came from recent joint work with Lenstra
and Stevenhagen, see Section 6.

Theorem 2.2 (GRH). Let g ∈ Q\{−1, 0, 1} and t > 1 be an arbitrary integer.
Write g = ±gh0 , where g0 ∈ Q is positive and not an exact power of a rational
and h > 1 an integer. Let d(g0) denote the discriminant of Q(

√
g0). Put Fp =

Q(ζp, g
1/p). Put

A(g, t) =
(t, h)

t2

∏
p|t, hp|tp

(
1 +

1

p

)∏
p-t

(
1− 1

[Fp : Q]

)
.

Put
Π1 =

∏
p|d(g0), p-2t

−1
[Fp : Q]− 1

.
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Put

E2(m2) =


1 if m2|t2;
−1/3 if m2 = 2t2 ̸= 2;

−1 if m2 = 2t2 = 2;

0 if m2 - 2t2,

(4)

We have

A(g, t)

A
=

(t, h)

t2

∏
p|th

1

p2 − p− 1

∏
p|t

ptp|hp

p(p− 1)
∏
p|t

hp|tp

(p2 − 1)
∏

p|h, p-t1

p(p− 2), (5)

where

t1 =

{
2t if g < 0, 2|h, 2 - t;
t otherwise.

Note that A(g, t) = 0 iff g > 0, 2|h and 2 - t.
The natural density of the set Ng,t exists, denote it by δ(g, t).
Put v0 = lcm(2h2, d(g0)2) and v = lcm(2h2, d(g)2).

If g > 0, then δ(g, t) = A(g, t)(1 + E2(v0)Π1).
If h is odd, then δ(g, t) = A(g, t)(1 + E2(v)Π1).
If g < 0, 2|h and 2 - t, we have δ(g, t) = A(g, t).

Next assume g < 0, 2|(h, t). If h2 = 2 and 8|d(g0), then

δ(g, t) =

{
1
3A(g, t)(1−Π1) if t2 = 2;

A(g, t)(1 + Π1) if 4|t2.
(6)

In the remaining cases we have

δ(g, t) =


A(g, t)/2 if 2t2|h2;
A(g, t)/3 if t2 = h2;

A(g, t)(1− 1
3Π1) if t2 = 2h2;

A(g, t)(1 + Π1) if 4h2|t2.

Corollary 2.1 (GRH). Let g > 1 be a square free integer. Then

δ(g, t) = (1 + E2(lcm(2, d(g)2))B(g, t))E(t). (7)

Proof. We have A(g, t) = S(1, t, 1) = E(t) (see the remark following Lemma 3.1).
Furthermore, if 2|g and 2 - t, then Π1 = −B(g, t) and Π1 = B(g, t) otherwise.
Since E2(lcm(2, d(g)2)) = 0 if g|2 and 2 - t, we infer that E2(lcm(2, d(g)2))Π1 =
E2(lcm(2, d(g)2))B(g, t). Now invoke the theorem. �

Corollary 2.2 (GRH). If t is odd, then

δ(g, t) = A(g, t)

(
1− 1

2

(
1− (−1)h|d(g)|

)
Π1

)
.
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Remark. On putting t = 1 one obtains the classical result of Hooley [2].

Proof of Theorem 1.1. On distinguishing cases according to the value of d(g)2,
Corollary 2.1 yields Table 1. From Table 1 one easily reads off that if δ(g, t) = 0,
then 2 - t, g ≡ 1(mod 4) and g|t. In this case we have (g/p) = 1 for the primes
p - g with p ≡ 1(mod t) by the law of quadratic reciprocity and hence Ng,t is finite
and so δ(g, t) = 0. �

The proof of Theorem 2.2 will be given in Section 4. It will make use of
properties of Wagstaff sums that will be established in the next section.

3. Bringing the Wagstaff sums in Euler product form

Recall the definition of the Wagstaff sum

S(h, t,m) =

∞∑
n=1
m|nt

µ(n)(nt, h)

ntφ(nt)
.

A trivial observation is that if the divisibility condition forces n to be non-square
free, then µ(n) = 0 and hence S(h, t,m) = 0. This happens for example if m2 - 2t2
(cf. Lemma 3.4).

In case m = 1 it is easily written as an Euler product (here we use that µ and
φ are multiplicative functions).

Lemma 3.1.
1) We have

S(h, t, 1) =
(t, h)

t2

∏
p|t, hp|tp

(
1 +

1

p

)∏
p-t

(
1− (p, h)

p(p− 1)

)
.

In particular, S(h, t, 1) = 0 iff 2|h and 2 - t.
2) If 2|h and 2 - t, then

S(h, t, 2) = − (t, h)

t2

∏
p|t, hp|tp

(
1 +

1

p

)∏
p-2t

(
1− (p, h)

p(p− 1)

)
.

Proof. 1) We have

S(h, t, 1) =
(t, h)

tφ(t)

∑
n

µ(n)(nt, h)φ(t)

nφ(nt)(t, h)
=

(t, h)

tφ(t)

∏
p

(
1− (pt, h)φ(t)

pφ(pt)(t, h)

)
,

where we used that the sum S(h, t, 1) is absolutely convergent and the fact that
the argument in the second sum is a multiplicative function in n. The contribution
of the primes dividing t to this product is

(t, h)

tφ(t)

∏
p|t, ptp|hp

(
1− 1

p

) ∏
p|t, hp|tp

(
1− 1

p2

)
=

(t, h)

t2

∏
p|t, hp|tp

(
1 +

1

p

)
,
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where we used that φ(t)/t =
∏

p|t(1− 1/p). If p - t, then

1− (pt, h)φ(t)

pφ(pt)(t, h)
= 1− (p, h)

p(p− 1)
,

and part 1 follows.
2) We have

S(h, t, 2) =
∑
2|n

µ(n)(nt, h)

ntφ(nt)
= −

∑
2-n

µ(n)(nt, h)

ntφ(nt)
.

The latter sum has the same Euler product as S(h, t, 1), but with the factor for
p = 2 omitted. �

Remark. The above lemma and the definition of the Artin constant shows that
E(t) = S(1, t, 1) and A = S(1, 1, 1).

Write M = m/(m, t) and H = h/(Mt, h). Then we have [13, Lemma 2.1]

S(h, t,m) = µ(M)(Mt, h)E(t)
∏

q|(M,t)

1

q2 − 1

×
∏
q|M
q-t

1

q2 − q − 1

∏
q|(t,H)
q-M

q

q + 1

∏
q|H
q-Mt

q(q − 2)

q2 − q − 1
.

The parameter H can be avoided as the formula can be rewritten as

µ(M)(Mt, h)A

t2

∏
q|mth

1

q2 − q − 1

∏
q|t, qtq|hq

mq|tq

q(q−1)
∏

q|t, hq|tq
mq|tq

(q2−1)
∏
q|h
q-mt

q(q−2). (8)

(In order to see this it is helpful to consider the cases mq|tq, that is Mq = 1,
and qtq|mq, that is q|M , separately.) These formulae relate S(h, t,m) to S(1, t, 1)
(= E(t)), respectively to S(1, 1, 1) (= A), however, as we will show, expressions
simplify considerably if we relate S(h, t,m) to S(h, t, 1). We start by showing how
to remove odd prime factors from m.

Lemma 3.2. Suppose that p - 2m. Then

S(h, t,mp) =

{
−S(h, t,m)/(p(p−1)

(p,h) − 1) if p - t;
S(h, t,m) if p|t.

Proof. If p|t the summation condition mp|nt in the definition of S(h, t,mp) is
equivalent with m|nt, that is we have S(h, t,mp) = S(h, t,m).

Next assume that p - t. We have

S(h, t,mp) =
∑
m|nt
p|n

µ(n)(nt, h)

ntφ(nt)
=
∑
m|nt

µ(pn)(pnt, h)

pntφ(pnt)
= − (p, h)

p(p− 1)

∑
m|nt
p-n

µ(n)(nt, h)

ntφ(nt)
.
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On noting that the latter sum can be written as S(h, t,m)−S(h, t,mp), the proof
is then completed. �

Lemma 3.3. Suppose that we are not in the case where h is even and t is odd.
We have

S(h, t, 2t2) =

{
−S(h, t, 1)/3 if lcm(2, h2)|t2;
−S(h, t, 1) if lcm(2, h2) - t2.

Proof. We can write

S(h, t, 2t2) =
∑
2|n

µ(n)(nt, h)

ntφ(nt)
= −1

2

∑
2-n

µ(n)(2nt, h)

ntφ(2nt)
= ϵ

∑
2-n

µ(n)(nt, h)

ntφ(nt)
,

where ϵ is easily determined (and ϵ ̸= −1). Since the latter sum is equal to
S(h, t, 1)−S(h, t, 2t2), we then infer that S(h, t, 2t2) = ϵ

1+ϵS(h, t, 1). Working out
the remaining details is left to the reader. �

Lemma 3.4. Let m be an integer, having square free odd part. Let h and t be
integers, with the requirement that t be even in case h is even. Then

S(h, t,m) = S(h, t, 1)E1(m2)
∏

p|m,p-2t

−1
p(p−1)
(p,h) − 1

,

where

E1(m2) =


1 if m2|t2
−1/3 if m2 = 2t2 and lcm(2, h2)|t2
−1 if m2 = 2t2 and lcm(2, h2) - t2
0 if m2 - 2t2,

In case 2h2|m2, we have E1(m2) = E2(m2), where E2(m2) is given by (4).

Proof. By Lemma 3.1 the conditions imposed on h and t imply that S(h, t, 1) ̸= 0.
By Lemma 3.2 it suffices to show that S(h, t,m2) = S(h, t, 1)E1(m2). If m2|t2,
then no divisibility condition on n is imposed in the definition of S(h, t,m2) and
so we obtain S(h, t,m2) = S(h, t, 1) and hence E1(m2) = 1. In case m2 = 2t2 we
invoke Lemma 3.3. If m2 - 2t2, then the summation condition m|nt implies 4|n
and hence µ(n) = 0 and so S(h, t,m2) = 0 and hence E1(m2) = 0.

The final claim follows on noting that if 2h2|m2 and m2 = 2t2, then h2|t2 and
hence lcm(2, h2) - t2 iff 2 - t2. �

4. Proof of Theorem 2.2

The idea of the proof is to express δ(g, t) in terms of S(h, t, 1), except in case
g < 0, 2|h and 2 - t, when S(h, t, 1) = 0, in which case we express δ(g, t) in
terms of S(h, t, 2). These two Wagstaff sums are then related to A(g, t) using the
following lemma. Note that it shows that the dependence of A(g, t) on g is weak,
as only h and the sign of g matter.
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Lemma 4.1. We have

A(g, t) =

{
−S(h, t, 2)/2 if g < 0, 2|h, 2 - t;
S(h, t, 1) otherwise.

Proof. Note that if g < 0 and 2|h, then F2 = Q(i) and [F2 : Q] = 2. In the
remaining cases we have [Fp : Q] = p(p − 1)/(p, h). On invoking Lemma 3.1 the
proof is then completed. �

Proof of Theorem 2.2. Equation (5) follows by Lemma 4.1 and (8). We will
use a few times, cf. the proof of Lemma 4.1, that

Π1 =
∏

p|d(g0), p-2t

−1
[Fp : Q]− 1

=
∏

p|d(g0), p-2t

−1
p(p−1)
(p,h) − 1

.

Assume GRH.
The case g > 0: By Theorem 2.1 we have δ(g, t) = S(h, t, 1) + S(h, t,m), with

m = lcm(2h2, d(g0)). First assume that 2|h and 2 - t. Then, by Lemmas 3.1
and 4.1, we have S(h, t, 1) = A(g, t) = 0 and we need to show that δ(g, t) = 0.
Since S(h, t, 1) = 0 it remains to show that S(h, t,m) = 0. Since for the n
in the summation we have 4|2h2|n, this is clear. Next assume we are in the
remaining case, that is either h is odd, or 2|(h, t). Then S(h, t, 1) = A(g, t) by
Lemma 4.1. Note that m2 = v0. By Lemma 3.4 we then find that δ(g, t) =
S(h, t, 1)(1+E1(v0)Π1) = A(g, t)(1+E2(v0)Π1), where we have used that 2h2|v0.

The case h is odd: If g > 0, then v = v0 and we are done, so assume that
g < 0. The formula for m in Theorem 2.1 can be rewritten as lcm(2, |d(g)|), and
one finds that δ(g, t) = S(h, t, 1)+S(h, t, lcm(2, |d(g)|)). This is the same formula
as in case g > 0 and 2 - h, but with d(g0) replaced by |d(g)|. On noting that the
odd part of d(g0) equals the odd part of d(g), the result then follows.

The case g < 0, 2 - t and 2|h: We have S(h, t, 1) = S(h, t,m) = S(h, t, 2h2) = 0
and hence δ(g, t) = −S(h, t, 2)/2 by (3). Now invoke Lemma 4.1 to obtain δ(g, t) =
A(g, t).

The case g < 0 and 2|(h, t): Note that 2|m and S(h, t, 1) = A(g, t). By
Lemma 3.4 we infer that S(h, t, 2) = S(h, t, 1) and S(h, t, 2h2) = S(h, t, 1)E2(2h2),
where

E2(2h2) =


1 if 2h2|t2;
−1/3 if h2 = t2;

0 if h2 - t2.

Note that

E2(4) =

{
1 if 4|t2;
−1/3 if t2 = 2.

If h2 = 2 and 8|d(g0), then by Theorem 2.1 we have m = 2g1, which can be
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rewritten as m = d(g0)/2 (thus m2 = 4) and so

δ(g, t) = S(h, t, 1)− S(h, t, 2)

2
+
S(h, t, 4)

2
+ S

(
h, t,

d(g0)

2

)
= S(h, t, 1)

(
1

2
+
E2(4)

2
+ E2(4)Π1

)
.

where we used that, by Lemma 3.4, S(h, t, d(g0)/2) = S(h, t, 1)E2(4)Π1. Using
that S(h, t, 1) = A(g, t) and the formula for E2(4), we then arrive at (6).

In the remaining case, m = lcm(4h2, d(g0)). Note that m2 = 4h2 and

E2(4h2) =


1 if 4h2|t2;
−1/3 if 2h2 = t2;

0 if 2h2 - t2.

We find that

δ(g, t) = S(h, t, 1)− S(h, t, 2)

2
+
S(h, t, 2h2)

2
+ S(h, t,m)

= S(h, t, 1)
(1
2
+
E2(2h2)

2
+ E2(4h2)Π1

)
.

Using that S(h, t, 1) = A(g, t) and the formulae for E2(2h2) and E2(4h2) given
above, the proof is then completed. �

5. Vanishing of δ(g, t)

The aim of this section is to give a new proof of Theorem 5.1 (due to Lenstra [3],
who stated it without proof). The first published proof was given by Moree in
[6]. He introduced a function wg,t(p) ∈ {0, 1, 2} for which he proved (see [6], for a
rather easier reproof see [7]) under GRH that

Ng,t(x) = (h, t)
∑

p6x, p≡1(mod t)

wg,t(p)
φ((p− 1)/t)

p− 1
+O

(x log log x
log2 x

)
.

This function wg,t(p) has the property that, under GRH, wg,t(p) = 0 for all primes
p sufficiently large iff Ng,t is finite. Since the definition of wg,t(p) involves nothing
more than the Legendre symbol, it is then not difficult to arrive at the cases 1-6.
E.g. in case 1 g is a square modulo p, and thus 2|t, contradicting 2 - t. Likewise for
the other 5 cases the obstructions can be written down (it turns out rg(p)2 ̸= t2 in
each case). For the complete list of obstructions we refer to Moree [6, pp. 170-171].

Regarding the six vanishing cases Wagstaff [13, p. 143] wrote: ‘It is easy to
verify directly that our expression for δ(g, t) vanishes in each of Lenstra’s cases,
but it is tedious to check that these are the only cases in which it vanishes’. We
will show that once Wagstaff’s result is brought into Euler product form, as done
in Theorem 2.2, it is straightforward to establish Theorem 5.1. A more conceptual,
shorter and elegant (but less elementary) proof of Theorem 5.1 will appear in [5].
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Theorem 5.1 (GRH). The set Ng,t is finite iff δ(g, t) = 0 iff we are in one of
the following six (mutually exclusive) cases:

1) 2 - t, d(g)|t.
2) g > 0, 2h2|t2, 3 - t, 3|h, d(−3g0)|t.
3) g < 0, h2 = 1, t2 = 2, 3 - t, 3|h, d(3g0)|t.
4) g < 0, h2 = 2, t2 = 2, d(2g0)|2t.
5) g < 0, h2 = 2, t2 = 4, 3 - t, 3|h, d(−6g0)|t.
6) g < 0, 4h2|t2, 3 - t, 3|h, d(−3g0)|t.

Example (GRH). If g > 1 is square free, then case 1 is the only one to take into
account and we find δ(g, t) = 0 iff 2 - t, d(g)|t, that is iff 2 - t, g|t, g ≡ 1(mod 4).

Table 2: Examples of pairs (g, t) satisfying cases 1-6

1 2 3 4 5 6
(g, t) (5, 5) (33, 4) (−153, 10) (−62, 6) (−66, 4) (−33, 4)

Proof of Theorem 5.1. If one of 1-6 is satisfied, then Ng,t is finite. This can be
shown by elementary arguments only involving quadratic reciprocity (see Moree
[6, pp. 170-171]). It is thus enough to show that δ(g, t) = 0 iff one of the six cases
is satisfied. For the proof we will split up case 6 into two subcases:

6a) g < 0, 2|h2, 4h2|t2, 3 - t, 3|h, d(3g0)|t.
6b) g < 0, h2 = 1, 4|t2, 3 - t, 3|h, d(3g0)|t.

(For our proof it is more natural to require d(3g0)|t, which, since 4|t, is equivalent
with d(−3g0)|t.) Let us denote by d∗(g0) the odd part of the discriminant of g0,
that is d∗(g0) = d(g0)/d(g0)2. Note that

Π1 =


1 if d∗(g0)|t;
−1 if 3|d(g0), d∗(g0)|3t, 3 - t, 3|h;
∈ (−1, 1) otherwise.

(9)

The case 2 - t: If 2|h one has δ(g, t) = 0 iff g > 0, that is iff d(g)|t.
If 2 - h, then A(g, t) ̸= 0 and we have δ(g, t) = 0 iff E2(lcm(2, d(g)2)) = −1

and Π1 = 1, that is iff lcm(2, d(g)2) = 2 and d∗(g)|t, that is iff d(g)|t.
Thus from now on we may assume that 2|t. This ensures that A(g, t) ̸= 0.
The case g > 0 and 2|t: Now the possibility E2(m2) = −1 cannot occur and

thus δ(g, t) = 0 iff E2(m2) = 1 and Π1 = −1. The latter two conditions are
both satisfied iff lcm(2h2, d(g0)2)|t2, 3|d(g0), d∗(g0)|3t, 3 - t, 3|h. These con-
ditions can be reformulated as 2h2|t2, 3|d(g0), d(g0)|3t, 3 - t and 3|h. Since
3 - t, 3|d(g0), d(g0)|3t iff d(−3g0)|t, 3 - t, we are done.

Thus if g > 0 or 2 - t, then δ(g, t) = 0 iff we are in case 1 or in case 2. It
remains to consider the case where g < 0 and 2|t.

The case g < 0, 2|t, 2 - h: Here we have δ(g, t) = 0 iff E2(v) = 1 and Π1 = −1.
Note that E2(v) = 1 means that we require lcm(2, d(g)2)|t2.
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If t2 = 2, then lcm(2, d(g)2)|t2 and Π1 = −1 iff we are in case 3.
If 4|t2, then lcm(2, d(g)2)|t2 and Π1 = −1 iff we are in case 6b.

The case g < 0, 2|(h, t): We have δ(g, t) = 0 iff we are in one of the following
three cases:

A) h2 = 2, t2 = 2, 8|d(g0), Π1 = 1;
B) h2 = 2, t2 = 4, 8|d(g0), Π1 = −1;
C) 2|h2, 4h2|t2, Π1 = −1.

It is easily checked that these are merely cases 4, 5 and 6a in different guises.
To sum up, we have shown that δ(g, t) = 0 iff we are in one of the cases 1), 2),

3), 4), 5), 6a) or 6b). Note that the six cases are mutually exclusive. �

We now propose a conjecture on δ(g, t) for arbitrary rational g. It generalizes
Conjecture 1.

Conjecture 5.1. The set Ng,t has a natural density δ(g, t) that is given as in
Theorem 2.2 and is a rational multiple of the Artin constant A. The set Ng,t is
finite iff δ(g, t) = 0 iff we are in one of the six cases of Theorem 5.1.

On combining Theorem 2.2 and Theorem 5.1 we deduce that Conjecture 5.1
holds true on GRH.

Theorem 5.2. Conjecture 5.1 is true under GRH.

6. Near-primitive roots density through character sum averages

Lenstra, Moree and Stevenhagen [5] show that for a large class of Artin-type
problems the set of primes has a natural density δ that is given by

δ =

(
1 +

∏
p

Ep

)∏
p

Ap, (10)

where
∏

pAp is the ‘generic answer’ to the density problem (e.g. A in the original
Artin problem) and 1+

∏
pEp a correction factor. For finitely many primes p one

has Ep ̸= 1 and further −1 6 Ep 6 1 as Ep is a (real) character sum average over
a finite set (and hence the correction factor is a rational number). In particular, it
is rather easy in this set-up to determine when δ = 0. The character sum method
makes use of the theory of radical entanglement as developped by Lenstra [4]

For the near-primitive root problem the method leads rather immediately to
the formula δ(g, t) = A(g, t)(1 +E′

2Π1) in case g > 0. The only harder part is the
determination of E′

2. For the details the reader is referred to [5].
Indeed, the great advance of the newer method is that it very directly leads

to a formula for the density in Euler product form. The classical method leads
to infinite sums involving the Möbius function and nearly multiplicative functions
(in our case Wagstaff’s result (Theorem 2.1). It then requires rather cumbersome
manipulations to arrive at a density in Euler product form. Indeed, inspired by
the predicted result (10) the author attempted (and managed) to bring Wagstaff’s
result in Euler product form.
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The analogue of Theorem 2.2 obtained in this approach, Theorem 6.4 of [5],
looks slightly different from Theorem 2.2. However, on noting that s2 as defined in
Theorem 6.4 is merely the 2-part of m as defined in Wagstaff’s result Theorem 2.1,
it is not difficult to show that both methods give rise to the same Euler products
for the density. By allowing g0 to be negative in case h is odd and g < 0, the
above 6 cases where vanishing occurs can be reduced to 5 cases (see Corollary 6.5
of [5]).

7. An application

Let Φn(x) denote the n-th cyclotomic polynomial. Let S be the set of primes p
such that if f(x) is any irreducible factor of Φp(x) over F2, then f(x) does not
divide any trinomial. Over F2, Φp(x) factors into r2(p) irreducible polynomials.
Let

S1 = ({p > 2 : 2 - r2(p)}} ∪ {p > 2 : 2 6 r2(p) 6 16})\{3, 7, 31, 73}.

Theorem 7.1. We have S1 ⊆ S. The set S1 contains the primes p > 3 such that
p ≡ ±3(mod 8). On GRH the set S! has density

δ(S1) =
1

2
+A

1323100229

1099324800
≈ 0.950077195 · · · (11)

Proof. The set {p > 2 : 2 - r2(p)}} equals the set of primes p such that ( 2p ) = −1,
that is the set of primes p such that p ≡ ±3(mod 8). This set has density 1/2. We
thus find, on consulting Table 1, that

δ(S1) =
1

2
+

∑
26j616

2|j

δ(2, j)

=
1

2
+ E(2)

(
1 +

2

3
· 1
4
+

2

16
+

2

64

)
+ E(6)

(
1 +

2

3
· 1
4

)
+ E(10) + E(14),

which yields (11) on invoking the definition (1) of E(t). That S1 ⊆ S is a conse-
quence of the work of Golomb and Lee [1]. �

Acknowledgment. Given expressions like (8), my intuition was that expressing
δ(g, t) in Euler product form would lead to very unpleasant formulae and thus
I never attempted this. Discussions with Peter Stevenhagen, considering the near-
primitive root problem by a much more algebraic method, strongly suggested easier
expressions for δ(g, t) than expected. This led me to try to bring Wagstaff’s result
in Euler product form, also with the aim of verifying the results found by the
character sum method (alluded to in Section 6).
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