THE SUM OF DIGITS OF POLYNOMIAL VALUES IN ARITHMETIC PROGRESSIONS

Thomas Stoll

Abstract

Let $q, m \geqslant 2$ be integers with $(m, q-1)=1$. Denote by $s_{q}(n)$ the sum of digits of n in the q-ary digital expansion. Further let $p(x) \in \mathbb{Z}[x]$ be a polynomial of degree $h \geqslant 3$ with $p(\mathbb{N}) \subset \mathbb{N}$. We show that there exist $C=C(q, m, p)>0$ and $N_{0}=N_{0}(q, m, p) \geqslant 1$, such that for all $g \in \mathbb{Z}$ and all $N \geqslant N_{0}$, $$
\#\left\{0 \leqslant n<N: s_{q}(p(n)) \equiv g \bmod m\right\} \geqslant C N^{4 /(3 h+1)}
$$

This is an improvement over the general lower bound given by Dartyge and Tenenbaum (2006), which is $C N^{2 / h!}$.
Keywords: sum of digits, polynomials, Gelfond's problem.

1. Introduction

Let $q, m \geqslant 2$ be integers and denote by $s_{q}(n)$ the sum of digits of n in the q-ary digital expansion of integers. In 1967/68, Gelfond [1] proved that for nonnegative integers a_{1}, a_{0} with $a_{1} \neq 0$, the sequence $\left(s_{q}\left(a_{1} n+a_{0}\right)\right)_{n \in \mathbb{N}}$ is well distributed in arithmetic progressions mod m, provided $(m, q-1)=1$. At the end of his paper, he posed the problem of finding the distribution of s_{q} in arithmetic progressions where the argument is restricted to values of polynomials of degree $\geqslant 2$. Recently, Mauduit and Rivat [8] answered Gelfond's question in the case of squares.

Theorem 1.1 (Mauduit \& Rivat (2009)). For any $q, m \geqslant 2$ there exists $\sigma_{q, m}>0$ such that for any $g \in \mathbb{Z}$, as $N \rightarrow \infty$,

$$
\#\left\{0 \leqslant n<N: s_{q}\left(n^{2}\right) \equiv g \bmod m\right\}=\frac{N}{m} Q(g, d)+O_{q, m}\left(N^{1-\sigma_{q, m}}\right)
$$

where $d=(m, q-1)$ and

$$
Q(g, d)=\#\left\{0 \leqslant n<d: n^{2} \equiv g \bmod d\right\} .
$$

[^0]The proof can be adapted to values of general quadratic polynomial instead of squares. We refer the reader to [7] and [8] for detailed references and further historical remarks. The case of polynomials of higher degree remains elusive so far. The Fourier-analytic approach, as put forward in [7] and [8], seems not to yield results of the above strength. In a recent paper, Drmota, Mauduit and Rivat [4] applied the Fourier-analytic method to show that well distribution in arithmetic progressions is obtained whenever q is sufficiently large.

In the sequel, and unless otherwise stated, we write

$$
p(x)=a_{h} x^{h}+\cdots+a_{0}
$$

for an arbitrary, but fixed polynomial $p(x) \in \mathbb{Z}[x]$ of degree $h \geqslant 3$ with $p(\mathbb{N}) \subset \mathbb{N}$.
Theorem 1.2 (Drmota, Mauduit \& Rivat (2011)). Let

$$
q \geqslant \exp \left(67 h^{3}(\log h)^{2}\right)
$$

be a sufficiently large prime number and suppose $\left(a_{h}, q\right)=1$. Then there exists $\sigma_{q, m}>0$ such that for any $g \in \mathbb{Z}$, as $N \rightarrow \infty$,

$$
\#\left\{0 \leqslant n<N: s_{q}(p(n)) \equiv g \bmod m\right\}=\frac{N}{m} Q^{\star}(g, d)+O_{q, m, p}\left(N^{1-\sigma_{q, m}}\right)
$$

where $d=(m, q-1)$ and

$$
Q^{\star}(g, d)=\#\{0 \leqslant n<d: p(n) \equiv g \bmod d\} .
$$

It seems impossible to even find a single "nice" polynomial of degree 3, say, that allows to conclude for well distribution in arithmetic progressions for small bases, let alone that the binary case $q=2$ is an emblematic case. Another line of attack to Gelfond's problem is to find lower bounds that are valid for all $q \geqslant 2$. Dartyge and Tenenbaum [3] provided such a general lower bound by a method of descent on the degree of the polynomial and the estimations obtained in [2].

Theorem 1.3 (Dartyge \& Tenenbaum (2006)). Let $q, m \geqslant 2$ with $(m, q-1)=$ 1. Then there exist $C=C(q, m, p)>0$ and $N_{0}=N_{0}(q, m, p) \geqslant 1$, such that for all $g \in \mathbb{Z}$ and all $N \geqslant N_{0}$,

$$
\#\left\{0 \leqslant n<N: s_{q}(p(n)) \equiv g \bmod m\right\} \geqslant C N^{2 / h!} .
$$

The aim of the present work is to improve this lower bound for all $h \geqslant 3$. More importantly, we get a substantial improvement of the bound as a function of h. The main result is as follows. ${ }^{1}$

[^1]Theorem 1.4. Let $q, m \geqslant 2$ with $(m, q-1)=1$. Then there exist $C=C(q, m, p)>0$ and $N_{0}=N_{0}(q, m, p) \geqslant 1$, such that for all $g \in \mathbb{Z}$ and all $N \geqslant N_{0}$,

$$
\#\left\{0 \leqslant n<N: s_{q}(p(n)) \equiv g \bmod m\right\} \geqslant C N^{4 /(3 h+1)} .
$$

Moreover, for monomials $p(x)=x^{h}, h \geqslant 3$, we can take

$$
\begin{aligned}
N_{0} & =q^{3(2 h+m)}\left(2 h q^{2}(6 q)^{h}\right)^{3 h+1} \\
C & =\left(16 h q^{5}(6 q)^{h} \cdot q^{(24 h+12 m) /(3 h+1)}\right)^{-1}
\end{aligned}
$$

The proof is inspired from the constructions used in [5] and [6] that were helpful in the proof of a conjecture of Stolarsky [9] concerning the pointwise distribution of $s_{q}(p(n))$ versus $s_{q}(n)$. As a drawback of the method of proof, however, it seems impossible to completely eliminate the dependency on h in the lower bound.

2. Proof of Theorem 1.4

Consider the polynomial

$$
\begin{equation*}
t(x)=m_{3} x^{3}+m_{2} x^{2}-m_{1} x+m_{0} \tag{2.1}
\end{equation*}
$$

where the parameters $m_{0}, m_{1}, m_{2}, m_{3}$ are positive real numbers that will be chosen later on in a suitable way. For all integers $l \geqslant 1$ we write

$$
\begin{equation*}
T_{l}(x)=t(x)^{l}=\sum_{i=0}^{3 l} c_{i} x^{i} \tag{2.2}
\end{equation*}
$$

to denote its l-th power. (For the sake of simplicity we omit to mark the dependency on l of the coefficients c_{i}.) The following technical result is the key in the proof of Theorem 1.4. It shows that, within a certain degree of uniformity in the parameters m_{i}, all coefficients but one of $T_{l}(x)$ are positive.
Lemma 2.1. For all integers $q \geqslant 2, l \geqslant 1$ and $m_{0}, m_{1}, m_{2}, m_{3} \in \mathbb{R}^{+}$with

$$
1 \leqslant m_{0}, m_{2}, m_{3}<q, \quad 0<m_{1}<l^{-1}(6 q)^{-l}
$$

we have that $c_{i}>0$ for $i=0,2,3, \ldots, 3 l$ and $c_{i}<0$ for $i=1$. Moreover, for all i,

$$
\begin{equation*}
\left|c_{i}\right| \leqslant(4 q)^{l} \tag{2.3}
\end{equation*}
$$

Proof. The coefficients of $T_{l}(x)$ in (2.2) are clearly bounded above in absolute value by the corresponding coefficients of the polynomial $\left(q x^{3}+q x^{2}+q x+q\right)^{l}$. Since the sum of all coefficients of this polynomial is $(4 q)^{l}$ and all coefficients are positive, each individual coefficient is bounded by $(4 q)^{l}$. This proves (2.3). We now show the first part. To begin with, observe that $c_{0}=m_{0}^{l}>0$ and $c_{1}=-l m_{1} m_{0}^{l-1}$
which is negative for all $m_{1}>0$. Suppose now that $2 \leqslant i \leqslant 3 l$ and consider the coefficient of x^{i} in

$$
\begin{equation*}
T_{l}(x)=\left(m_{3} x^{3}+m_{2} x^{2}+m_{0}\right)^{l}+r(x), \tag{2.4}
\end{equation*}
$$

where

$$
r(x)=\sum_{j=1}^{l}\binom{l}{j}\left(-m_{1} x\right)^{j}\left(m_{3} x^{3}+m_{2} x^{2}+m_{0}\right)^{l-j}=\sum_{j=1}^{3 l-2} d_{j} x^{j} .
$$

First, consider the first summand in (2.4). Since $m_{0}, m_{2}, m_{3} \geqslant 1$ the coefficient of x^{i} in the expansion of $\left(m_{3} x^{3}+m_{2} x^{2}+m_{0}\right)^{l}$ is $\geqslant 1$. Note also that all the powers $x^{2}, x^{3}, \ldots, x^{3 l}$ appear in the expansion of this term due to the fact that every $i \geqslant 2$ allows at least one representation as $i=3 i_{1}+2 i_{2}$ with non-negative integers i_{1}, i_{2}. We now want to show that for sufficiently small $m_{1}>0$ the coefficient of x^{i} in the first summand in (2.4) is dominant. To this end, we assume $m_{1}<1$ so that $m_{1}>m_{1}^{j}$ for $2 \leqslant j \leqslant l$. Using $\binom{l}{j}<2^{l}$ and a similar reasoning as above we get that

$$
\left|d_{j}\right|<l 2^{l} m_{1}(3 q)^{l}=l(6 q)^{l} m_{1}, \quad 1 \leqslant j \leqslant 3 l-2 .
$$

This means that if $m_{1}<l^{-1}(6 q)^{-l}$ then the powers $x^{2}, \ldots, x^{3 l}$ in the polynomial $T_{l}(x)$ indeed have positive coefficients. This finishes the proof.

To proceed we recall the following splitting formulas for s_{q} which are simple consequences of the q-additivity of the function s_{q} (see [5] for the proofs).
Proposition 2.2. For $1 \leqslant b<q^{k}$ and $a, k \geqslant 1$, we have

$$
\begin{aligned}
& s_{q}\left(a q^{k}+b\right)=s_{q}(a)+s_{q}(b), \\
& s_{q}\left(a q^{k}-b\right)=s_{q}(a-1)+k(q-1)-s_{q}(b-1) .
\end{aligned}
$$

We now turn to the proof of Theorem 1.4. To clarify the construction we consider first the simpler case of monomials,

$$
p(x)=x^{h}, \quad h \geqslant 1 .
$$

(We here include the cases $h=1$ and $h=2$ because we will need them to deal with general polynomials with linear and quadratic terms.) Let $u \geqslant 1$ and multiply $t(x)$ in (2.1) by q^{u-1}. Lemma 2.1 then shows that for all integers $m_{0}, m_{1}, m_{2}, m_{3}$ with

$$
\begin{equation*}
q^{u-1} \leqslant m_{0}, m_{2}, m_{3}<q^{u}, \quad 1 \leqslant m_{1}<q^{u} /\left(h q(6 q)^{h}\right) \tag{2.5}
\end{equation*}
$$

the polynomial $T_{h}(x)=(t(x))^{h}=p(t(x))$ has all positive (integral) coefficients with the only exception of the coefficient of x^{1} which is negative. Let u be an integer such that

$$
\begin{equation*}
q^{u} \geqslant 2 h q(6 q)^{h} \tag{2.6}
\end{equation*}
$$

and let $k \in \mathbb{Z}$ be such that

$$
\begin{equation*}
k>h u+2 h . \tag{2.7}
\end{equation*}
$$

For all u with (2.6) the interval for m_{1} in (2.5) is non-empty. Furthermore, relation (2.7) implies by (2.3) that

$$
q^{k}>q^{h u} \cdot q^{2 h} \geqslant\left(4 q^{u}\right)^{h}>\left|c_{i}\right|, \quad \text { for all } i=0,1, \ldots, 3 h
$$

where c_{i} here denotes the coefficient of x^{i} in $T_{h}(x)$. Roughly speaking, the use of a large power of q (i.e. q^{k} with k that satisfies (2.7)) is motivated by the simple wish to split the digital structure of the h-power according to Proposition 2.2. By doing so, we avoid to have to deal with carries when adding terms in the expansion in base q since the appearing terms will not interfere. We also remark that this is the point where we get the dependency of h in the lower bound of Theorem 1.4.

Now, by $c_{2},\left|c_{1}\right| \geqslant 1$ and the successive use of Proposition 2.2 we get

$$
\begin{align*}
s_{q}\left(t\left(q^{k}\right)^{h}\right) & =s_{q}\left(\sum_{i=3}^{3 h} c_{i} q^{i k}+c_{2} q^{2 k}-\left|c_{1}\right| q^{k}+c_{0}\right) \\
& =s_{q}\left(\sum_{i=3}^{3 h} c_{i} q^{(i-1) k}+c_{2} q^{k}-\left|c_{1}\right|\right)+s_{q}\left(c_{0}\right) \\
& =s_{q}\left(\sum_{i=3}^{3 h} c_{i} q^{(i-3) k}\right)+s_{q}\left(c_{2}-1\right)+k(q-1)-s_{q}\left(\left|c_{1}\right|-1\right)+s_{q}\left(c_{0}\right) \\
& =\sum_{i=3}^{3 h} s_{q}\left(c_{i}\right)+s_{q}\left(c_{2}-1\right)+k(q-1)-s_{q}\left(\left|c_{1}\right|-1\right)+s_{q}\left(c_{0}\right) \\
& =k(q-1)+M \tag{2.8}
\end{align*}
$$

where we write

$$
M=\sum_{i=3}^{3 h} s_{q}\left(c_{i}\right)+s_{q}\left(c_{2}-1\right)-s_{q}\left(\left|c_{1}\right|-1\right)+s_{q}\left(c_{0}\right)
$$

Note that M is an integer that depends (in some rather obscure way) on the quantities $m_{0}, m_{1}, m_{2}, m_{3}$. Once we fix a quadruple ($m_{0}, m_{1}, m_{2}, m_{3}$) in the ranges (2.5), the quantity M does not depend on k and is constant whenever k satisfies (2.7). We now exploit the appearance of the single summand $k(q-1)$ in (2.8). Since by assumption $(m, q-1)=1$, we find that

$$
\begin{equation*}
s_{q}\left(t\left(q^{k}\right)^{h}\right), \quad \text { for } k=h u+2 h+1, h u+2 h+2, \ldots, h u+2 h+m, \tag{2.9}
\end{equation*}
$$

runs through a complete set of residues mod m. Hence, in any case, we hit a fixed arithmetic progression mod m (which might be altered by M) for some k with $h u+2 h+1 \leqslant k \leqslant h u+2 h+m$.

Summing up, for u with (2.6) and by (2.5) we find at least

$$
\begin{equation*}
\left(q^{u}-q^{u-1}\right)^{3}\left(q^{u} /\left(h q(6 q)^{h}\right)-1\right) \geqslant \frac{(1-1 / q)^{3}}{2 h q(6 q)^{h}} q^{4 u} \tag{2.10}
\end{equation*}
$$

integers n that in turn by (2.1), (2.5), (2.7) and (2.9) are all smaller than

$$
q^{u} \cdot q^{3(h u+2 h+m)}=q^{3(2 h+m)} \cdot q^{u(3 h+1)}
$$

and satisfy $s_{q}\left(n^{h}\right) \equiv g \bmod m$ for fixed g and m. By our construction and by choosing $k>h u+2 h>u$ all these integers are distinct. We denote

$$
N_{0}=N_{0}(q, m, p)=q^{3(2 h+m)} \cdot q^{u_{0}(3 h+1)},
$$

where

$$
u_{0}=\left\lceil\log _{q}\left(2 h q(6 q)^{h}\right)\right\rceil \leqslant \log _{q}\left(2 h q^{2}(6 q)^{h}\right) .
$$

Then for all $N \geqslant N_{0}$ we find $u \geqslant u_{0}$ with

$$
\begin{equation*}
q^{3(2 h+m)} \cdot q^{u(3 h+1)} \leqslant N<q^{3(2 h+m)} \cdot q^{(u+1)(3 h+1)} . \tag{2.11}
\end{equation*}
$$

By (2.10) and (2.11), and using $(1-1 / q)^{3} \geqslant 1 / 8$ for $q \geqslant 2$, we find at least

$$
\frac{(1-1 / q)^{3}}{2 h q(6 q)^{h}} q^{4 u} \geqslant\left(16 h q^{5}(6 q)^{h} \cdot q^{(24 h+12 m) /(3 h+1)}\right)^{-1} N^{4 /(3 h+1)}
$$

integers n with $0 \leqslant n<N$ and $s_{q}\left(n^{h}\right) \equiv g \bmod m$. We therefore get the statement of Theorem 1.4 for the case of monomials $p(x)=x^{h}$ with $h \geqslant 3$. The estimates are also valid for $h=1$ and $h=2$.

The general case of a polynomial $p(x)=a_{h} x^{h}+\cdots+a_{0}$ of degree $h \geqslant 3$ (or, more generally, of degree $h \geqslant 1$) follows easily from what we have already proven. Without loss of generality we may assume that all coefficients $a_{i}, 0 \leqslant i \leqslant h$, are positive, since otherwise there exists $e=e(p)$ depending only on p such that $p(x+e)$ has all positive coefficients. Note that a finite translation can be dealt with choosing C and N_{0} appropriately in the statement. Since Lemma 2.1 holds for all $l \geqslant 1$ and all negative coefficients are found at the same power x^{1}, we have that the polynomial $p(t(x))$ has again all positive coefficients but one where the negative coefficient again corresponds to the power x^{1}. It is then sufficient to suppose that

$$
k>h u+2 h+\log _{q} \max _{0 \leqslant i \leqslant h} a_{i}
$$

in order to split the digital structure of $p\left(t\left(q^{k}\right)\right)$. In fact, this implies that

$$
q^{k}>\left(\max _{0 \leqslant i \leqslant h} a_{i}\right) \cdot\left(4 q^{u}\right)^{h},
$$

and exactly the same reasoning as before yields $\gg_{q, p} q^{4 u}$ distinct positive integers that are $<_{q, m, p} q^{u(3 h+1)}$ and satisfy $s_{q}(p(n)) \equiv g \bmod m$. This completes the proof of Theorem 1.4.

References

[1] A.O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1967/1968), 259-265.
[2] C. Dartyge, G. Tenenbaum, Sommes de chiffres de multiples d'entiers, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 7, 2423-2474.
[3] C. Dartyge, G. Tenenbaum, Congruences de sommes de chiffres de valeurs polynomiales, Bull. London Math. Soc. 38 (2006), no. 1, 61-69.
[4] M. Drmota, C. Mauduit, J. Rivat, The sum of digits function of polynomial sequences, J. London Math. Soc. 84 (2011), 81-102.
[5] K.G. Hare, S. Laishram, T. Stoll, Stolarsky's conjecture and the sum of digits of polynomial values, Proc. Amer. Math. Soc. 139 (2011), 39-49.
[6] K.G. Hare, S. Laishram, T. Stoll, The sum of digits of n and n^{2}, Int. J. Number Theory (2011), Int. J. Number Theory 7 (2011), 1737-1752.
[7] C. Mauduit, J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. 171 (2010), 1591-1646.
[8] C. Mauduit, J. Rivat, La somme des chiffres des carrés, Acta Math. 203 (2009), 107-148.
[9] K.B. Stolarsky, The binary digits of a power, Proc. Amer. Math. Soc. 71 (1978), $1-5$.

Address: Thomas Stoll: Aix-Marseille Univ, IML, 13288 Marseille Cedex 9, France.
E-mail: stoll@iml.univ-mrs.fr
Received: 21 October 2011

[^0]: This research was supported by the Agence Nationale de la Recherche, grant ANR-10-BLAN 0103 MUNUM.

 2010 Mathematics Subject Classification: primary: 11A63; secondary: 11N37, 11N69

[^1]: ${ }^{1}$ Gelfond's work and Theorem 1.1 give precise answers for linear and quadratic polynomials, so we do not include the cases $h=1,2$ in our statement though our approach works without change.

