QUADRATIC RESIDUES AND CLASS NUMBERS

WOLFGANG KNAPP, MARKUS KÖCHER, PETER SCHMID

Abstract: For an odd prime p let ρ_p be the least odd prime $(\neq p)$ which is a quadratic residue mod p. Using the theorems of Heegner–Baker–Stark and Siegel–Tatuzawa on the class number h = h(-p) of the imaginary quadratic number field $\mathbb{Q}(\sqrt{-p})$ it is shown that $\rho_p < \sqrt{p}$ unless $p \in \{3, 5, 7, 17, 19, 43, 67, 163\}$, possibly with one further exceptional (large) prime $p = p_u$ (satisfying $p = 2^{h+2} - u^2$ with h > 100 und $5 \leq u < 2^{(h-5)/2}$). The exceptional prime does not exist if the Extended Riemann Hypothesis is true.

Keywords: quadratic residues, quadratic forms, class numbers, primes, Siegel-Tatuzawa.

1. Introduction

For an odd prime p let ρ_p denote the least odd prime $q \neq p$ which is a quadratic residue mod p, that is, where the Legendre symbol $\left(\frac{q}{p}\right) = +1$. Thus $\rho_3 = 7$, $\rho_5 = 11 = \rho_7$, and we shall see that $\rho_p < p$ when p > 7. The results of the present paper yield that even $\rho_p < \sqrt{p}$ up to eight or nine exceptions.

Major work on this subject has been done by Nagell many years ago. In 1923 he proved (in [6]) that $\varrho_p \leq \sqrt{p-4}$ if $p \equiv 1 \pmod{4}$ and $p \neq 5, 17$, just using that then p is a sum of two squares of integers ($\varrho_{17} = 13$). One year earlier, in [5], he had treated the case where $p \equiv 3 \pmod{8}$ assuming that the class number h(-p) of the imaginary quadratic number field $\mathbb{Q}(\sqrt{-p})$ is not trivial. By the theorem of Heegner–Baker–Stark one now knows that h(-p) = 1 if and only if $p \in \{3, 7, 11, 19, 43, 67, 163\}$; for (different) proofs we refer to [2, Theorem 12.34] and [8, Theorem 8.11]. One also knows from [6] that $\varrho_p = \frac{1+p}{4}$ if h(-p) = 1 and p > 7 (independent of the Heegner–Baker–Stark theorem; see also [1]). It follows that for $p \equiv 3 \pmod{8}$ one has $\varrho_p < \sqrt{p}$ unless $p \in \{3, 19, 43, 67, 163\}$.

So it remains to examine the situation when $p \equiv 7 \pmod{8}$. Here Nagell [7] proved that $\rho_p < 2\sqrt{p} - 1$ for p > 7. It is easy to treat the case where p is a Mersenne prime. On the basis of the Siegel–Tatuzawa theorem (see Lemma 3 below) we get the following.

²⁰¹⁰ Mathematics Subject Classification: primary: 11A15, 11E41; secondary: 11A41, 11M20, 11R29

174Wolfgang Knapp, Markus Köcher, Peter Schmid

Theorem 1. Let the prime $p \equiv 7 \pmod{8}$, p > 7. Then $\varrho_p < \sqrt{p}$ with at most one exception. If the exceptional prime $p = p_u$ exists (satisfying $\varrho_p \ge \sqrt{p}$), the Lfunction $L(s,\chi)$ to the real odd Dirichlet character χ with conductor p_u has a real zero in the interval $(\frac{71}{72}, 1)$, thus violating the Extended Riemann Hypothesis.

From known properties of such L-functions [13] it is clear that the exceptional prime p_u must be fairly large (if it exists). We can describe it in some detail, thereby giving further indications that this prime possibly does not exist.

Theorem 2. Assume the exceptional prime $p = p_u$ exists. Then $p = 2^{h+2} - u^2$ where h = h(-p) is the class number of $\mathbb{Q}(\sqrt{-p})$ and u is an odd integer with $5 \leq u < 2^{(h-5)/2}$. Here h > 100 and $\varrho_p = 3 \cdot 2^{(h-1)/2} - u < 1.06275\sqrt{p} - u$. Moreover:

- (i) The class number of an imaginary quadratic number field having discriminant $d \neq -p_u$ satisfies $h(d) > \frac{0.655}{18\pi} |d|^{\frac{4}{9}}$ provided $|d| \ge e^{18}$. (ii) The quadratic polynomial $8X^2 + (8-2u)X + 2^{h-1} + 2 - u$ takes pairwise
- distinct prime values on all integers in the interval $[-2^{\frac{h-3}{2}}, 2^{\frac{h-3}{2}}]$.

The estimate in (i) is much better than the (effective) lower bounds given by Goldfeld, Gross, Zagier and Oesterlé [9]. In proving Theorem 1 we shall establish with elementary means (avoiding computer calculations) that if $p = p_u$ exists then $h(-p) \ge 25$, at least. It then follows that for every imaginary quadratic number field with class number less than 25 the absolute value of its discriminant is less than e^{18} . This would provide for a (new) approach to the class number one problem (much easier than that given in [8, Theorem 8.11]). Application of a deep result of Watkins [14] yields that even h(-p) > 100 in Theorem 2.

The polynomial in (ii) would be a Frobenius–Rabinowitsch polynomial of an extraordinary kind (as there are more that 2^{50} integers in the interval $\left[-2^{\frac{h-3}{2}}, 2^{\frac{h-3}{2}}\right]$).

It should be mentioned that Linnik–Vinogradov [4] and Pintz [10] have shown, with the help of analytical methods, that $\rho_p = O(p^{\frac{1}{4}+\varepsilon})$ for all $\varepsilon > 0$. However, such (ineffective) estimates are not helpful in the present work. On the other hand, on the basis of the Siegel–Tatuzawa theorem one might conjecture that, given any real number $c \in (\frac{1}{4}, \frac{1}{2}]$, there is an *effective* bound $\beta(c)$ such that $\rho_p < p^c$ for $p > \beta(c)$, with at most one exception. The results obtained in this paper, together with those obtained previously by Nagell (plus the Heegner–Baker–Stark theorem) tell us that we may take $\beta(\frac{1}{2}) = 163$.

Acknowledgment. The authors thank the referee for some helpful comments.

2. Preliminaries

Let d be the discriminant of a quadratic number field, and let $\chi_d = (\frac{d}{*})$ denote the (Kronecker, Dirichlet) character associated to $K = \mathbb{Q}(\sqrt{d})$ (with conductor |d|; recall that every primitive real (quadratic) character $\chi \neq 1$ is of this type). Let h(d) be the class number of K (in the usual sense), the order of the ideal class group C(K) of K.

We only need to consider the cases where d < 0 (so $\chi_d(-1) = -1$; χ_d odd). Then there is an isomorphism between C(K) and the form group C(d) of (proper) equivalence classes of (primitive, positive definite) quadratic forms $f = aX^2 + bXY + cY^2$ over the integers with discriminant $d = b^2 - 4ac$, the latter group structure induced by composition of quadratic forms (see [2, Theorem 5.30]; there is a similar correspondence when d > 0 dealing with ideal classes in the narrow sense [8, Theorem 8.6]). Note that b is odd when $d \equiv 1 \pmod{4}$, and even otherwise. An integer m is said to be represented by f if f(x, y) = m for certain integers x, y; if one can choose here x, y relatively prime, then m is represented by f properly (or primitively). This makes no difference when m is square-free. Forms (properly) equivalent represent the same integers (properly).

Lemma 1. Suppose the integer m is odd and prime to d. Then m is properly represented by some (primitive) quadratic form with discriminant d if and only if d is a quadratic residue mod m, in which case every divisor of m is thus represented too.

This can be deduced from the literature (e.g. see Lemmas 2.3 and 2.5 in [2]). For an odd prime p let $p^* = \left(\frac{-1}{p}\right)p$ (which is congruent to 1 mod 4). If $d = p^*$ then $\chi_d(q) = \left(\frac{p^*}{q}\right) = \left(\frac{q}{p}\right)$ for every odd prime $q \neq p$ by quadratic reciprocity. Hence q is a quadratic residue mod p if and only if it is represented (properly) by a form with discriminant p^* .

Lemma 2. If $d = p^*$ for some odd prime p, then h(d) is odd.

This is immediate from *genus theory* for quadratic forms (cf. [2, Theorem 6.1] and [15, Section 12]; even the class number in the narrow sense is odd).

Let d = -p (with $p \equiv 3 \pmod{4}$). Then reduction theory applies quite nicely in order to determine h(d). Indeed every (positive definite) quadratic form with discriminant -p is properly equivalent to a unique reduced form

$$f = aX^2 + bXY + cY^2.$$

This means that $|b| \leq a \leq c$ and that $b \geq 0$ when |b| = a or a = c (cf. [2, p. 27] or [15, Section 13]). Suppose we have a = 1. Then necessarily b = 1, and from $p = 4ac - b^2 = 4c - 1$ it follows that $c = \frac{1+p}{4}$. Thus $f = f_0 = X^2 + XY + \frac{1+p}{4}Y^2$ is the principal form (which is properly equivalent with $X^2 - XY + \frac{1+p}{4}Y^2$). Suppose that $f \neq f_0$ (so that h(-p) > 1). Then a > 1 (by the above). Assume that a = c. Then $b \geq 1$ (b is odd) and

$$p = 4a^2 - b^2 = (2a + b)(2a - b).$$

It follows that p = 2a + b and that 2a - b = 1. But then $2a - 1 = b \leq a$ and $a \leq 1$, a contradiction. Hence a < c. Assume next that |b| = a. Then $3 \leq b = a$ and $p = 4ac - a^2 = a(4c - a)$, which forces that 4c - a = 1 and c < a, a contradiction. Hence |b| < a. Now the opposite (inverse) form $f^- = aX^2 - bXY + cY^2$ is reduced and is not properly equivalent with f. Thus all reduced non-principal quadratic forms with discriminant -p appear in pairs, which gives Lemma 2 for d < 0. From $p = 4ac-b^2 \ge 4a(a+1)-(a-1)^2 = 3a^2+6a-1 \ge 3a^2+11$ we get $a \le \sqrt{(p-11)/3}$ (and p > 11).

Let us derive Nagell's [5] results for $p \equiv 3 \pmod{8}$. Assume h(-p) > 1 and let $f \neq f_0$ as above. Then all coefficients a, b, c of f must be odd now, thus $|b| \leq a-2$ and $c \geq a+2$ and so

$$p = 4ac - b^2 \ge 4a(a+2) - (a-2)^2 = 3a^2 + 12a - 4.$$

If q is an (odd) prime dividing a = f(1, 0), then q is a quadratic residue mod p by Lemma 1 and therefore $\rho_p \leq q \leq a$. This yields Nagell's estimate $\rho_p \leq \sqrt{\frac{p+16}{3}} - 2$. One checks that here equality holds if and only if a = 3 and p = 59.

If h(-p) = 1 and p > 7, then $p \equiv 3 \pmod{8}$ and $\varrho_p = \frac{1+p}{4}$. For then ϱ_p splits and is the norm of an integer in $\mathbb{Q}(\sqrt{-p})$, which forces that $\varrho_p \ge \frac{1+p}{4}$. On the other hand, $\frac{1+p}{4} = f_0(0,1)$ is an odd integer whose prime divisors are squares mod p by Lemma 1.

Lemma 3 (Siegel–Tatuzawa). Let d be negative $(\chi_d \ odd)$. Then, given $0 < \varepsilon < \frac{1}{2}$, we have $h(d) > \frac{0.655 \cdot \varepsilon}{\pi} |d|^{\frac{1}{2}-\varepsilon}$ whenever $|d| \ge \max(e^{\frac{1}{\varepsilon}}, e^{11.2})$, with at most one exception.

Improving Siegel's work [11] Tatuzawa [12] has shown that $L(1,\chi) > 0.655 \cdot \varepsilon \cdot k^{-\varepsilon}$ whenever χ is a real Dirichlet character with conductor $k \ge \max(e^{\frac{1}{\varepsilon}}, e^{11.2})$, with at most one exception. This gives the lemma in view of the class number formula [8, p. 436]. If there is an exceptional character χ the *L*-function $L(s,\chi)$ has a real zero in the interval $(1 - \frac{\varepsilon}{4}, 1)$ [12, Lemma 9], thus contradicting the Extended Riemann Hypothesis. It is known (see [13]) that $L(s,\chi)$ has no positive real zero if χ is odd and $k \le 3 \cdot 10^8$.

Lemma 4. Let $p = 2^q - 1$ be a Mersenne prime with q > 3 (also prime). Then $\varrho_p = 5$ if $q \equiv 1 \pmod{4}$ and $\varrho_p = 7$ if $q \equiv 11 \pmod{12}$. Moreover, in the remaining cases $\varrho_p = 11$ or 13 depending on whether $q \equiv 7, 43 \pmod{60}$ or $q \equiv 19, 31 \pmod{60}$.

Proof. Note that 2^q is divisible by 4 and so $p \equiv 3 \pmod{4}$. Since q is odd, $2^q \equiv 2 \pmod{3}$ and so $\left(\frac{3}{p}\right) = -\left(\frac{p}{3}\right) = -\left(\frac{1}{3}\right) = -1$. Hence $\varrho_p \ge 5$. If $q \equiv 1 \pmod{4}$ then $2^q \equiv 2 \pmod{5}$ and $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) = \left(\frac{1}{5}\right) = 1$. On the other hand, if $q \equiv 3 \pmod{4}$ then $2^q \equiv 3 \pmod{5}$ and $\left(\frac{5}{p}\right) = -1$. Thus $\varrho_p = 5$ if and only if $q \equiv 1 \pmod{4}$. Let $q \equiv 3 \pmod{4}$ in what follows. Then either $q \equiv 7$ or 11 mod 12 (as we assumed that q > 3).

If $q \equiv 11 \pmod{12}$ then $q \equiv 5 \pmod{6}$ and $2^q \equiv 2^5 \equiv 4 \pmod{7}$, whence $\left(\frac{7}{p}\right) = -\left(\frac{9}{7}\right) = -\left(\frac{3}{7}\right) = 1$, by quadratic reciprocity, so that $\varrho_p = 7$. If $q \equiv 7 \pmod{12}$ then $2^q \equiv 2 \pmod{7}$ and $\left(\frac{7}{p}\right) = -\left(\frac{p}{7}\right) = -\left(\frac{1}{7}\right) = -1$, implying that $\varrho_p > 7$.

So let $p \equiv 7 \pmod{12}$. Then $2^q \equiv 2^7 \equiv 11 \pmod{13}$ and $\left(\frac{13}{p}\right) = \left(\frac{p}{13}\right) = \left(\frac{10}{13}\right) = 1$. Hence either $\varrho_p = 13$ or $\varrho_p = 11$ in this case. Observe that $q \equiv 7, 19, 31$ or 43 mod 60. If $q \equiv 7 \pmod{60}$ then $q \equiv 7 \pmod{10}$ and $2^q \equiv 2^7 \equiv 7 \pmod{11}$, so that $\left(\frac{11}{p}\right) = -\left(\frac{p}{11}\right) = -\left(\frac{6}{11}\right) = 1$ and $\varrho_p = 11$. If $q \equiv 19 \pmod{60}$ then $2^q \equiv 2^9 \equiv 6 \pmod{11}$ and $\left(\frac{11}{p}\right) = -\left(\frac{p}{11}\right) = -\left(\frac{5}{11}\right) = -1$. If $q \equiv 31 \pmod{60}$ then $2^q \equiv 2 \pmod{11}$ and $\left(\frac{11}{p}\right) = -\left(\frac{p}{11}\right) = -\left(\frac{1}{11}\right) = -1$. Finally, for $q \equiv 43 \pmod{60}$ we have $2^q \equiv 8 \pmod{11}$ and $\left(\frac{11}{p}\right) = -\left(\frac{p}{11}\right) = -\left(\frac{7}{11}\right) = 1$. This completes the proof.

It is easy to show that if $p = 2^{2^n} + 1$ is a Fermat prime with $n \ge 1$, then $\varrho_p = 11$ if n is odd, and $\varrho_p = 13$ if n is even. (From $2^{2^n} \equiv 1 \pmod{15}$) it follows that $\left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) = \left(\frac{2}{3}\right) = -1$ and $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) = \left(\frac{2}{5}\right) = -1$. Similarly, from $2^{2^n} \equiv 2, 4 \pmod{7}$ we get $\left(\frac{7}{p}\right) = -1$, so that $\varrho_p \ge 11$. If $n \ge 2$ is even, then $2^{2^n} \equiv 3 \pmod{13}$, whence $p \equiv 4 \pmod{13}$ and $\left(\frac{13}{p}\right) = \left(\frac{p}{13}\right) = 1$. Use finally that $2^{2^n} \equiv 4, 5, 3, 9 \pmod{11}$ for $n \equiv 1, 2, 3, 0 \pmod{4}$, respectively.)

Suppose we have $p \equiv 1 \pmod{4}$ but p is not a Fermat prime. Let us show Nagell's [6] upper bound $\varrho_p \leq \sqrt{p-4}$ in this case. There are unique positive integers a, b such that $p = a^2 + 4b^2$ (Fermat). Using quadratic reciprocity we see that $\varrho_p \leq a \leq \sqrt{p-4b^2}$ when a > 1 (as a is odd), and if a = 1 then b is divisible by some odd prime (being a square mod p) and so $\varrho_p \leq b = \frac{1}{2}\sqrt{p-1}$.

Arguing as in the next section one gets the estimate $\varrho_p < \frac{1}{2}\sqrt{p}$ if $p \equiv 5 \pmod{8}$ and h(p) > 1; use that 2 remains prime in $\mathbb{Q}(\sqrt{p})$ and that the Minkowski constant of this number field is $\frac{1}{2}$.

3. The Minkowski bound

Let the prime $p \equiv 7 \pmod{8}$ in what follows, and let $K = \mathbb{Q}(\sqrt{-p})$. By a classical result of Minkowski (and Dirichlet) in every ideal class of K there is an (integral) ideal \mathfrak{a} with (absolute) norm $\operatorname{Na} < \frac{2}{\pi}\sqrt{p}$ (see [8, Lemma 2.3]). This estimate will be crucial for our approach.

Proposition 1. Let $p \equiv 7 \pmod{8}$ and h = h(-p). Assume that $\varrho_p \ge \frac{2}{\pi}\sqrt{p}$. Then the ideal class group C(K) of $K = \mathbb{Q}(\sqrt{-p})$ is cyclic and $p = 2^{h+2} - u^2$ for some positive (odd) integer $u < \sqrt{p}$.

Proof. We may assume that p > 7. Then h > 1 (as is easily seen; see below). Since $-p \equiv 1 \pmod{8}$, the prime $(2) = \mathfrak{p}\bar{\mathfrak{p}}$ splits in K. Let $0 \neq \alpha = \frac{x+y\sqrt{-p}}{2}$ be an integer in K, where $x, y \in \mathbb{Z}$ have the same parity. Then its norm $N(\alpha) = \frac{x^2 + py^2}{4}$ cannot be equal to 2. So \mathfrak{p} (and its complex conjugate $\bar{\mathfrak{p}}$) cannot be principal ideals (having norm 2). Let $h_0 \leq h$ be the order of the ideal class [\mathfrak{p}] of \mathfrak{p} . Then $h_0 > 1$ and $\mathfrak{p}^{h_0} = (\alpha)$, with $\alpha = \frac{x+y\sqrt{-p}}{2}$ as above. Since $\bar{\mathfrak{p}}^{h_0} = (\bar{\alpha})$ is different from (α) , we have $y \neq 0$ (and $y^2 \geq 4$ if x = 0). Observe that $2^h \geq 2^{h_0} = \frac{x^2+py^2}{4}$.

Now assume that $\varrho_p \geq \frac{2}{\pi}\sqrt{p}$. Let \mathfrak{a} be an ideal of K with norm $\mathrm{N}\mathfrak{a} < \frac{2}{\pi}\sqrt{p}$. Suppose $\mathfrak{q} \neq \mathfrak{p}, \overline{\mathfrak{p}}$ is a prime ideal of K appearing in \mathfrak{a} . Then $\mathfrak{q}|q$ where q is an odd rational prime, and we assert that $\mathfrak{q} = (q)$ is principal. Clearly $q \leq \mathrm{N}\mathfrak{q} < \frac{2}{\pi}\sqrt{p}$.

178 Wolfgang Knapp, Markus Köcher, Peter Schmid

and so $(\frac{q}{p}) = -1$ by assumption. But then $(\frac{-p}{q}) = -1$ by quadratic reciprocity. Hence the assertion. This shows that C(K) is generated by $[\mathfrak{p}]$ (or $[\bar{\mathfrak{p}}] = [\mathfrak{p}]^{-1}$). In particular, $h = h_0$ in the notation introduced above, and this is odd by Lemma 2. For ideals $\mathfrak{p}^i \bar{\mathfrak{p}}^j$ in $[\mathfrak{p}]^{(h-1)/2}$ we have i - j = (h - 1)/2 and $N(\mathfrak{p}^i \bar{\mathfrak{p}}^j) = 2^{i+j}$. Hence the minimal norm of ideals in this class equals $2^{(h-1)/2}$. Consequently

$$2^{(h-1)/2} < \frac{2}{\pi}\sqrt{p}$$

and, therefore, $2^h < \frac{8}{\pi^2}p < p$. Comparing this with the identity $2^h = 2^{h_0} = \frac{x^2 + py^2}{4}$ obtained before, this forces that $y^2 = 1$ and that u = |x| is a positive odd integer. Hence $u^2 + p = 2^{h+2} < \frac{32}{\pi^2}p$, giving $u < \frac{3}{2}\sqrt{p}$. We have to improve this upper bound.

One knows that $2X^2 - Y^2$ is the unique (primitive) quadratic form with discriminant 8, up to proper equivalence (see [15, p. 81]). From $(\frac{8}{p}) = 1$ and Lemma 1 we infer that $p = 2a^2 - b^2$ for positive integers a, b. Here $a = 2a_0$ must be even and b odd (as $p \equiv 7 \pmod{8}$), and by Theorem 1 in [3] we can choose a, b such that $b < \sqrt{p}$. Assume there is an odd prime q dividing a_0 . Then $(\frac{q}{p}) = (\frac{-p}{q}) = (\frac{b^2}{q}) = 1$ and $\varrho_p \leq q \leq a_0 = \sqrt{(p+b^2)/8} < \frac{1}{2}\sqrt{p}$, against our assumption. Hence $a_0 = 2^n$ and $p = 2^{2n+3} - b^2$ for some integer $n \ge 1$. We claim that h+2 = 2n+3 and u = b. Otherwise $h+2 \le 2n+1$, implying that $p < 2^{h+2} \le 2^{2n+1} = (p+b^2)/4 < p/2$, or $h+2 \ge 2n+5$ and this implies that $p > 2^h \ge 2^{2n+3} = p + b^2 > p$. In both cases we get a contradiction. Hence $u = b < \sqrt{p}$, as desired.

Remark. We have $\rho_p \ge \frac{2}{\pi}\sqrt{p}$ for the Mersenne primes p = 7, 31, 127 (Lemma 4) and also for $p \in \{103, 463, 487\}$ ($\rho_{103} = 7, \rho_{463} = 17, \rho_{487} = 19$). One can deduce from Lemma 3 that these are the only primes $p \equiv 7 \pmod{8}$ where this happens, with at most one exception, where the possible exceptional prime will be the same as that described in Theorems 1, 2 (provided p_u exists). We do not go into details but remark that the elementary approach to our theorems given below applies also in this case (with a bit more effort).

4. Towards the exceptional prime

Let $p \equiv 7 \pmod{8}$, p > 7 and h = h(-p). Assume in what follows that $\varrho_p \ge \sqrt{p}$. By Lemma 2 we know that h is odd, and h > 1 (as p > 7). Let h = 2n+1 ($n \ge 1$). From Proposition 1 it follows that $p = 2^{2n+3} - u^2$ for some positive odd integer $u < \sqrt{p}$. In particular $2^{2n+2} .$

For any integer r with $1 \leq r \leq n$ let u_r be the least positive (odd) integer such that 2^{r+2} is a divisor of $u_r^2 + p$. Then 2^{r+2} also divides $(2^{r+1} - u_r)^2 + p$ (as $r+2 \geq 3$) and so $|2^{r+1} - u_r| \geq u_r$. Since $u_r - 2^{r+1} < u_r$, we must have $2^{r+1} - u_r \geq u_r$ and hence $u_r < 2^r$ (as u_r is odd). By definition $u_1 = 1$ (as $p \equiv 7 \pmod{8}$) and $1 = u_1 \leq u_2 \leq \ldots \leq u_n \leq u$. Let $c_r = \frac{u_r^2 + p}{2^{r+2}}$ $(1 \leq r \leq n)$.

Proposition 2. Under the above assumptions, the quadratic forms $f_r = 2^r X^2 + u_r XY + c_r Y^2$, together with their opposites f_r^- and the principal form f_0 , are

precisely all the distinct reduced forms with discriminant -p $(1 \le r \le n)$. The coefficients c_r are strictly decreasing, with $c_1 = \frac{1+p}{8} > c_2 > \cdots > c_n = 2^{n+1}$. Moreover:

- (i) Each odd integer in the interval (1, p) which is properly represented by f_0 or some form f_r is a prime.
- (ii) We have $5 \le u = u_n < (3 \sqrt{7})2^{n-1} < 2^{n-2}$, and u is divisible only by primes congruent 5 or 7 mod 8.
- (iii) $2^{2n} u^2 = (2^n u)(2^n + u)$ is divisible only by primes congruent 3 mod 4. In particular, $u \equiv 3, 5$ or 7 mod 10 when n is odd, and $u \equiv 1, 5$ or 9 mod 10 otherwise.

Proof. Clearly $c_r > 2^{2n+2-r-2} \ge 2^n$ (as $p > 2^{2n+2}$). In particular $c_r > 2^r$ for each r and so f_r is reduced. Now recall that h = 2n + 1 and that there are just h distinct reduced forms with discriminant -p. This gives the first assertion. Of course $f_1 = 2X^2 + XY + \frac{1+p}{8}Y^2$. Let us consider $f_n = 2^nX^2 + u_nXY + c_nY^2$. We know that $u_n < 2^n < \frac{1}{2}\sqrt{p}$ and that $c_n > 2^n$. On the other hand $u_n \le u$ (by definition) and so

$$c_n = \frac{u_n^2 + p}{2^{n+2}} \leqslant \frac{u^2 + p}{2^{n+2}} = 2^{n+1} < \sqrt{p}.$$

If there is an odd prime q dividing $c_n = f_n(0, 1)$, then q is a quadratic residue mod p by Lemma 1. We infer that c_n must be a power of 2, and this implies that $c_n = 2^{n+1}$ and that $u = u_n$. By Lemma 4 and assumption we also have u > 1.

If $u_r = u_{r+1}$ for some r, then $c_r = 2c_{r+1}$. Suppose $u_r < u_{r+1}$. This means that $2^r < u_{r+1} < 2^{r+1}$, by definition of reduced forms. Hence $u_{r+1} - 2^r < 2^{r+1} - 2^r = 2^r$. Since 2^{r+2} is a divisor of both $u_r^2 + p$ and $u_{r+1}^2 + p$, it divides $u_{r+1}^2 - u_r^2 = (u_{r+1} - u_r)(u_{r+1} + u_r)$. Since u_r and u_{r+1} are odd, 2^{r+1} is a divisor of just one of $u_{r+1} - u_r$ or $u_{r+1} + u_r$ (the other one being $\equiv 2 \pmod{4}$). Using that $u_r < 2^r$, $u_{r+1} < 2^{r+1}$ are positive we infer that $u_r = 2^{r+1} - u_{r+1}$. We derive that

$$c_r = \frac{(2^{r+1} - u_{r+1})^2 + p}{2^{r+2}} = 2c_{r+1} - (u_{r+1} - 2^r) > 2c_{r+1} - 2^r > c_{r+1}.$$

So the sequence $\{c_r\}$ is strictly decreasing with r.

- (i) Let f be any quadratic form with discriminant -p, and let x, y be relatively prime integers such that the odd part, say m, of f(x, y) is greater than 1 and less than p. Then each (odd) prime q dividing m is a square mod p by Lemma 1. Assume m is no prime. Then we may arrange matters such that $q \leq \frac{m}{q}$ and so $q^2 \leq m < p$. But then $\varrho_p \leq q < \sqrt{p}$, against our general assumption. Hence m = q is a prime.
- (ii) We know already that $u = u_n$. Let $w = f_n(1, -1) = 3 \cdot 2^n u$. By (i) w is an (odd) prime, and $\left(\frac{w}{p}\right) = 1$ by Lemma 1. Thus $w^2 > p = 2^{2n+3} u^2$ by assumption. It follows that $u^2 3 \cdot 2^n u + 2^{2n-1} > 0$, yielding that $u < (3 \sqrt{7})2^{n-1} < 2^{n-2}$. Let q be an (odd) prime dividing u. Then $q \leq u < \sqrt{p}$ and so $\left(\frac{q}{p}\right) = \left(\frac{-p}{q}\right) = \left(\frac{-2}{q}\right) = -1$, whence $q \equiv 5, 7 \pmod{8}$. This also shows that $u \geq 5$, and that $n \geq 5$ (at least).

- 180 Wolfgang Knapp, Markus Köcher, Peter Schmid
 - (iii) Consider $p = 2^{2n+2} + (2^{2n+2} u^2)$. We have $2^{n+1} + u < \sqrt{p}$, because $u < 2^{n-2}$, $u^2 + 2^{n+1}u < 2^{2n-4} + 2^{2n-1} < 2^{2n}$ and so $2^{2n+2} + 2^{n+2}u + u^2 . If q is an odd prime dividing <math>2^{2n+2} u^2 = (2^{n+1} u)(2^{n+1} + u)$, then $\left(\frac{q}{p}\right) = \left(\frac{-p}{q}\right) = \left(\frac{-1}{q}\right) = -1$ and so $q \equiv 3 \pmod{4}$ (as $\varrho_p \ge \sqrt{p}$ by assumption). Let n be odd. Then $2^{n+1} \equiv pm4 \pmod{10}$ and so one of $2^{n+1}pmu$ is divisible by 5 if $u \equiv pm1 \pmod{10}$, which cannot happen. Hence $u \equiv 3, 5$ or 7 mod 10 in this case. Similarly, $u \equiv 1, 5$ or 9 mod 10 when n is even. The proof is complete.

5. Proof of Theorem 1

Keep the assumptions and notation introduced in the preceding section. We prove that we must have $n \ge 12$ (h = h(-p) = 2n + 1). We know already that $n \ge 5$. In our argumentation we ignore that $2^{2n+3} - u^2$ may be no prime (using a table of the primes up to 10,000 only). Mostly we argue by verifying that one of w = $f_n(1,-1) = 3 \cdot 2^n - u$ or $w' = f_n(1,1) = 3 \cdot 2^n + u$ is not prime, contrary to statement (i) in Proposition 2. Of course w = w(n,u) and w' = w'(n,u) depend on n and u. Fortunately u = u(n) is quite restricted by Proposition 2.

Assume that n = 5. Then $u < (3 - \sqrt{7}) \cdot 2^4 < 6$ and so necessarily u = 5 (where $p = 2^{13} - 25 = 8167$ actually is a prime). But here $w = 3 \cdot 2^5 - 25 = 7 \cdot 13$ is no prime. For n = 6 we have u < 12 but $u \neq 7, 11$ by Proposition 2, and $w = 3 \cdot 2^6 - u$ is no prime for u = 5, 9.

Let n = 7. Then u < 23, and by Proposition 2 only the possibilities u = 5, 7, 13 remain. Now $w = 3 \cdot 2^7 - u$ is not prime for u = 7, 13 (namely $13 \cdot 29$ and $7 \cdot 53$, respectively). For u = 5 both w and w' are primes, but $9 \cdot 2^{n-1} - u$ equals $31 \cdot 37$ for n = 7, u = 5.

Let n = 8. Then u < 46, and we have to examine the cases u = 5, 25, 29, 31(Proposition 2). Here $w = 3 \cdot 2^8 - u$ is no prime for u = 5, 31 (namely $7 \cdot 109$ resp. $11 \cdot 67$), and $w' = 3 \cdot 2^8 + 25 = 13 \cdot 161$. Finally, $2^{n+1} + u = 2^9 + 29 = 541$ is a prime congruent 1 mod 4 (and so $\rho_p \leq 541 < \sqrt{p}$); alternately, $f_{n-1}(3, 1) = 17 \cdot 2^{n-1} + 3u = 31 \cdot 73$ for n = 8, u = 29 (and so $\rho_p \leq 31$).

Let n = 9. Then u < 91 and u = 5, 7, 13, 23, 25, 35, 37, 43, 47 or 53 (Proposition 2). Here one of w, w' is no prime for $u \in \{5, 7, 23, 25, 35, 37\}$. Also, $9 \cdot 2^8 + u$ is not prime for u = 13, 43 and 47.

Let n = 10. Then u < 182 and u = 5, 25, 29, 31, 49, 61, 71, 79, 91, 101, 109, 115, 125, 131, 139, 145, 149, 151, 155, 161, 169, 175, 179 or 181 (Proposition 2). Here one of <math>w, w' is not prime except when $u \in \{5, 109, 115\}$. Also, $9 \cdot 2^9 - u$ is not prime for u = 109, 115, and $2^{11} + 5 = 2053$ is a prime congruent 1 mod 4.

Let n = 11. Then u < 363 and u = 5, 7, 13, 23, 25, 35, 37, 43, 47, 53, 65, 103, 115, 125, 127, 155, 157, 167, 173, 175, 185, 197, 203, 217, 223, 233, 235, 263, 265, 277, 293, 305, 317, 325, 343 or 355 (Proposition 2). Here one of <math>w, w' is no prime unless $u \in \{23, 157, 217, 277, 305\}$. But $9 \cdot 2^{10} - u$ is not prime for $u \in \{23, 277, 305\}$. Further $2^{12} - 157 = 3 \cdot 13 \cdot 101$ with $13 \equiv 1 \pmod{4}$. Finally, $f_{n-2}(1, -1)$ equals $13 \cdot 1283$ for n = 11 and u = 217. Consequently $n \ge 12$, as desired.

Now we apply Lemma 3, picking $\varepsilon = \frac{1}{18}$. Then

$$p > 2^{2n+2} \ge 2^{26} \ge \max(e^{18}, e^{11.2}) = e^{18}$$

but $h = 2n + 1 < \frac{0.655}{18\pi} p^{\frac{1}{2} - \frac{1}{18}}$, because

$$2n+1 < \frac{0.655}{18\pi} (2^{\frac{4}{9}})^{2n+2}$$

for $n \ge 12$. Thus $\chi = \left(\frac{-p}{*}\right)$ must be the unique (exceptional) primitive real Dirichlet character with conductor $|d| = p \ge e^{18}$ which possibly exists by virtue of the Siegel–Tatuzawa theorem. By [12, Lemma 9] $L(s,\chi)$ has a real zero in the interval $\left(\frac{71}{72}, 1\right)$, which violates the Extended Riemann Hypothesis. This completes the proof of Theorem 1.

6. Proof of Theorem 2

Assume the large exceptional prime $p = p_u$ exists (with $\rho_p \ge \sqrt{p}$). Then $p = 2^{h+2} - u^2$ where h = h(-p) and u is a positive odd integer (Proposition 1). In view of Proposition 2 we know that $5 \le u < (3 - \sqrt{7})2^{(h-3)/2} < 2^{(h-5)/2}$. In the course of the proof for Theorem 1 we have shown that $h \ge 25$ and, therefore, $p > 2^{26}$. But if $h(d) \le 100$ for some negative fundamental discriminant d, then $|d| \le 2^{22}$ by the work of Watkins [14]. Thus we even have h > 100.

It follows from Proposition 2 that $\rho_p = f_n(1,-1) = 3 \cdot 2^{(h-1)/2} - u$. Define the real number t through $3 \cdot 2^{(h-1)/2} = t\sqrt{p}$. Then $9 \cdot 2^{h-1} = t^2p = t^2(2^{h+2} - u^2) > t^2(2^{h+2} - (3 - \sqrt{7})^2 2^{h-3})$ and t < 1.06275. Thus $\rho_p < 1.06275\sqrt{p} - u$, as asserted.

- (i) By the Siegel–Tatuzawa theorem (Lemma 3), for every negative fundamental discriminant d ≠ -p with |d| ≥ e¹⁸ we have h(d) > 0.655/18π |d|⁴/9.
 (ii) Consider the quadratic form f = 2X² + uXY + 2^{h-1}Y². This form is
- (ii) Consider the quadratic form $f = 2X^2 + uXY + 2^{h-1}Y^2$. This form is properly equivalent with the reduced form f_1 when $u \equiv 1 \pmod{4}$ and with f_1^- otherwise (in the notation of Proposition 2). The class of each of f, f_1, f_1^- generates the form class group C(-p) (as these forms correspond to one of the prime ideals above 2 in $\mathbb{Q}(\sqrt{-p})$ described in Proposition 1). The quadratic polynomial

$$f(2X+1,-1) = 8X^{2} + (8-2u)X + 2^{h-1} + 2 - u$$

takes only odd (positive) values on integers. It follows from statement (i) of Proposition 2 that this polynomial takes prime values on all integers in $[-2^{(h-3)/2}, 2^{(h-3)/2}]$ (as these values are less than p). These primes are pairwise distinct, because if the polynomial takes the same value on integers $x \neq y$, then we get $x + y = \frac{2u-8}{8}$, which is impossible. We are done.

182 Wolfgang Knapp, Markus Köcher, Peter Schmid

References

- S. Chowla, J.R. Cowles, M.J. Cowles, The least prime quadratic residue and the class number, J. Number Theory 22 (1986), 1–3.
- [2] D.A. Cox, Primes of the Form $x^2 + ny^2$, Wiley, New York , 1989.
- [3] A. Gica, A proof of a conjecture of additive number theory, J. Number Theory 94 (2002), 80–89.
- [4] Y.V. Linnik, A.I. Vinogradov, Hyperelliptic curves and the least prime quadratic residue, Doklady Akad. Nauk SSSR 168 (1966), 259–261.
- [5] T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamb. 1 (1922), 140–150.
- [6] T. Nagell, Zahlentheoretische Notizen II, Videnskapsselskapets Skrifter.
 I. Mat.-naturv. Klasse (1923), 7–10.
- [7] T. Nagell, Sur les restes et les non-restes quadratiques suivant un module premier, Ark. Mat. 1 (1950), 185-193.
- [8] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, New York, 1990.
- [9] J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Astérisque 121-122 (1985), 309–323.
- [10] J. Pintz, Elementary methods in the theory of L-functions VI, On the least prime quadratic residue (mod p), Acta Arith. 32 (1977), 173–178.
- [11] C.L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83–86.
- [12] T. Tatuzawa, On a theorem of Siegel, Japan. J. Math. 21 (1951), 169–178.
- [13] M. Watkins, Real zeros of real odd Dirichlet L-functions, Math. Comp. 73 (2004), 415–423.
- [14] M. Watkins, Class numbers of imaginary quadratic number fields, Math. Comp. 73 (2004), 907–938.
- [15] D.B. Zagier, Zetafunktionen und und quadratische Körper, Springer, New York, 1981.
- Addresses: Wolfgang Knapp, Markus Köcher, Peter Schmid: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.

E-mail: wolfgang.knapp@uni-tuebingen.de, markus.koecher@t-online.de, peter.schmid@uni-tuebingen.de

Received: 3 September 2011