ON λ-INVARIANTS OF \mathbb{Z}_{ℓ}-EXTENSIONS OVER REAL ABELIAN NUMBER FIELDS OF PRIME POWER CONDUCTORS

Takashi Fukuda, Keifchi Komatsu, Takayuki Morisawa

Abstract

For each prime number ℓ less than 10^{4}, we construct an infinite family of abelian number fields for which Iwasawa λ_{ℓ}-invariants vanish.

Keywords: Iwasawa invariant, computation.

1. Introduction

For a prime number ℓ and an algebraic number field k, we denote by $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ the Iwasawa μ-invariant and λ-invariant of the cyclotomic \mathbb{Z}_{ℓ}-extension of k respectively. Greenberg conjecture, which is still open, predicts that both $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish for all prime numbers ℓ and all totally real number fields k. In spite of a large amount of papers about Greenberg conjecture, we lack a systematic knowledge about it. For example, there is no known totally real number field k different with the rational number field \mathbb{Q} such that both $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish for all prime number ℓ. Similarly, there is no known prime number ℓ such that both $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish for all totally real number fields k. So we are led to consider the following problems:

Problem 1.1. For a fixed prime number ℓ, find an infinite family of totally real number fields k such that $\mu_{\ell}(k)=\lambda_{\ell}(k)=0$.

Problem 1.2. For a fixed totally real number field k, find an infinite family of prime numbers ℓ such that $\mu_{\ell}(k)=\lambda_{\ell}(k)=0$.

First we explain trivial examples. Let $\ell=2$. It is well known by genus theory that there exist infinitely many real quadratic fields k with odd class number in which the prime 2 is not decomposed. Then a famous theorem of Iwasawa in [10] immediately shows $\mu_{2}(k)=\lambda_{2}(k)=0$ for such k. Conversely, let k be any real

[^0]quadratic field. Then there exist infinitely many prime numbers ℓ which does not divide the class number of k and is not decomposed in k. Iwasawa's theorem again concludes that $\mu_{\ell}(k)=\lambda_{\ell}(k)=0$ for such ℓ.

We are interested in non-trivial examples. Ozaki-Taya [14] constructs explicitly an infinite family of real quadratic fields k with $\mu_{2}(k)=\lambda_{2}(k)=0$ in which 2 splits. They also construct an infinite family of real quadratic fields k with $\mu_{2}(k)=\lambda_{2}(k)=0$ which have even class numbers. Horie-Nakagawa [12] proved that there are infinitely many real quadratic fields k with class number prime to 3 in which 3 is not decomposed. It follows $\mu_{3}(k)=\lambda_{3}(k)=0$ for such k. Ono [13] extended the result of Horie-Nakagawa to prime numbers less than 5000 . Namely, for a prime number ℓ less than 5000 , he proved with the aid of computer that there are infinitely many real quadratic fields k with class number prime to ℓ in which ℓ is not decomposed. Of course, $\mu_{\ell}(k)=\lambda_{\ell}(k)=0$ for such k.

In this paper, we construct another type of infinite family of number fields k with $\mu_{\ell}(k)=\lambda_{\ell}(k)=0$, which contributes to Problem 1.1. Our targets in this paper are abelian number fields k and it is known that $\mu_{\ell}(k)=0$ by FerreroWashington [3]. So we omit the statement $\mu_{\ell}(k)=0$ in the following. In a similar, but more general situation, Friedman-Sands [5] investigates the stability of λ_{ℓ}^{-}invariants, while our attention concentrates in the vanishing of λ_{ℓ}-invariants. For a prime number p and an integer m, we denote by $\mathbb{B}_{p, m}$ the m-th layer of the cyclotomic \mathbb{Z}_{p}-extension of \mathbb{Q}. The following are our theorems.

Theorem 1.1. Let ℓ be a prime number less than 10^{4}. Then the Iwasawa invariant $\lambda_{\ell}\left(\mathbb{B}_{2, m}\right)$ vanishes for all $m \geqslant 0$.

Theorem 1.2. Let ℓ be a prime number less than 10^{4}. Then the Iwasawa invariant $\lambda_{\ell}\left(\mathbb{B}_{3, m}\right)$ vanishes for all $m \geqslant 0$.

Remark 1.1. If ℓ satisfies $\ell^{2} \not \equiv 1(\bmod 16)$, then there is only one prime ideal of $\mathbb{B}_{2, m}$ lying above ℓ and the class number of $\mathbb{B}_{2, m}$ is prime to ℓ by [8, Proposition 3]. Hence Iwasawa's theorem shows $\lambda_{\ell}\left(\mathbb{B}_{2, m}\right)=0$ for all $m \geqslant 0$.

If ℓ satisfies $\ell^{2} \not \equiv 1(\bmod 9)$, then there is only one prime ideal of $\mathbb{B}_{3, m}$ lying above ℓ and the class number of $\mathbb{B}_{3, m}$ is prime to ℓ by [8, Proposition 2]. Hence Iwasawa's theorem again shows $\lambda_{\ell}\left(\mathbb{B}_{3, m}\right)=0$ for all $m \geqslant 0$.

Remark 1.2. Friedman [4, Theorem. (B)] describes explicitly the behavior of class numbers of intermediate fields of a multiple \mathbb{Z}_{ℓ}-extension using λ_{i} and ν_{i}. Our theorems asserts that $\lambda_{i}=0$ in some special situations.

2. Preliminaries to Proof

We start with explaining notations. For a finite group G, we denote by $|G|$ the order of G. Let k be an algebraic number field. For a finite algebraic extension K of k, we denote by $[K: k$] the extension degree of K over k. If K is a Galois extension of k, we denote by $G(K / k)$ the Galois group of K over k. For a prime number ℓ, we denote by $A_{\ell}(k)$ the ℓ-Sylow subgroup of the ideal class group of k.

We denote by $\overline{\mathbb{Q}}_{\ell}$ the algebraic closure of the ℓ-adic number field \mathbb{Q}_{ℓ} and suppose the multiplicative valuation $\left.\left|\left.\right|_{\ell}\right.$ of $\overline{\mathbb{Q}}_{\ell}$ is normalized so that $| \ell\right|_{\ell}=\ell^{-1}$.

For one more prime number p, we denote by $\mathbb{B}_{p, \infty}$ the cyclotomic \mathbb{Z}_{p}-extension of \mathbb{Q}, by $\mathbb{B}_{p, m}$ the m-th layer of $\mathbb{B}_{p, \infty} / \mathbb{Q}$ and by $\lambda_{\ell}\left(\mathbb{B}_{p, m}\right)$ the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_{ℓ}-extension $\mathbb{B}_{p, m} \mathbb{B}_{\ell, \infty} / \mathbb{B}_{p, m}$ as mentioned above.

Let p and ℓ be distinct prime numbers. We put $A_{m, n}=A_{\ell}\left(\mathbb{B}_{p, m} \mathbb{B}_{\ell, n}\right)$ and $\Gamma=G\left(\mathbb{B}_{p, \infty} \mathbb{B}_{\ell, \infty} / \mathbb{B}_{p, \infty}\right)$. An element of Γ acts on $A_{m, n}$ canonically. We put

$$
A_{m, n}^{\Gamma}=\left\{a \in A_{m, n} \mid a^{\sigma}=a \text { for any element } \sigma \in \Gamma\right\}
$$

Then we have

$$
\left|A_{m, n}\right| \leqslant\left|A_{m^{\prime}, n^{\prime}}\right|
$$

and

$$
\left|A_{m, n}^{\Gamma}\right| \leqslant\left|A_{m^{\prime}, n^{\prime}}^{\Gamma}\right|
$$

for non-negative integers $m, n, m^{\prime}, n^{\prime}$ with $m \leqslant m^{\prime}$ and $n \leqslant n^{\prime}$ by class field theory and genus theory. Since Leopoldt's conjecture holds for $\mathbb{B}_{p, m}$, there exists integer n_{ℓ} such that $\left|A_{m, n_{\ell}}^{\Gamma}\right|=\left|A_{m, n}^{\Gamma}\right|$ for any integer n with $n_{\ell} \leqslant n$ by [7, Proposition 1]. We put $\left|A_{m, \infty}^{\Gamma}\right|=\left|A_{m, n_{\ell}}^{\Gamma}\right|$.

Let $F_{m, n}$ be the maximal abelian ℓ-extension of $\mathbb{B}_{p, m}$ which is unramified over $\mathbb{B}_{p, m} \mathbb{B}_{\ell, n}$. Then $\left|A_{m, n}^{\Gamma}\right|=\left(F_{m, n}: \mathbb{B}_{p, m} \mathbb{B}_{\ell, n}\right)$ by genus theory. Let $M_{m}^{(\ell)}$ be the maximal abelian ℓ-extension of $\mathbb{B}_{p, m}$ unramified outside ℓ. The degree $\left(M_{m}^{(\ell)}\right.$: $\left.\mathbb{B}_{p, m} \mathbb{B}_{\ell, \infty}\right)$ is finite again by the validity of Leopoldt's conjecture for $\mathbb{B}_{p, m}$. More precisely, we have the following lemma which is a direct consequence of applying [2, Lemma 8] to the extension $M_{m}^{(\ell)} / \mathbb{B}_{p, m}$.

Lemma 2.1. Let ℓ be an odd prime number with $\ell \neq p$ and $M_{m}^{(\ell)}$ the maximal abelian ℓ-extension of $\mathbb{B}_{p, m}$ unramified outside ℓ and $R_{\ell}\left(\mathbb{B}_{p, m}\right)$ the ℓ-adic regulator of $\mathbb{B}_{p, m}$. Then we have

$$
\left|G\left(M_{m}^{(\ell)} / \mathbb{B}_{p, m} \mathbb{B}_{\ell, \infty}\right)\right|=\left|\frac{\left|A_{m, 0}\right| R_{\ell}\left(\mathbb{B}_{p, m}\right)}{\ell^{p^{m}}-1}\right|_{\ell}^{-1}
$$

Since the degree $\left[M_{m}^{(\ell)}: \mathbb{B}_{p, m} \mathbb{B}_{\ell, \infty}\right]$ is finite, there exists non-negative integer n_{0} and an element α in $M_{m}^{(\ell)}$ such that $M_{m}^{(\ell)}=\mathbb{B}_{p, m} \mathbb{B}_{\ell, \infty}(\alpha)$ and that

$$
\left[\mathbb{B}_{p, m} \mathbb{B}_{\ell, n_{0}}(\alpha): \mathbb{B}_{p, m} \mathbb{B}_{\ell, n_{0}}\right]=\left[M_{m}^{(\ell)}: \mathbb{B}_{p, m} \mathbb{B}_{\ell, \infty}\right] .
$$

Let S be the inertia group of a prime ideal \mathfrak{L} of $\mathbb{B}_{p, m}$ lying above ℓ with respect to the extension $M_{m}^{(\ell)} / \mathbb{B}_{p, m}$. Let ϕ be the canonical restriction mapping of $G\left(M_{m}^{(\ell)} / \mathbb{B}_{p, m}\right)$ to $G\left(\mathbb{B}_{p, m} \mathbb{B}_{\ell, n_{0}}(\alpha) / \mathbb{B}_{p, m}\right)$. Since $\phi(S)$ is the inertia group of \mathfrak{L} in $\mathbb{B}_{p, m} \mathbb{B}_{\ell, n_{0}}(\alpha)$ over $\mathbb{B}_{p, m}$ by $[15, \mathrm{p} .395]$, we have $\left|A_{m, \infty}^{\Gamma}\right|=\left|A_{m, n_{0}}^{\Gamma}\right|$. The following proposition describes a sufficient condition for Theorems 1.1 and 1.2.

Proposition 2.2. Assume that there exists a constant m_{p} such that $\left|A_{m_{p}, \infty}^{\Gamma}\right|=$ $\left|A_{m, \infty}^{\Gamma}\right|$ for all $m \geqslant m_{p}$. If $\lambda_{\ell}\left(\mathbb{B}_{p, m_{p}}\right)=0$, then $\lambda_{\ell}\left(\mathbb{B}_{p, m}\right)=0$ for all $m \geqslant 0$.

Proof. Since $\lambda_{\ell}\left(\mathbb{B}_{p, m_{p}}\right)=0$ means the boundness of $\left\{\left|A_{m_{p}, n}\right|\right\}_{n=1}^{\infty}$, there exists non-negative integer n_{ℓ} such that $\left|A_{m_{p}, n_{\ell}}\right|=\left|A_{m_{p}, n}\right|$ for any integer n with $n_{\ell} \leqslant n$ and that $\left|A_{m_{p}, n_{\ell}}^{\Gamma}\right|=\left|A_{m_{p}, \infty}^{\Gamma}\right|$. Let m, n be integers with $m_{p} \leqslant m$ and $n_{\ell} \leqslant n$ and assume that $\left|A_{m_{p}, n_{\ell}}\right|<\left|A_{m, n}\right|$. Since $A_{m_{p}, n_{\ell}}$ is isomorphic to $A_{m_{p}, n}$ as Γ-module, $A_{m, n}$ is isomorphic to the direct sum $A_{m_{p}, n_{\ell}} \oplus\left(A_{m, n} / A_{m_{p}, n}\right)$ as Γ module by [15, Lemma 16.15]. Since $\left|A_{m_{p}, n_{\ell}}\right|=\left|A_{m_{p}, n}\right|<\left|A_{m, n}\right|$, Γ-module $A_{m, n} / A_{m_{p}, n}$ is non-trivial, which implies $\left(A_{m, n} / A_{m_{p}, n}\right)^{\Gamma}$ is also non-trivial. Since $A_{m, n}^{\Gamma}$ is isomorphic to $A_{m_{p}, n_{\ell}}^{\Gamma} \oplus\left(A_{m, n} / A_{m_{p}, n}\right)^{\Gamma}$, we have $\left|A_{m_{p}, n_{\ell}}^{\Gamma}\right|<\left|A_{m, n}^{\Gamma}\right|$. This contradicts $\left|A_{m_{p}, \infty}^{\Gamma}\right|=\left|A_{m, \infty}^{\Gamma}\right|$. Hence $\left|A_{m_{p}, n_{\ell}}\right|=\left|A_{m, n}\right|$ for all m, n with $m_{p} \leqslant$ m and $n_{\ell} \leqslant n$, from which we conclude that $\lambda_{\ell}\left(\mathbb{B}_{p, m}\right)=0$ for all $m \geqslant m_{p}$. The vanishing of $\lambda_{\ell}\left(\mathbb{B}_{p, m}\right)$ for $0 \leqslant m<m_{p}$ is a well-known property of $\mathbb{Z}_{\ell^{-}}$ extensions.

Now we consider primitive Dirichlet characters whose values lie in $\overline{\mathbb{Q}}_{\ell}$. Let ω be the Teichmüller character modulo ℓ and ψ an even character modulo $q p^{m}$ whose order is p^{m}, where q is 4 or p according as $p=2$ or not. Then a generalized Bernoulli number $B_{1, \omega^{-1} \psi} \in \overline{\mathbb{Q}}_{\ell}$ is defined by

$$
B_{1, \omega^{-1} \psi}=\frac{1}{q p^{m} \ell} \sum_{b=1}^{q p^{m} \ell} b \omega^{-1} \psi(b)
$$

It follows that $\left|B_{1, \omega^{-1} \psi}\right|_{\ell} \leqslant 1$ because $\ell \neq p$. (cf. [1]). Let $L_{\ell}(s, \psi)$ be an ℓ-adic L-function associated to ψ. Then we see that

$$
\begin{equation*}
L_{\ell}(1, \psi) \equiv L_{\ell}(0, \psi)=-B_{1, \omega^{-1} \psi} \quad(\bmod \ell) \tag{1}
\end{equation*}
$$

by Theorem 5.11 and Corollary 5.13 in [15].
Then we are able to connect the assumption of Proposition 2.2 to a property of Bernoulli numbers.

Proposition 2.3. Assume that there is a constant m_{p} such that $\left|B_{1, \omega^{-1} \psi}\right|_{\ell}^{-1}=1$ for all $m \geqslant m_{p}+1$ and all even characters ψ modulo $q p^{m}$ with order p^{m}. Then we have $\left|A_{m_{p}, \infty}^{\Gamma}\right|=\left|A_{m, \infty}^{\Gamma}\right|$ for all $m \geqslant m_{p}$.

Proof. Let m be an integer with $m \geqslant m_{p}+1$. Theorem 5.24 in [15] says that

$$
\left|\frac{\left|A_{m, 0}\right| R_{\ell}\left(\mathbb{B}_{p, m}\right)}{\ell^{p^{m}-1}}\right|_{\ell}^{-1}=\left|\prod_{\psi} L_{\ell}(1, \psi)\right|_{\ell}^{-1}
$$

where ψ runs over all non-trivial even characters modulo $q p^{m}$. Since a character modulo $q p^{m}$ with order p^{k} is induced from a character modulo $q p^{k+1}$ with order p^{k},
we have

$$
\frac{\left|G\left(M_{m}^{(\ell)} / \mathbb{B}_{p, m} \mathbb{B}_{\ell, \infty}\right)\right|}{\left|G\left(M_{m_{p}}^{(\ell)} / \mathbb{B}_{p, m_{p}} \mathbb{B}_{\ell, \infty}\right)\right|}=\left|\prod_{\psi} L_{\ell}(1, \psi)\right|_{\ell}^{-1}=\left|\prod_{\psi} B_{1, \omega^{-1} \psi}\right|_{\ell}^{-1}=1
$$

by Lemma 2.1 and (1), where ψ runs over all even characters modulo $q p^{m}$ with order greater than $p^{m_{p}}$. Let \mathfrak{L} be a prime ideal of $\mathbb{B}_{p, m_{p}}$ lying above ℓ and T the inertia group of \mathfrak{L} in $M_{m}^{(\ell)}$ over $\mathbb{B}_{p, m_{p}}$. Let ϕ be the canonical restriction mapping of $G\left(M_{m}^{(\ell)} / \mathbb{B}_{p, m}\right)$ onto $G\left(M_{m_{p}}^{(\ell)} / \mathbb{B}_{p, m_{p}}\right)$. Since $\phi(T)$ is the inertia group of \mathfrak{L} in $M_{m_{p}}^{(\ell)}$ over $\mathbb{B}_{p, m_{p}}$ by [15, p. 395], we have $\left|A_{m_{p}, \infty}^{\Gamma}\right|=\left|A_{m, \infty}^{\Gamma}\right|$.

It is proved that a constant m_{p} in Proposition 2.3 actually exists for a general prime number p (cf. the proof of Theorem 16.12 in [15]). When p is 2 or 3, we are able to give m_{p} explicitly in the following form, which is a key to proof of theorems. As usual, we denote by $[x]$ the largest integer not exceeding a real number x.

Proposition 2.4. Let 2^{c} be the exact power of 2 dividing $\ell-1$ or $\ell^{2}-1$ according as $\ell \equiv 1(\bmod 4)$ or not and put

$$
m_{2}=2 c+\left[\frac{1}{2} \log _{2}(\ell-1)\right]-2 .
$$

Then we have $\left|B_{1, \omega^{-1} \psi}\right|_{\ell}=1$ for all $m \geqslant m_{2}+1$ and for all even characters ψ modulo 2^{m+2} with order 2^{m}.

Proposition 2.5. Let 3^{c} be the exact power of 3 dividing $\ell^{2}-1$ and put

$$
m_{3}=2 c+\left[\frac{1}{2} \log _{3}(\ell-1)+\frac{1}{2}\right]-1 .
$$

Then we have $\left|B_{1, \omega^{-1} \psi}\right|_{\ell}=1$ for all $m \geqslant m_{3}+1$ and for all even characters ψ modulo 3^{m+1} with order 3^{m}.

We reach Proposition 2.4 by combining [6, Lemma 4.4] and the proof of [6, Proposition 4.7]. The same situation as Proposition 2.5 is treated in [5, p. 1664]. But we follow the argument in [6], which takes a slight different form in the case $p=3$, and give a proof of Proposition 2.5 for completeness and for convenience to readers.

If $2 c+\left[\log _{3}(\ell-1)\right] \leqslant m$, then [11, Lemma 1] and the proof of [11, Lemma 2] shows that $\left|B_{1, \omega^{-1} \psi}\right|_{\ell}=1$. So we assume $m_{3}+1 \leqslant m \leqslant 2 c+\left[\log _{3}(\ell-1)\right]-1$ and define a rational function $f_{1}(T)$ in the rational function field $\mathbb{Q}_{\ell}(T)$ by

$$
f_{1}(T)=\left(\sum_{\substack{b \equiv 1 \\ 0<b<3^{c} \ell}} \omega^{-1}(b) T^{b}\right)\left(T^{3^{c} \ell}-1\right)^{-1}
$$

By specializing the argument in [15, p. 387] to the case $p=3$, we are led to the following fact.

Lemma 2.6. Suppose that $m \geqslant 2 c-1$. If $f_{1}(\zeta) \not \equiv 0(\bmod \ell)$ for any primitive 3^{m+1}-th root of unity ζ in $\overline{\mathbb{Q}}_{\ell}$, then $B_{1, \omega^{-1} \psi} \not \equiv 0(\bmod \ell)$ for any even character ψ modulo 3^{m+1} with order 3^{m}.

We put $g(T)=\sum_{b=0}^{\ell-1} \omega^{-1}\left(1+3^{c} b\right) T^{3^{c} b}$ and $h(T)=\sum_{b=0}^{\ell-1} \omega^{-1}\left(1+3^{c} b\right) T^{b}$. Then we have

$$
\begin{equation*}
T^{-1}\left(T^{3^{c} \ell}-1\right) f_{1}(T)=g(T)=h\left(T^{3^{c}}\right) . \tag{2}
\end{equation*}
$$

Let ζ be a primitive 3^{m+1}-th root of unity in $\overline{\mathbb{Q}}_{\ell}$ and put $u=m-2 c+1$, $\theta=\zeta^{3^{u+c}}, e=\left[(\ell-1) / 3^{u}\right]$ and

$$
a_{i, j}= \begin{cases}\omega^{-1}\left(1+3^{c}\left(i+3^{u} j\right)\right) & \text { if } i+3^{u} j<\ell \\ 0 & \text { if } i+3^{u} j \geqslant \ell\end{cases}
$$

Then $T^{3^{u}}-\theta \bmod \ell$ is irreducible over $\mathbb{Z}_{\ell}[\theta] / \ell \mathbb{Z}_{\ell}[\theta]$. Since $m \leqslant 2 c+\left[\log _{3}(\ell-1)\right]-1$, we have $u \leqslant\left[\log _{3}(\ell-1)\right]$ and $e \geqslant 1$. We also put $s_{i}(\theta)=\sum_{j=0}^{e} a_{i, j} \theta^{j}$ and $r(T)=\sum_{i=0}^{3^{u}-1} s_{i}(\theta) T^{i}$. Then there exists a polynomial $q(T)$ in $\mathbb{Z}_{\ell}[\theta][T]$ such that

$$
\begin{equation*}
h(T)=\left(T^{3^{u}}-\theta\right) q(T)+r(T) . \tag{3}
\end{equation*}
$$

We prepare one more auxiliary lemma.
Lemma 2.7. Let

$$
R=\left(\begin{array}{ccc}
\bar{a}_{0,0} & \cdots & \bar{a}_{0, e} \\
\bar{a}_{1,0} & \cdots & \bar{a}_{1, e} \\
\vdots & \ddots & \vdots \\
\bar{a}_{3^{u}-1,0} & \cdots & \bar{a}_{3^{u}-1, e}
\end{array}\right)
$$

be a matrix of size $3^{u} \times(e+1)$ with $\bar{a}_{i, j}=a_{i, j}+\ell \mathbb{Z}_{\ell}[\theta]$ in $\mathbb{Z}_{\ell}[\theta] / \ell \mathbb{Z}_{\ell}[\theta]$. If $3^{u}>e$, then the rank of R is greater than or equal to e.

Proof. Note that $a_{i, j} \equiv 1 /\left(1+3^{c} i+3^{c+u} j\right) \bmod \ell$ if $a_{i, j} \neq 0$. Remove the last column of R that possibly contains zero entries. Further, remove one row that contains a zero entry and construct the matrix R^{\prime} of size $\left(3^{u}-1\right) \times e$ or $3^{u} \times e$. Then the rank of R^{\prime} is equal to e by [6, Lemma 4.5].

Proof of Proposition 2.5. Let $m_{3}+1 \leqslant m \leqslant 2 c+\left[\log _{3}(\ell-1)\right]-1$ and ζ be a primitive 3^{m+1}-th root of unity in $\overline{\mathbb{Q}}_{\ell}$. We assume $f_{1}(\zeta) \equiv 0(\bmod \ell)$. Then we have $h\left(\zeta^{3^{c}}\right) \equiv 0(\bmod \ell)$ by (2). Hence we have $r\left(\zeta^{3^{c}}\right) \equiv 0(\bmod \ell)$ by (3). Since $T^{3^{u}}-\theta \bmod \ell$ is irreducible over $\mathbb{Z}_{\ell}[\theta] / \ell \mathbb{Z}_{\ell}[\theta]$, we have

$$
\begin{equation*}
s_{i}(\theta) \equiv 0 \quad(\bmod \ell) \quad\left(0 \leqslant i \leqslant 3^{u}-1\right) . \tag{4}
\end{equation*}
$$

From the condition $m_{3}+1 \leqslant m$, it follows that $3^{2 u-1}>\ell-1$, which implies $3^{u-1}>(\ell-1) / 3^{u} \geqslant e$. Let $\bar{a}_{i, j}$ be the elements in Lemma 2.7 and put $f=$ $\ell-1-3^{u}$.

First suppose $f \geqslant 3^{u-1}$, which implies $f>e$. We put

$$
R_{1}=\left(\begin{array}{ccc}
\bar{a}_{0,0} & \cdots & \bar{a}_{0, e} \\
\bar{a}_{1,0} & \cdots & \bar{a}_{1, e} \\
\vdots & \ddots & \vdots \\
\bar{a}_{e+1,0} & \cdots & \bar{a}_{e+1, e}
\end{array}\right) .
$$

By [6, Lemma 4.5], the rank of R_{1} is equal to $e+1$. Hence we have $\theta \equiv 0$ $(\bmod \ell)$ by (4), which is a contradiction. Next suppose $f<3^{u-1}$, which implies $3^{u}-f>e+1$. We put

$$
R_{2}=\left(\begin{array}{ccc}
\bar{a}_{f, 0} & \cdots & \bar{a}_{f, e} \\
\bar{a}_{f+1,0} & \cdots & \bar{a}_{f+1, e} \\
\vdots & \ddots & \vdots \\
\bar{a}_{f+e+1,0} & \cdots & \bar{a}_{f+e+1, e}
\end{array}\right) .
$$

From the definition of $a_{i, j}$, we have $\bar{a}_{f+1, e}=\cdots=\bar{a}_{f+e+1, e}=0$. By Lemma 2.7 and [6, Lemma 4.5], the rank of R_{2} is equal to $e+1$ if $\bar{a}_{f, e} \neq 0$ or e if $\bar{a}_{f, e}=0$. In both cases, we have $\theta \equiv 0(\bmod \ell)$ by (4), which is a contradiction. Hence $f_{1}(\zeta) \not \equiv 0(\bmod \ell)$ and Lemma 2.6 yield the conclusion.

3. Proof of Theorems

We combine Propositions 2.2, 2.3, 2.4 and 2.5 to establish the following theorem, which is a criterion for Theorems 1.1 and 1.2 .

Theorem 3.1. Let p be 2 or 3 , ℓ a prime number with $p \neq \ell$ and m_{p} the integer defined in Propositions 2.4 or 2.5. If $\lambda_{\ell}\left(\mathbb{B}_{p, m_{p}}\right)=0$, then $\lambda_{\ell}\left(\mathbb{B}_{p, m}\right)=0$ for all $m \geqslant 0$.

We show with the aid of computer that $\lambda_{\ell}\left(\mathbb{B}_{2, m_{2}}\right)=0$ and $\lambda_{\ell}\left(\mathbb{B}_{3, m_{3}}\right)=0$ for all $\ell<10^{4}$. Theorems 1.1 and 1.2 follow from these computational results. We explain briefly computational procedures to show $\lambda_{\ell}\left(\mathbb{B}_{p, m_{p}}\right)=0$

We first note that $\lambda_{2}\left(\mathbb{B}_{2, m}\right)=\lambda_{3}\left(\mathbb{B}_{3, m}\right)=0$ for all $m \geqslant 0$, which is a direct consequence of the fact $\lambda_{\ell}(\mathbb{Q})=0$ for all prime number ℓ. Next, we exclude ℓ which satisfies $\ell^{2} \not \equiv 1(\bmod 16)$ if $p=2$ and $\ell^{2} \not \equiv 1(\bmod 9)$ if $p=3$ by Remark 1.1. For the remaining ℓ, we apply the technique in Ichimura-Sumida [9].

Let $\Delta_{m}=G\left(\mathbb{B}_{p, m} / \mathbb{Q}\right)$ and ψ be a character of Δ_{m} with values in $\overline{\mathbb{Q}}_{\ell}$, namely a character modulo $q p^{m}$. Then an idempotent $e_{\psi} \in \mathbb{Z}_{\ell}\left[\Delta_{m}\right]$ is defined by

$$
e_{\psi}=\frac{1}{\left|\Delta_{m}\right|} \sum_{\sigma \in \Delta_{m}} \operatorname{Tr}(\psi(\sigma)) \sigma^{-1}
$$

and $\lambda_{\ell}\left(\mathbb{B}_{p, m}\right)$ is decomposed as

$$
\lambda_{\ell}\left(\mathbb{B}_{p, m}\right)=\sum_{\psi} \lambda_{\ell, \psi}\left(\mathbb{B}_{p, m}\right),
$$

where Tr is the trace map from $\mathbb{Q}_{\ell}\left(\psi\left(\Delta_{m}\right)\right)$ to \mathbb{Q}_{ℓ} and ψ runs over all representatives of \mathbb{Q}_{ℓ}-conjugacy classes of characters of Δ_{m}. Since Δ_{m} is canonically isomorphic to $G\left(\mathbb{B}_{p, m} \mathbb{B}_{\ell, \infty} / \mathbb{B}_{\ell, \infty}\right), \Delta_{m}$ acts on $A_{m, n}=A_{\ell}\left(\mathbb{B}_{p, m} \mathbb{B}_{\ell, n}\right)$ canonically and $\lambda_{\ell, \psi}\left(\mathbb{B}_{p, m}\right)$ is defined as an integer satisfying

$$
\left|e_{\psi}\left(A_{m, n}\right)\right|=\lambda_{\ell, \psi}\left(\mathbb{B}_{p, m}\right) n+\nu \quad(n \gg 0)
$$

with a constant integer ν. Now we summarize a condition for $\lambda_{\ell}\left(\mathbb{B}_{p, m_{p}}\right)=0$ as the following lemma.

Lemma 3.2. We have $\lambda_{\ell}\left(\mathbb{B}_{p, m_{p}}\right)=0$ if and only if $\lambda_{\ell, \psi}\left(\mathbb{B}_{p, m}\right)=0$ for all integer m with $1 \leqslant m \leqslant m_{p}$ and for all representatives ψ of \mathbb{Q}_{ℓ}-conjugacy classes of characters of Δ_{m} with order p^{m}.

We are in the situation (A) or (C) in [9] and note that $\left|B_{1, \omega^{-1} \psi}\right|_{\ell}=1$ implies $\lambda_{\ell, \psi}\left(\mathbb{B}_{p, m}\right)=0$ (cf. (1), (2) and (3) in [9]). It is easy to calculate $B_{1, \omega^{-1} \psi}$. Our calculation shows that there are seven pairs (ℓ, ψ) in the case $p=2$ and four pairs (ℓ, ψ) in the case $p=3$ which does not satisfy $\left|B_{1, \omega^{-1} \psi}\right|_{\ell}=1$ in the range $\ell<10^{4}$. For all these $(\ell, \psi), p^{m}$ divides $\ell-1$, namely the condition (C1) in [9] holds. We applied Ichimura-Sumida criterion for these eleven pairs and verified that the condition $\left(H_{P_{i}, n}\right)=\left(H_{i, n}\right)$ in [9] holds for $n=2$, namely $\lambda_{\ell, \psi}\left(\mathbb{B}_{p, m}\right)=0$. We show numerical data for these (ℓ, ψ). Readers should replace χ in [9] with ψ in our notation.

In this section, we write $\zeta_{k}=\exp (2 \pi \sqrt{-1} / k)$. Let σ be the generator of Δ_{m} induced by $\zeta_{2^{n+2}} \mapsto \zeta_{2^{n+2}}^{5}$ or $\zeta_{3^{n+1}} \mapsto \zeta_{3^{n+1}}^{4}$ according as $p=2$ or $p=3$. Let g_{ℓ} be the minimal primitive root of ℓ and η_{m} the primitive p^{m}-th root of unity in \mathbb{Q}_{ℓ} satisfying

$$
\eta_{m} \equiv g_{\ell}^{\frac{\ell-1}{p m}} \quad(\bmod \ell)
$$

We denote by ψ_{m} the character of Δ_{m} satisfying $\psi_{m}(\sigma)=\eta_{m}$. We show numerical data about $\psi=\psi_{m}^{k}$ with $\left|B_{1, \omega^{-1} \psi}\right|_{\ell} \neq 1$ in the following tables in which $P_{\psi}(T)$ denotes the Iwasawa polynomial associated with ψ and ℓ^{*} means the prime number ℓ in [9, Corollary 2]. The program written by TC running on two computers with 64 bit Xeon processor have done the calculations in a month.

Table 1: $p=2$

ℓ	ψ	Case	$P_{\psi}(T) \bmod \ell^{2}$	ℓ^{*}
31	ψ_{1}	(C)	$T+186$	1429969
193	ψ_{6}^{25}	$(\mathrm{~A})$	$T+33389$	5521195777
257	ψ_{7}^{97}	$(\mathrm{~A})$	$T+12593$	52145949697
521	ψ_{3}	$(\mathrm{~A})$	$T+204753$	18101857409
641	ψ_{7}^{17}	$(\mathrm{~A})$	$T+223068$	1213630714369
3617	ψ_{5}^{23}	$(\mathrm{~A})$	$T+11965036$	60569710224641
4513	ψ_{5}^{17}	$(\mathrm{~A})$	$T+15930890$	235307606264321

Table 2: $p=2$

ℓ	ψ	Case	$P_{\psi}(T) \bmod \ell^{2}$	ℓ^{*}
73	ψ_{1}	(C)	$T+2263$	56018449
109	ψ_{3}^{14}	$(\mathrm{~A})$	$T+2289$	1888152283
487	ψ_{4}^{61}	(C)	$T+39934$	280668166291
1621	ψ_{4}^{55}	$(\mathrm{~A})$	$T+2207802$	16560570765169

Acknowledgment. The authors express their gratitude for the referee who read the manuscript carefully and indicated some confusions about notations and phrases.

References

[1] L. Carlitz, Some arithmetic properties of generalized Bernoulli numbers, Bull. Amer. Math. Soc. 65 (1959), 68-69.
[2] J. Coates, p-adic L-functions and Iwasawa theory, Algebraic Number Fields (Durham Symposium, 1975), ed. by A. Fröhlich, 269-353, Academic Press, London, 1977.
[3] B. Ferrero and L. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. Math. 109 (1979), 377-395.
[4] E. Friedman, Ideal Class Groups in Basic $\mathbb{Z}_{p_{1}} \times \ldots \times \mathbb{Z}_{p_{s}}$-Extensions of Abelian Number Fields Invent. Math. 65 (1982), 425-440.
[5] E. Friedman and J. W. Sands, On the ℓ-adic Iwasawa λ-invariant in a pextension, Math. Comp. 64 (1995), 1659-1674.
[6] T. Fukuda and K. Komatsu, Weber's class number problem in the cyclotomic \mathbb{Z}_{2}-extension of \mathbb{Q}, Experiment. Math. 18-2 (2009), 213-222.
[7] R. Greenberg, On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98(1976), 263-284.
[8] K. Horie, Certain primary components of the ideal class group of the $\mathbb{Z}_{p^{-}}$ extension over the rationals, Tohoku Math. J. 59 (2007), 259-291.
[9] H. Ichimura and H. Sumida, On the Iwasawa Invariants of certain real abelian fields II, Inter. J. Math. 7 (1996), 721-744.
[10] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[11] T. Morisawa, A Class Number Problem in the Cyclotomic \mathbb{Z}_{3}-extension of \mathbb{Q}, Tokyo J. Math. 32 (2009), 549-558.
[12] J. Nakagawa and K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), 20-24.
[13] K. Ono, Indivisibility of class numbers of real quadratic fields, Compositio Math. 119 (1999), 1-11.
[14] M. Ozaki and H. Taya, On the Iwasawa λ_{2}-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), no. 4, 437- 444.
[15] L. Washington, Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, Berlin/New York, 1997

[^1]
[^0]: The third author is supported by JSPS Research Fellowships for Young Scientists.
 2010 Mathematics Subject Classification: primary: 11R23; secondary: 11Y40

[^1]: Addresses: Takashi Fukuda: Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan;
 Keiichi Komatsu: Department of Mathematical Science, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; Takayuki Morisawa: Major in Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
 E-mail: fukuda.takashi@nihon-u.ac.jp, kkomatsu@waseda.jp, da-vinci-0415@moegi.waseda.jp
 Received: 7 June 2011

