ON λ -INVARIANTS OF \mathbb{Z}_{ℓ} -EXTENSIONS OVER REAL ABELIAN NUMBER FIELDS OF PRIME POWER CONDUCTORS

Takashi Fukuda, Keiichi Komatsu, Takayuki Morisawa

Abstract: For each prime number ℓ less than 10^4 , we construct an infinite family of abelian number fields for which Iwasawa λ_{ℓ} -invariants vanish.

 ${\bf Keywords:} \ {\bf Iwasawa \ invariant, \ computation.}$

1. Introduction

For a prime number ℓ and an algebraic number field k, we denote by $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ the Iwasawa μ -invariant and λ -invariant of the cyclotomic \mathbb{Z}_{ℓ} -extension of k respectively. Greenberg conjecture, which is still open, predicts that both $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish for all prime numbers ℓ and all totally real number fields k. In spite of a large amount of papers about Greenberg conjecture, we lack a systematic knowledge about it. For example, there is no known totally real number field k different with the rational number field \mathbb{Q} such that both $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish for all prime number field \mathbb{Q} such that both $\mu_{\ell}(k)$ and $\lambda_{\ell}(k)$ vanish for all totally real number fields k. So we are led to consider the following problems:

Problem 1.1. For a fixed prime number ℓ , find an infinite family of totally real number fields k such that $\mu_{\ell}(k) = \lambda_{\ell}(k) = 0$.

Problem 1.2. For a fixed totally real number field k, find an infinite family of prime numbers ℓ such that $\mu_{\ell}(k) = \lambda_{\ell}(k) = 0$.

First we explain trivial examples. Let $\ell = 2$. It is well known by genus theory that there exist infinitely many real quadratic fields k with odd class number in which the prime 2 is not decomposed. Then a famous theorem of Iwasawa in [10] immediately shows $\mu_2(k) = \lambda_2(k) = 0$ for such k. Conversely, let k be any real

The third author is supported by JSPS Research Fellowships for Young Scientists.

²⁰¹⁰ Mathematics Subject Classification: primary: 11R23; secondary: 11Y40

quadratic field. Then there exist infinitely many prime numbers ℓ which does not divide the class number of k and is not decomposed in k. Iwasawa's theorem again concludes that $\mu_{\ell}(k) = \lambda_{\ell}(k) = 0$ for such ℓ .

We are interested in non-trivial examples. Ozaki-Taya [14] constructs explicitly an infinite family of real quadratic fields k with $\mu_2(k) = \lambda_2(k) = 0$ in which 2 splits. They also construct an infinite family of real quadratic fields k with $\mu_2(k) = \lambda_2(k) = 0$ which have even class numbers. Horie-Nakagawa [12] proved that there are infinitely many real quadratic fields k with class number prime to 3 in which 3 is not decomposed. It follows $\mu_3(k) = \lambda_3(k) = 0$ for such k. Ono [13] extended the result of Horie-Nakagawa to prime numbers less than 5000. Namely, for a prime number ℓ less than 5000, he proved with the aid of computer that there are infinitely many real quadratic fields k with class number prime to ℓ in which ℓ is not decomposed. Of course, $\mu_\ell(k) = \lambda_\ell(k) = 0$ for such k.

In this paper, we construct another type of infinite family of number fields k with $\mu_{\ell}(k) = \lambda_{\ell}(k) = 0$, which contributes to Problem 1.1. Our targets in this paper are abelian number fields k and it is known that $\mu_{\ell}(k) = 0$ by Ferrero-Washington [3]. So we omit the statement $\mu_{\ell}(k) = 0$ in the following. In a similar, but more general situation, Friedman-Sands [5] investigates the stability of λ_{ℓ}^{-} -invariants, while our attention concentrates in the vanishing of λ_{ℓ} -invariants. For a prime number p and an integer m, we denote by $\mathbb{B}_{p,m}$ the m-th layer of the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} . The following are our theorems.

Theorem 1.1. Let ℓ be a prime number less than 10^4 . Then the Iwasawa invariant $\lambda_{\ell}(\mathbb{B}_{2,m})$ vanishes for all $m \ge 0$.

Theorem 1.2. Let ℓ be a prime number less than 10^4 . Then the Iwasawa invariant $\lambda_{\ell}(\mathbb{B}_{3,m})$ vanishes for all $m \ge 0$.

Remark 1.1. If ℓ satisfies $\ell^2 \not\equiv 1 \pmod{16}$, then there is only one prime ideal of $\mathbb{B}_{2,m}$ lying above ℓ and the class number of $\mathbb{B}_{2,m}$ is prime to ℓ by [8, Proposition 3]. Hence Iwasawa's theorem shows $\lambda_{\ell}(\mathbb{B}_{2,m}) = 0$ for all $m \geq 0$.

If ℓ satisfies $\ell^2 \not\equiv 1 \pmod{9}$, then there is only one prime ideal of $\mathbb{B}_{3,m}$ lying above ℓ and the class number of $\mathbb{B}_{3,m}$ is prime to ℓ by [8, Proposition 2]. Hence Iwasawa's theorem again shows $\lambda_{\ell}(\mathbb{B}_{3,m}) = 0$ for all $m \geq 0$.

Remark 1.2. Friedman [4, Theorem. (B)] describes explicitly the behavior of class numbers of intermediate fields of a multiple \mathbb{Z}_{ℓ} -extension using λ_i and ν_i . Our theorems asserts that $\lambda_i = 0$ in some special situations.

2. Preliminaries to Proof

We start with explaining notations. For a finite group G, we denote by |G| the order of G. Let k be an algebraic number field. For a finite algebraic extension K of k, we denote by [K:k] the extension degree of K over k. If K is a Galois extension of k, we denote by G(K/k) the Galois group of K over k. For a prime number ℓ , we denote by $A_{\ell}(k)$ the ℓ -Sylow subgroup of the ideal class group of k.

We denote by $\overline{\mathbb{Q}}_{\ell}$ the algebraic closure of the ℓ -adic number field \mathbb{Q}_{ℓ} and suppose the multiplicative valuation $| |_{\ell}$ of $\overline{\mathbb{Q}}_{\ell}$ is normalized so that $|\ell|_{\ell} = \ell^{-1}$.

For one more prime number p, we denote by $\mathbb{B}_{p,\infty}$ the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} , by $\mathbb{B}_{p,m}$ the *m*-th layer of $\mathbb{B}_{p,\infty}/\mathbb{Q}$ and by $\lambda_{\ell}(\mathbb{B}_{p,m})$ the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_{ℓ} -extension $\mathbb{B}_{p,m}\mathbb{B}_{\ell,\infty}/\mathbb{B}_{p,m}$ as mentioned above.

Let p and ℓ be distinct prime numbers. We put $A_{m,n} = A_{\ell}(\mathbb{B}_{p,m}\mathbb{B}_{\ell,n})$ and $\Gamma = G(\mathbb{B}_{p,\infty}\mathbb{B}_{\ell,\infty}/\mathbb{B}_{p,\infty})$. An element of Γ acts on $A_{m,n}$ canonically. We put

$$A_{m,n}^{\Gamma} = \{ a \in A_{m,n} \mid a^{\sigma} = a \text{ for any element } \sigma \in \Gamma \}.$$

Then we have

$$|A_{m,n}| \leqslant |A_{m',n'}|$$

and

$$|A_{m,n}^{\Gamma}| \leqslant |A_{m',n'}^{\Gamma}|$$

for non-negative integers m, n, m', n' with $m \leq m'$ and $n \leq n'$ by class field theory and genus theory. Since Leopoldt's conjecture holds for $\mathbb{B}_{p,m}$, there exists integer n_{ℓ} such that $|A_{m,n_{\ell}}^{\Gamma}| = |A_{m,n}^{\Gamma}|$ for any integer n with $n_{\ell} \leq n$ by [7, Proposition 1]. We put $|A_{m,\infty}^{\Gamma}| = |A_{m,n_{\ell}}^{\Gamma}|$.

Let $F_{m,n}$ be the maximal abelian ℓ -extension of $\mathbb{B}_{p,m}$ which is unramified over $\mathbb{B}_{p,m}\mathbb{B}_{\ell,n}$. Then $|A_{m,n}^{\Gamma}| = (F_{m,n} : \mathbb{B}_{p,m}\mathbb{B}_{\ell,n})$ by genus theory. Let $M_m^{(\ell)}$ be the maximal abelian ℓ -extension of $\mathbb{B}_{p,m}$ unramified outside ℓ . The degree $(M_m^{(\ell)} : \mathbb{B}_{p,m}\mathbb{B}_{\ell,\infty})$ is finite again by the validity of Leopoldt's conjecture for $\mathbb{B}_{p,m}$. More precisely, we have the following lemma which is a direct consequence of applying [2, Lemma 8] to the extension $M_m^{(\ell)}/\mathbb{B}_{p,m}$.

Lemma 2.1. Let ℓ be an odd prime number with $\ell \neq p$ and $M_m^{(\ell)}$ the maximal abelian ℓ -extension of $\mathbb{B}_{p,m}$ unramified outside ℓ and $R_{\ell}(\mathbb{B}_{p,m})$ the ℓ -adic regulator of $\mathbb{B}_{p,m}$. Then we have

$$|G(M_m^{(\ell)}/\mathbb{B}_{p,m}\mathbb{B}_{\ell,\infty})| = \left|\frac{|A_{m,0}|R_\ell(\mathbb{B}_{p,m})|}{\ell^{p^m-1}}\right|_\ell^{-1}$$

Since the degree $[M_m^{(\ell)} : \mathbb{B}_{p,m} \mathbb{B}_{\ell,\infty}]$ is finite, there exists non-negative integer n_0 and an element α in $M_m^{(\ell)}$ such that $M_m^{(\ell)} = \mathbb{B}_{p,m} \mathbb{B}_{\ell,\infty}(\alpha)$ and that

$$[\mathbb{B}_{p,m}\mathbb{B}_{\ell,n_0}(\alpha):\mathbb{B}_{p,m}\mathbb{B}_{\ell,n_0}]=[M_m^{(\ell)}:\mathbb{B}_{p,m}\mathbb{B}_{\ell,\infty}].$$

Let S be the inertia group of a prime ideal \mathfrak{L} of $\mathbb{B}_{p,m}$ lying above ℓ with respect to the extension $M_m^{(\ell)}/\mathbb{B}_{p,m}$. Let ϕ be the canonical restriction mapping of $G(M_m^{(\ell)}/\mathbb{B}_{p,m})$ to $G(\mathbb{B}_{p,m}\mathbb{B}_{\ell,n_0}(\alpha)/\mathbb{B}_{p,m})$. Since $\phi(S)$ is the inertia group of \mathfrak{L} in $\mathbb{B}_{p,m}\mathbb{B}_{\ell,n_0}(\alpha)$ over $\mathbb{B}_{p,m}$ by [15, p. 395], we have $|A_{m,\infty}^{\Gamma}| = |A_{m,n_0}^{\Gamma}|$. The following proposition describes a sufficient condition for Theorems 1.1 and 1.2. **Proposition 2.2.** Assume that there exists a constant m_p such that $|A_{m_p,\infty}^{\Gamma}| = |A_{m,\infty}^{\Gamma}|$ for all $m \ge m_p$. If $\lambda_{\ell}(\mathbb{B}_{p,m_p}) = 0$, then $\lambda_{\ell}(\mathbb{B}_{p,m}) = 0$ for all $m \ge 0$.

Proof. Since $\lambda_{\ell}(\mathbb{B}_{p,m_p}) = 0$ means the boundness of $\{|A_{m_p,n}|\}_{n=1}^{\infty}$, there exists non-negative integer n_{ℓ} such that $|A_{m_p,n_{\ell}}| = |A_{m_p,n}|$ for any integer n with $n_{\ell} \leq n$ and that $|A_{m_p,n_{\ell}}^{\Gamma}| = |A_{m_p,\infty}^{\Gamma}|$. Let m, n be integers with $m_p \leq m$ and $n_{\ell} \leq n$ and assume that $|A_{m_p,n_{\ell}}| < |A_{m,n}|$. Since $A_{m_p,n_{\ell}}$ is isomorphic to $A_{m_p,n}$ as Γ -module, $A_{m,n}$ is isomorphic to the direct sum $A_{m_p,n_{\ell}} \oplus (A_{m,n}/A_{m_p,n})$ as Γ module by [15, Lemma 16.15]. Since $|A_{m_p,n_{\ell}}| = |A_{m_p,n}| < |A_{m,n}|$, Γ -module $A_{m,n}/A_{m_p,n}$ is non-trivial, which implies $(A_{m,n}/A_{m_p,n})^{\Gamma}$ is also non-trivial. Since $A_{m,n}^{\Gamma}$ is isomorphic to $A_{m_p,n_{\ell}}^{\Gamma} \oplus (A_{m,n}/A_{m_p,n})^{\Gamma}$, we have $|A_{m_p,n_{\ell}}^{\Gamma}| < |A_{m,n}^{\Gamma}|$. This contradicts $|A_{m_p,\infty}^{\Gamma}| = |A_{m,\infty}^{\Gamma}|$. Hence $|A_{m_p,n_{\ell}}| = |A_{m,n}|$ for all m, n with $m_p \leq m$ and $n_{\ell} \leq n$, from which we conclude that $\lambda_{\ell}(\mathbb{B}_{p,m}) = 0$ for all $m \geq m_p$. The vanishing of $\lambda_{\ell}(\mathbb{B}_{p,m})$ for $0 \leq m < m_p$ is a well-known property of \mathbb{Z}_{ℓ} extensions.

Now we consider primitive Dirichlet characters whose values lie in $\overline{\mathbb{Q}}_{\ell}$. Let ω be the Teichmüller character modulo ℓ and ψ an even character modulo qp^m whose order is p^m , where q is 4 or p according as p = 2 or not. Then a generalized Bernoulli number $B_{1,\omega^{-1}\psi} \in \overline{\mathbb{Q}}_{\ell}$ is defined by

$$B_{1,\omega^{-1}\psi} = \frac{1}{qp^m\ell} \sum_{b=1}^{qp^m\ell} b\,\omega^{-1}\psi(b).$$

It follows that $|B_{1,\omega^{-1}\psi}|_{\ell} \leq 1$ because $\ell \neq p$. (cf. [1]). Let $L_{\ell}(s,\psi)$ be an ℓ -adic L-function associated to ψ . Then we see that

$$L_{\ell}(1,\psi) \equiv L_{\ell}(0,\psi) = -B_{1,\omega^{-1}\psi} \pmod{\ell} \tag{1}$$

by Theorem 5.11 and Corollary 5.13 in [15].

Then we are able to connect the assumption of Proposition 2.2 to a property of Bernoulli numbers.

Proposition 2.3. Assume that there is a constant m_p such that $|B_{1,\omega^{-1}\psi}|_{\ell}^{-1} = 1$ for all $m \ge m_p + 1$ and all even characters ψ modulo qp^m with order p^m . Then we have $|A_{m_p,\infty}^{\Gamma}| = |A_{m,\infty}^{\Gamma}|$ for all $m \ge m_p$.

Proof. Let m be an integer with $m \ge m_p + 1$. Theorem 5.24 in [15] says that

$$\left\| \frac{|A_{m,0}|R_{\ell}(\mathbb{B}_{p,m})|}{\ell^{p^m-1}} \right\|_{\ell}^{-1} = \left\| \prod_{\psi} L_{\ell}(1,\psi) \right\|_{\ell}^{-1},$$

where ψ runs over all non-trivial even characters modulo qp^m . Since a character modulo qp^m with order p^k is induced from a character modulo qp^{k+1} with order p^k ,

On λ -invariants of \mathbb{Z}_{ℓ} -extensions over real abelian number fields of prime power conductors 99

we have

$$\frac{|G(M_m^{(\ell)}/\mathbb{B}_{p,m}\mathbb{B}_{\ell,\infty})|}{|G(M_{m_p}^{(\ell)}/\mathbb{B}_{p,m_p}\mathbb{B}_{\ell,\infty})|} = \left|\prod_{\psi} L_\ell(1,\psi)\right|_\ell^{-1} = \left|\prod_{\psi} B_{1,\omega^{-1}\psi}\right|_\ell^{-1} = 1$$

by Lemma 2.1 and (1), where ψ runs over all even characters modulo qp^m with order greater than p^{m_p} . Let \mathfrak{L} be a prime ideal of \mathbb{B}_{p,m_p} lying above ℓ and T the inertia group of \mathfrak{L} in $M_m^{(\ell)}$ over \mathbb{B}_{p,m_p} . Let ϕ be the canonical restriction mapping of $G(M_m^{(\ell)}/\mathbb{B}_{p,m})$ onto $G(M_{m_p}^{(\ell)}/\mathbb{B}_{p,m_p})$. Since $\phi(T)$ is the inertia group of \mathfrak{L} in $M_{m_p}^{(\ell)}$ over \mathbb{B}_{p,m_p} by [15, p. 395], we have $|A_{m_p,\infty}^{\Gamma}| = |A_{m,\infty}^{\Gamma}|$.

It is proved that a constant m_p in Proposition 2.3 actually exists for a general prime number p (cf. the proof of Theorem 16.12 in [15]). When p is 2 or 3, we are able to give m_p explicitly in the following form, which is a key to proof of theorems. As usual, we denote by [x] the largest integer not exceeding a real number x.

Proposition 2.4. Let 2^c be the exact power of 2 dividing $\ell - 1$ or $\ell^2 - 1$ according as $\ell \equiv 1 \pmod{4}$ or not and put

$$m_2 = 2c + \left[\frac{1}{2}\log_2(\ell - 1)\right] - 2$$

Then we have $|B_{1,\omega^{-1}\psi}|_{\ell} = 1$ for all $m \ge m_2 + 1$ and for all even characters ψ modulo 2^{m+2} with order 2^m .

Proposition 2.5. Let 3^c be the exact power of 3 dividing $\ell^2 - 1$ and put

$$m_3 = 2c + \left[\frac{1}{2}\log_3(\ell - 1) + \frac{1}{2}\right] - 1.$$

Then we have $|B_{1,\omega^{-1}\psi}|_{\ell} = 1$ for all $m \ge m_3 + 1$ and for all even characters ψ modulo 3^{m+1} with order 3^m .

We reach Proposition 2.4 by combining [6, Lemma 4.4] and the proof of [6, Proposition 4.7]. The same situation as Proposition 2.5 is treated in [5, p. 1664]. But we follow the argument in [6], which takes a slight different form in the case p = 3, and give a proof of Proposition 2.5 for completeness and for convenience to readers.

If $2c + [\log_3(\ell - 1)] \leq m$, then [11, Lemma 1] and the proof of [11, Lemma 2] shows that $|B_{1,\omega^{-1}\psi}|_{\ell} = 1$. So we assume $m_3 + 1 \leq m \leq 2c + [\log_3(\ell - 1)] - 1$ and define a rational function $f_1(T)$ in the rational function field $\mathbb{Q}_{\ell}(T)$ by

$$f_1(T) = \left(\sum_{\substack{b \equiv 1 \pmod{3^c} \\ 0 < b < 3^c \ell}} \omega^{-1}(b) T^b\right) (T^{3^c \ell} - 1)^{-1}.$$

By specializing the argument in [15, p. 387] to the case p = 3, we are led to the following fact.

100 Takashi Fukuda, Keiichi Komatsu, Takayuki Morisawa

Lemma 2.6. Suppose that $m \ge 2c - 1$. If $f_1(\zeta) \ne 0 \pmod{\ell}$ for any primitive 3^{m+1} -th root of unity ζ in $\overline{\mathbb{Q}}_{\ell}$, then $B_{1,\omega^{-1}\psi} \ne 0 \pmod{\ell}$ for any even character ψ modulo 3^{m+1} with order 3^m .

We put $g(T) = \sum_{b=0}^{\ell-1} \omega^{-1} (1+3^c b) T^{3^c b}$ and $h(T) = \sum_{b=0}^{\ell-1} \omega^{-1} (1+3^c b) T^b$. Then we have

$$T^{-1}(T^{3^c\ell} - 1)f_1(T) = g(T) = h(T^{3^c}).$$
(2)

Let ζ be a primitive 3^{m+1} -th root of unity in $\overline{\mathbb{Q}}_{\ell}$ and put u = m - 2c + 1, $\theta = \zeta^{3^{u+c}}$, $e = [(\ell - 1)/3^u]$ and

$$a_{i,j} = \begin{cases} \omega^{-1}(1 + 3^c(i + 3^u j)) & \text{if } i + 3^u j < \ell, \\ 0 & \text{if } i + 3^u j \ge \ell. \end{cases}$$

Then $T^{3^u} - \theta \mod \ell$ is irreducible over $\mathbb{Z}_{\ell}[\theta]/\ell\mathbb{Z}_{\ell}[\theta]$. Since $m \leq 2c + \lfloor \log_3(\ell-1) \rfloor - 1$, we have $u \leq \lfloor \log_3(\ell-1) \rfloor$ and $e \geq 1$. We also put $s_i(\theta) = \sum_{j=0}^{e} a_{i,j}\theta^j$ and $r(T) = \sum_{i=0}^{3^u-1} s_i(\theta)T^i$. Then there exists a polynomial q(T) in $\mathbb{Z}_{\ell}[\theta][T]$ such that

$$h(T) = (T^{3^{u}} - \theta)q(T) + r(T).$$
(3)

We prepare one more auxiliary lemma.

Lemma 2.7. Let

$$R = \begin{pmatrix} \overline{a}_{0,0} & \cdots & \overline{a}_{0,e} \\ \overline{a}_{1,0} & \cdots & \overline{a}_{1,e} \\ \vdots & \ddots & \vdots \\ \overline{a}_{3^u-1,0} & \cdots & \overline{a}_{3^u-1,e} \end{pmatrix}$$

be a matrix of size $3^u \times (e+1)$ with $\overline{a}_{i,j} = a_{i,j} + \ell \mathbb{Z}_{\ell}[\theta]$ in $\mathbb{Z}_{\ell}[\theta]/\ell \mathbb{Z}_{\ell}[\theta]$. If $3^u > e$, then the rank of R is greater than or equal to e.

Proof. Note that $a_{i,j} \equiv 1/(1 + 3^c i + 3^{c+u} j) \mod \ell$ if $a_{i,j} \neq 0$. Remove the last column of R that possibly contains zero entries. Further, remove one row that contains a zero entry and construct the matrix R' of size $(3^u - 1) \times e$ or $3^u \times e$. Then the rank of R' is equal to e by [6, Lemma 4.5].

Proof of Proposition 2.5. Let $m_3 + 1 \leq m \leq 2c + \lfloor \log_3(\ell - 1) \rfloor - 1$ and ζ be a primitive 3^{m+1} -th root of unity in $\overline{\mathbb{Q}}_{\ell}$. We assume $f_1(\zeta) \equiv 0 \pmod{\ell}$. Then we have $h(\zeta^{3^c}) \equiv 0 \pmod{\ell}$ by (2). Hence we have $r(\zeta^{3^c}) \equiv 0 \pmod{\ell}$ by (3). Since $T^{3^u} - \theta \mod{\ell}$ is irreducible over $\mathbb{Z}_{\ell}[\theta]/\ell\mathbb{Z}_{\ell}[\theta]$, we have

$$s_i(\theta) \equiv 0 \pmod{\ell} \qquad (0 \le i \le 3^u - 1).$$
 (4)

From the condition $m_3 + 1 \leq m$, it follows that $3^{2u-1} > \ell - 1$, which implies $3^{u-1} > (\ell - 1)/3^u \geq e$. Let $\overline{a}_{i,j}$ be the elements in Lemma 2.7 and put $f = \ell - 1 - 3^u e$.

First suppose $f \ge 3^{u-1}$, which implies f > e. We put

$$R_1 = \begin{pmatrix} \overline{a}_{0,0} & \cdots & \overline{a}_{0,e} \\ \overline{a}_{1,0} & \cdots & \overline{a}_{1,e} \\ \vdots & \ddots & \vdots \\ \overline{a}_{e+1,0} & \cdots & \overline{a}_{e+1,e} \end{pmatrix}$$

By [6, Lemma 4.5], the rank of R_1 is equal to e + 1. Hence we have $\theta \equiv 0 \pmod{\ell}$ by (4), which is a contradiction. Next suppose $f < 3^{u-1}$, which implies $3^u - f > e + 1$. We put

$$R_2 = \begin{pmatrix} \overline{a}_{f,0} & \cdots & \overline{a}_{f,e} \\ \overline{a}_{f+1,0} & \cdots & \overline{a}_{f+1,e} \\ \vdots & \ddots & \vdots \\ \overline{a}_{f+e+1,0} & \cdots & \overline{a}_{f+e+1,e} \end{pmatrix}.$$

From the definition of $a_{i,j}$, we have $\overline{a}_{f+1,e} = \cdots = \overline{a}_{f+e+1,e} = 0$. By Lemma 2.7 and [6, Lemma 4.5], the rank of R_2 is equal to e+1 if $\overline{a}_{f,e} \neq 0$ or e if $\overline{a}_{f,e} = 0$. In both cases, we have $\theta \equiv 0 \pmod{\ell}$ by (4), which is a contradiction. Hence $f_1(\zeta) \neq 0 \pmod{\ell}$ and Lemma 2.6 yield the conclusion.

3. Proof of Theorems

We combine Propositions 2.2, 2.3, 2.4 and 2.5 to establish the following theorem, which is a criterion for Theorems 1.1 and 1.2.

Theorem 3.1. Let p be 2 or 3, ℓ a prime number with $p \neq \ell$ and m_p the integer defined in Propositions 2.4 or 2.5. If $\lambda_{\ell}(\mathbb{B}_{p,m_p}) = 0$, then $\lambda_{\ell}(\mathbb{B}_{p,m}) = 0$ for all $m \ge 0$.

We show with the aid of computer that $\lambda_{\ell}(\mathbb{B}_{2,m_2}) = 0$ and $\lambda_{\ell}(\mathbb{B}_{3,m_3}) = 0$ for all $\ell < 10^4$. Theorems 1.1 and 1.2 follow from these computational results. We explain briefly computational procedures to show $\lambda_{\ell}(\mathbb{B}_{p,m_2}) = 0$

We first note that $\lambda_2(\mathbb{B}_{2,m}) = \lambda_3(\mathbb{B}_{3,m}) = 0$ for all $m \ge 0$, which is a direct consequence of the fact $\lambda_\ell(\mathbb{Q}) = 0$ for all prime number ℓ . Next, we exclude ℓ which satisfies $\ell^2 \not\equiv 1 \pmod{16}$ if p = 2 and $\ell^2 \not\equiv 1 \pmod{9}$ if p = 3 by Remark 1.1. For the remaining ℓ , we apply the technique in Ichimura-Sumida [9].

102 Takashi Fukuda, Keiichi Komatsu, Takayuki Morisawa

Let $\Delta_m = G(\mathbb{B}_{p,m}/\mathbb{Q})$ and ψ be a character of Δ_m with values in $\overline{\mathbb{Q}}_{\ell}$, namely a character modulo qp^m . Then an idempotent $e_{\psi} \in \mathbb{Z}_{\ell}[\Delta_m]$ is defined by

$$e_{\psi} = \frac{1}{|\Delta_m|} \sum_{\sigma \in \Delta_m} \operatorname{Tr}(\psi(\sigma)) \sigma^{-1}$$

and $\lambda_{\ell}(\mathbb{B}_{p,m})$ is decomposed as

$$\lambda_{\ell}(\mathbb{B}_{p,m}) = \sum_{\psi} \lambda_{\ell,\psi}(\mathbb{B}_{p,m}),$$

where Tr is the trace map from $\mathbb{Q}_{\ell}(\psi(\Delta_m))$ to \mathbb{Q}_{ℓ} and ψ runs over all representatives of \mathbb{Q}_{ℓ} -conjugacy classes of characters of Δ_m . Since Δ_m is canonically isomorphic to $G(\mathbb{B}_{p,m}\mathbb{B}_{\ell,\infty}/\mathbb{B}_{\ell,\infty})$, Δ_m acts on $A_{m,n} = A_{\ell}(\mathbb{B}_{p,m}\mathbb{B}_{\ell,n})$ canonically and $\lambda_{\ell,\psi}(\mathbb{B}_{p,m})$ is defined as an integer satisfying

$$|e_{\psi}(A_{m,n})| = \lambda_{\ell,\psi}(\mathbb{B}_{p,m})n + \nu \qquad (n \gg 0)$$

with a constant integer ν . Now we summarize a condition for $\lambda_{\ell}(\mathbb{B}_{p,m_p}) = 0$ as the following lemma.

Lemma 3.2. We have $\lambda_{\ell}(\mathbb{B}_{p,m_p}) = 0$ if and only if $\lambda_{\ell,\psi}(\mathbb{B}_{p,m}) = 0$ for all integer m with $1 \leq m \leq m_p$ and for all representatives ψ of \mathbb{Q}_{ℓ} -conjugacy classes of characters of Δ_m with order p^m .

We are in the situation (A) or (C) in [9] and note that $|B_{1,\omega^{-1}\psi}|_{\ell} = 1$ implies $\lambda_{\ell,\psi}(\mathbb{B}_{p,m}) = 0$ (cf. (1), (2) and (3) in [9]). It is easy to calculate $B_{1,\omega^{-1}\psi}$. Our calculation shows that there are seven pairs (ℓ,ψ) in the case p = 2 and four pairs (ℓ,ψ) in the case p = 3 which does not satisfy $|B_{1,\omega^{-1}\psi}|_{\ell} = 1$ in the range $\ell < 10^4$. For all these (ℓ,ψ) , p^m divides $\ell-1$, namely the condition (C1) in [9] holds. We applied Ichimura-Sumida criterion for these eleven pairs and verified that the condition $(H_{P_i,n}) = (H_{i,n})$ in [9] holds for n = 2, namely $\lambda_{\ell,\psi}(\mathbb{B}_{p,m}) = 0$. We show numerical data for these (ℓ,ψ) . Readers should replace χ in [9] with ψ in our notation.

In this section, we write $\zeta_k = \exp(2\pi\sqrt{-1/k})$. Let σ be the generator of Δ_m induced by $\zeta_{2^{n+2}} \mapsto \zeta_{2^{n+2}}^5$ or $\zeta_{3^{n+1}} \mapsto \zeta_{3^{n+1}}^4$ according as p = 2 or p = 3. Let g_ℓ be the minimal primitive root of ℓ and η_m the primitive p^m -th root of unity in \mathbb{Q}_ℓ satisfying

$$\eta_m \equiv g_\ell^{\frac{\ell-1}{p^m}} \pmod{\ell}.$$

We denote by ψ_m the character of Δ_m satisfying $\psi_m(\sigma) = \eta_m$. We show numerical data about $\psi = \psi_m^k$ with $|B_{1,\omega^{-1}\psi}|_{\ell} \neq 1$ in the following tables in which $P_{\psi}(T)$ denotes the Iwasawa polynomial associated with ψ and ℓ^* means the prime number ℓ in [9, Corollary 2]. The program written by TC running on two computers with 64 bit Xeon processor have done the calculations in a month.

l	ψ	Case	$P_{\psi}(T) \mod \ell^2$	ℓ^*
31	ψ_1	(C)	T + 186	1429969
193	ψ_6^{25}	(A)	T + 33389	5521195777
257	ψ_{7}^{97}	(A)	T + 12593	52145949697
521	ψ_3	(A)	T + 204753	18101857409
641	ψ_{7}^{17}	(A)	T + 223068	1213630714369
3617	ψ_5^{23}	(A)	T + 11965036	60569710224641
4513	ψ_5^{17}	(A)	T + 15930890	235307606264321

Table 1: p = 2

Table 2: p = 2

l	ψ	Case	$P_{\psi}(T) \mod \ell^2$	ℓ^*
73	ψ_1	(C)	T + 2263	56018449
109	ψ_3^{14}	(A)	T + 2289	1888152283
487	ψ_4^{61}	(C)	T + 39934	280668166291
1621	ψ_4^{55}	(A)	T + 2207802	16560570765169

Acknowledgment. The authors express their gratitude for the referee who read the manuscript carefully and indicated some confusions about notations and phrases.

References

- L. Carlitz, Some arithmetic properties of generalized Bernoulli numbers, Bull. Amer. Math. Soc. 65 (1959), 68–69.
- [2] J. Coates, *p-adic L-functions and Iwasawa theory*, Algebraic Number Fields (Durham Symposium, 1975), ed. by A. Fröhlich, 269–353, Academic Press, London, 1977.
- [3] B. Ferrero and L. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. Math. **109** (1979), 377–395.
- [4] E. Friedman, Ideal Class Groups in Basic Z_{p1}×...×Z_{ps}-Extensions of Abelian Number Fields Invent. Math. 65 (1982), 425-440.
- [5] E. Friedman and J. W. Sands, On the *l*-adic Iwasawa λ-invariant in a pextension, Math. Comp. 64 (1995), 1659–1674.
- [6] T. Fukuda and K. Komatsu, Weber's class number problem in the cyclotomic Z₂-extension of Q, Experiment. Math. 18-2 (2009), 213–222.
- [7] R. Greenberg, On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98(1976), 263–284.
- [8] K. Horie, Certain primary components of the ideal class group of the Z_pextension over the rationals, Tohoku Math. J. 59 (2007), 259–291.

- 104 Takashi Fukuda, Keiichi Komatsu, Takayuki Morisawa
- [9] H. Ichimura and H. Sumida, On the Iwasawa Invariants of certain real abelian fields II, Inter. J. Math. 7 (1996), 721–744.
- [10] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
- [11] T. Morisawa, A Class Number Problem in the Cyclotomic Z₃-extension of Q, Tokyo J. Math. **32** (2009), 549–558.
- [12] J. Nakagawa and K. Horie, *Elliptic curves with no rational points*, Proc. Amer. Math. Soc. **104** (1988), 20–24.
- [13] K. Ono, Indivisibility of class numbers of real quadratic fields, Compositio Math. 119 (1999), 1–11.
- [14] M. Ozaki and H. Taya, On the Iwasawa λ_2 -invariants of certain families of real quadratic fields, Manuscripta Math. **94** (1997), no. 4, 437-444.
- [15] L. Washington, Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, Berlin/New York, 1997
- Addresses: Takashi Fukuda: Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan; Keiichi Komatsu: Department of Mathematical Science, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; Takayuki Morisawa: Major in Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.

E-mail: fukuda.takashi@nihon-u.ac.jp, kkomatsu@waseda.jp, da-vinci-0415@moegi.waseda.jp **Received:** 7 June 2011