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ZEROS OF THE DERIVATIVES OF THE RIEMANN
ZETA-FUNCTION

Haseo Ki, Yoonbok Lee

Abstract: Levinson and Montgomery in 1974 proved many interesting formulae on the zeros of
derivatives of the Riemann zeta function ζ(s). When Conrey proved that at least 2/5 of the zeros
of the Riemann zeta function are on the critical line, he proved the asymptotic formula for the
mean square of ζ(s) multiplied by a mollifier of length T 4/7 near the 1/2-line. As a consequence
of their papers, we study some aspects of zeros of the derivatives of the Riemann zeta function
with no assumption.
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1. Introduction

We study properties of zeros of the derivatives of the Riemann zeta function ζ(s).
Levinson and Montgomery [8] achieved several important theorems for the behav-
ior of zeros of ζ(m)(s) (m = 1, 2, 3, · · · ). If we assume the Riemann hypothesis,
ζ ′(s) has no non-real zero in Re s < 1

2 and ζ(m)(s) (m > 1) has at most finitely
many zeros in Re s < 1

2 . Unconditionally, we are able to deduce the following
quantitative results by similar methods in [8].

Theorem 1. We denote ρ(m) = β(m) + iγ(m) as zeros of ζ(m)(s). Let 0 < U 6 T .
Then, we have

∑
T<γ(m)<T+U

β(m)< 1
2

(
1

2
− β(m)

)
6

∑
T<γ<T+U

β> 1
2

(
β − 1

2

)
+O(U).
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Theorem 2. Let T a 6 U 6 T , a > 1
2 . Then, we have∑

T<γ(m)<T+U

β(m)< 1
2

(
1

2
− β(m)

)
= O(U).

Theorem 3. For T a 6 U 6 T , a > 1
2 , we have

2π
∑

T<γ(m)<T+U

β(m)> 1
2

(
β(m) − 1

2

)
= mU log log T +O(U).

We note that Theorems 1–3 complement Theorems 3, 4 in [8]
J. B. Conrey proved that at least 2/5 of the zeros of the Riemann zeta function

are simple and on the critical line in [2]. He refined the method of Levinson [7] and
used a result of Deshouillers and Iwaniec [4] on averages of Kloosterman sums to
obtain the mean square of the Riemann zeta function accompanied with a mollifier
of length T 4/7. The main theorem of Conrey is following:

Theorem A (Conrey). Let B(s) =
∑
k6y

b(k)
ks+R/L be a mollifier of length y = T θ,

where b(k) = µ(k)P
(

log y/k
log y

)
, P (x) is a polynomial with P (0) = 0, P (1) = 1,

0 < R≪ 1, L = log T , 0 < θ < 4
7 . Let V (s) = Q

(
− 1
L
d
ds

)
ζ(s) for some polynomial

Q(x). Then, we have∫ T

2

∣∣∣∣V B(1

2
− R

L
+ it

)∣∣∣∣2 dt ∼ c(P,Q,R)T (T → ∞),

where

c(P,Q,R) = |Q(0)|2+1

θ

∫ 1

0

∫ 1

0

e2Ry|Q(y)P ′(x)+θQ′(y)P (x)+θRQ(y)P (x)|2dxdy.

Based on Theorem A, we are able to deduce interesting results about zeros of
ζ(m)(s).

Theorem 4. Let m > 1, ϵ > 0. Then we have∑
β(m)> 1

2

0<γ(m)<T

1 > µm
T log T

2π
(1 + om(1)) (T → ∞),

where ρ(m) = β(m) + iγ(m) are zeros of ζ(m)(s). The coefficient µm satisfies µm >
1− ϵ+Oϵ(m

−1) as m→ ∞.

It is expected that all the zeros of the Riemann zeta function are simple. (See
[3] for a reference.) A related conjecture is that Nd(T ) = N(T ) for any T > 0
where N(T ) is the number of zeros ρ = β+ iγ in 0 < γ 6 T with multiplicity, and
Nd(T ) is the number of distinct zeros in 0 < γ 6 T . Regarding this matter, we
have the following result.



Zeros of the derivatives of the Riemann zeta-function 81

Theorem 5.
κd = lim inf

T→∞

Nd(T )

N(T )
> 0.70.

We note that this improves D. W. Farmer’s result κd > 0.63952 in [5].

2. Lemmas

We start with the following.

Lemma 1. Let m = 1, 2, 3, . . ., χ(s) = 2sπs−1 sin πs
2 Γ(1 − s) and s = σ + it

(σ, t ∈ R). Then, we have

χ(m)

χ
(s) = (− log |t|)m +O(logm−1 |t|)

for |t| > t0 on any fixed vertical strip a 6 σ 6 b.

Proof of Lemma 1. From the Sterling formula, we have

Γ′

Γ
(s) = log |t|+O(1);

dm

dsm

(
Γ′

Γ
(s)

)
= O(t−m) (m = 1, 2, 3, . . .).

Thus we have

χ′

χ
(s) = −Γ′

Γ
(1− s) + log 2π +

sin πs
2

cos πs2
= − log |t|+O(1).

Suppose Lemma 1 is true for m 6 k. Then, we have

χ(k+1)

χ
(s) =

(
χ(k)

χ
(s)

)′

+
χ(k)

χ
(s)

χ′

χ
(s)

=O(logk |t|) + ((− log |t|)k +O(logk−1 |t|))(− log |t|+O(1))

=(− log |t|)k+1 +O(logk |t|).

By induction, we have proved the lemma. �

Lemma 2. Fix a nonnegative integer m. There is t1 > 0 such that χ(m)(s) has
no zero or pole in | Im s| > t1, a 6 Re s 6 b.

Proof of Lemma 2. By the definition of χ(s) = 2sπs−1 sin πs
2 Γ(1− s), we know

that χ(s) is meromorphic on the whole complex plane with poles at s = 1, 3, 5, 7, · · · ,
and zeros at s = 0,−2,−4, · · · . Thus, the Lemma 2 is true for m = 0. For the
case m > 0, we use the Lemma 1

χ(m)(s) = χ(s)
χ(m)

χ
(s) = χ(s)(− logm |t|)

(
1 +O

(
log−1 |t|

))
for | Im s| = |t| > t0. Thus, we prove the lemma. �
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Lemma 3. Let −2 6 aj 6 2, bj , cj > 0, 0 < p < 1. Then, we have∫ 2

−2

∣∣∣∑
j

cj
x− aj + ibj

∣∣∣pdx 6 8

1− p

∣∣∣∑
j

cj

∣∣∣p.
For Lemma 3, see [8, Lemma 4.1] or [6, Chap. 4].

3. Proofs of Theorems 1, 2, and 3

Proof of Theorem 1. We begin with the functional equation of the Riemann
zeta function ζ(1− s) = χ(1− s)ζ(s). By differentiating m times, we have

ζ(m)(1− s) = χ(m)(1− s)ζ(s) +

m−1∑
j=0

(
m

j

)
(−1)m−jχ(j)(1− s)ζ(m−j)(s).

Let Jm(s) be

Jm(s) = ζ(s) +

m−1∑
j=0

(
m

j

)
(−1)m−j χ

(j)

χ(m)
(1− s)ζ(m−j)(s). (3.1)

We know that there is Am > 1
2 such that ζ(m)(s) has no zero on Re s > Am.

Consider the rectangle with vertices 1
2 + i(T +U), 12 + iT , Am+ iT , Am+ i(T +U).

Since ζ(m)(1 − s) = χ(m)(1 − s)Jm(s), all the zeros of Jm(s) in the rectangle are
the same as the zeros of ζ(m)(1 − s), and no poles there by Lemma 2. Now we
apply the Littlewood Lemma [10, Chap. 9.9] to get

1

2π

∫ T+U

T

log

∣∣∣∣Jm( 12 + it)

ζ( 12 + it)

∣∣∣∣ dt = ∑
T<γ(m)<T+U

β(m)< 1
2

(
1

2
− β(m)

)

−
∑

T<γ<T+U
β> 1

2

(
β − 1

2

)
+O(U/ log T ) +O(log T ). (3.2)

We consider the integral of the above formula. We note that the simple inequality∣∣∣1 +∑
j

zj

∣∣∣ 6 1 +
∑
j

|zj | ≪ exp(
∑
j

|zj |mj )

holds for any fixed real mj > 0, where the number of terms in the summations is
finite. From this inequality and Lemma 1 together with definition of Jm(s), we
readily have∫ T+U

T

log

∣∣∣∣Jm( 12 + it)

ζ( 12 + it)

∣∣∣∣ dt 6 Cm
1√
log T

m∑
j=1

∫ T+U

T

∣∣∣∣ζ(j)ζ
(
1

2
+ it

)∣∣∣∣
1
2j

dt (3.3)

for some Cm > 0. We need still a claim to complete the proof of Theorem 1.
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Claim. For any positive integer j, we have

∫ T+U

T

∣∣∣∣ζ(j)ζ
(
1

2
+ it

)∣∣∣∣
1
2j

dt≪ U
√

log T .

Proof of Claim. We recall that in [1], the number of zeros of ζ(k)(s) with
0 < γ(k) < T is

T

2π
log

T

4πe
+Ok(log T ). (3.4)

Let n be a large positive integer. For |t − n| 6 1, 0 < σ < 1, k = 0, 1, 2, · · · , we
have

ζ(k+1)

ζ(k)
(s) =

∑
|γ(k)−n|<2

1

s− ρ(k)
+O(log n).

Then, by this, (3.4) and Lemma 3, we have

∫ n+ 1
2

n− 1
2

∣∣∣∣ζ(k+1)

ζ(k)

(
1

2
+ it

)∣∣∣∣
1
2

dt≪
∫ n+ 1

2

n− 1
2

∣∣∣ ∑
|γ(k)−n|<2

1
1
2 + it− ρ(k)

∣∣∣ 12 dt+√log n

≪
√
log n.

From this, we have

∫ T+U

T

∣∣∣∣ζ(k+1)

ζ(k)

(
1

2
+ it

)∣∣∣∣
1
2

dt≪ U
√
log T .

By this and Hölder’s inequality, we have

∫ T+U

T

∣∣∣∣ζ(j)ζ
(
1

2
+ it

)∣∣∣∣
1
2j

dt =

∫ T+U

T

∣∣∣∣(ζ ′ζ · ζ
′′

ζ ′
· · · ζ(j)

ζ(j−1)

)(
1

2
+ it

)∣∣∣∣
1
2j

dt

≪ U
√
log T .

We complete the proof of Claim. �

By Claim, (3.2) and (3.3), Theorem 1 follows immediately. �

Proof of Theorem 2. By Selberg [9], if U > T a, a > 1
2 , then

∑
T<γ<T+U

β< 1
2

(
1

2
− β

)
= O(U).

From this and Theorem 1, Theorem follows. �
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Proof of Theorem 3. We know in [8, Theorem 3] that for 0 < U < T , we have

2π
∑

T6γ(m)6T+U

(
β(m) − 1

2

)
= mU log log

T

2π
+ U

(
1

2
log 2−m log log 2

)
+O(U2/(T log T ) + log T ).

By this and Theorem 2, we complete the proof of Theorem 3. �

4. Proofs of Theorems 4 and 5

Proof of Theorem 4. Apply the Littlewood Lemma to deduce

1

2π

∫ T

2

log

∣∣∣∣JkB(1

2
− R

L
+ it

)∣∣∣∣ dt = ∑
β(k)< 1

2+
R
L

0<γ(k)<T

(
1

2
+
R

L
− β(k)

)
+O(T/L),

where R > 0, L = log T and Jk(s) in (3.1), and B(s) in Theorem A. From this,
we have ∑

β(k)6 1
2

0<γ(k)<T

1 6 L

2πR

∫ T

2

log

∣∣∣∣JkB(1

2
− R

L
+ it

)∣∣∣∣ dt+O(T )

By applying Jensen’s inequality to this inequality, we have

∑
β(k)6 1

2

0<γ(k)<T

1 6 TL

4πR
log

(
1

T

∫ T

2

∣∣∣∣JkB(1

2
− R

L
+ it

)∣∣∣∣2 dt
)

+O(T ). (4.1)

We let Vk(s) as

Vk(s) =

1 +
k∑
j=1

(
k

j

)
1

Lj
dj

dsj

 ζ(s) =

(
1 +

1

L

d

ds

)k
ζ(s) = Qk

(
− 1

L

d

ds

)
ζ(s),

where Qk(x) = (1− x)k. Then by Lemma 1 and integration by parts we have∫ T

2

∣∣∣∣JkB(1

2
− R

L
+ it

)∣∣∣∣2 dt ∼ ∫ T

2

∣∣∣∣VkB(1

2
− R

L
+ it

)∣∣∣∣2 dt. (4.2)

By Theorem A, we have∫ T

2

∣∣∣∣VkB(1

2
− R

L
+ it

)∣∣∣∣2 dt ∼ c(P,Qk, R)T,



Zeros of the derivatives of the Riemann zeta-function 85

where

c(P,Q,R) = 1 +
1

θ

∫ 1

0

∫ 1

0

e2Ry|Q(y)P ′(x) + θQ′(y)P (x) + θRQ(y)P (x)|2dxdy.

By this and (4.1)–(4.2), we have∑
β(k)6 1

2

0<γ(k)<T

1 6 inf
log c(P,Qk, R)

2R

TL

2π
(1 + ok(1)), (4.3)

where the infimum takes over all polynomials P satisfying P (0) = 0, P (1) = 1.
Since we are taking infimum over certain polynomial, we can choose a continuous
function P (x) = sinhλx

sinhλ since P (0) = 0 and P (1) = 1. Then we have
∫ 1

0
P (x)2dx =

1
2λ

(
1 +O

(
λe−2λ

))
, and

∫ 1

0
P ′(x)2dx = λ

2

(
1 +O

(
λe−2λ

))
. Thus, we have

inf
P
c(P,Qk, R) 61 +

∫ 1

0

e2RyQk(y)(Q
′
k(y) +RQk(y))dy

+
λ

2θ

(
1 +O

(
λe−2λ

)) ∫ 1

0

e2RyQk(y)
2dy

+
θ

2λ

(
1 +O

(
λe−2λ

)) ∫ 1

0

e2Ry(Q′
k(y) +RQk(y))

2dy.

By taking

λ = θ

√√√√∫ 1

0
e2Ry(Q′

k(y) +RQk(y))2dy∫ 1

0
e2RyQk(y)2dy

,

we get the minimal value of the right hand side in the previous inequality. Since∫ 1

0

e2RyQk(y)
2dy =

1

2k

(
1 +O

(
k−1

))
,∫ 1

0

e2RyQ′
k(y)Qk(y)dy =

1

2

(
1 +O

(
k−1

))
,∫ 1

0

e2RyQ′
k(y)

2dy =
k

2

(
1 +O

(
k−1

))
,

we have λ = kθ
(
1 +O

(
k−1

))
, and

inf
P
c(P,Qk, R) 6 2 +O

(
k−1

)
as k → ∞. By this together with (4.3) and (3.4), we conclude that for any fixed
R > 0 ∑

β(k)> 1
2

0<γ(k)<T

1 > µk
TL

2π
(1 + ok(1)),

where µk = 1− log 2
2R +OR(

1
k ) as k → ∞. We complete the proof of Theorem 4. �
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Proof of Theorem 5. Let H(s) = s(s−1)
2 π− s

2Γ( s2 ). Then, we have the Riemann
ξ-function ξ(s) = H(s)ζ(s). Consider the function f(s) = H(s)−1{(g + g0)ξ(s) +
g1
L ξ

′(s)}, where L = log T , g, ig0, g1 ∈ R. (We use the same notations as in [2].)
We apply the Littlewood lemma as before to obtain

∑
fB(β+iγ)=0

β> 1
2−

R
L

0<γ6T

(
β − 1

2
+
R

L

)
=

1

2π

∫ T

1

log

∣∣∣∣fB(1

2
− R

L
+ it

)∣∣∣∣ dt+O(T/L) (4.4)

with the mollifier B(s) introduced in Theorem A. For the error term O(T/L),
we need some condition of gj that will be discussed at the end of the proof. We
note that simple zeros of ξ(s) are not zeros of f(s), besides multiple zeros of ξ(s)
are zeros whose multiplicities decrease by one. From symmetry of zeros of ξ(s)
to 1/2, the left hand side of (4.4) is not less than R

L (N(T )−Nd(T )). By Jensen’s
inequality, we can deduce that

N(T )−Nd(T ) 6
TL

4πR
log

(
1

T

∫ T

2

∣∣∣∣fB(1

2
− R

L
+ it

)∣∣∣∣2 dt
)

+O(T )

or

κd > 1− 1

2R
log

(
lim sup
T→∞

1

T

∫ T

2

∣∣∣∣fB(1

2
− R

L
+ it

)∣∣∣∣2 dt
)
.

All we need is to get an asymptotic formula for the mean square of fB. We have

f(s) = (g + g0)ζ(s) +
g1
L

(
H ′

H
(s)ζ(s) + ζ ′(s)

)
=

(
Q1

(
log s

2π

2L
+

1

L

d

ds

)
ζ(s)

)(
1 +O

(
|t|−1

))
,

where Q1(x) = g + g0 + g1x. Using the last two equations, integration by parts
leads us to

κd > 1− 1

2R
log

(
lim sup
T→∞

1

T

∫ T

2

∣∣∣∣V B(1

2
− R

L
+ it

)∣∣∣∣2 dt
)
,

where V (s) = Q(− 1
L
d
ds )ζ(s), and Q(x) = Q1(

1
2 − x) = g + g0 + 1

2g1 − g1x. By
Theorem A, we have

κd > 1− 1

2R
log(c(P,Q,R)).

The condition Q(0) = 1 is required when we apply the Littlewood lemma to derive
(4.4). Then we have Q(x) = 1− g1x. In [2, p.10] Conrey made an optimal choice
of this case. If we choose g1 = 1.02, R = 1.2, θ = 4

7 , we have log c
R = 0.598....

Therefore, we conclude that κd > 0.70. �
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