ZEROS OF THE DERIVATIVES OF THE RIEMANN ZETA-FUNCTION

Haseo Ki, Yoonbok Lee

Abstract

Levinson and Montgomery in 1974 proved many interesting formulae on the zeros of derivatives of the Riemann zeta function $\zeta(s)$. When Conrey proved that at least $2 / 5$ of the zeros of the Riemann zeta function are on the critical line, he proved the asymptotic formula for the mean square of $\zeta(s)$ multiplied by a mollifier of length $T^{4 / 7}$ near the $1 / 2$-line. As a consequence of their papers, we study some aspects of zeros of the derivatives of the Riemann zeta function with no assumption.

Keywords: zeros, derivatives, Riemann zeta function.

1. Introduction

We study properties of zeros of the derivatives of the Riemann zeta function $\zeta(s)$. Levinson and Montgomery [8] achieved several important theorems for the behavior of zeros of $\zeta^{(m)}(s)(m=1,2,3, \cdots)$. If we assume the Riemann hypothesis, $\zeta^{\prime}(s)$ has no non-real zero in $\operatorname{Re} s<\frac{1}{2}$ and $\zeta^{(m)}(s)(m>1)$ has at most finitely many zeros in $\operatorname{Re} s<\frac{1}{2}$. Unconditionally, we are able to deduce the following quantitative results by similar methods in [8].

Theorem 1. We denote $\rho^{(m)}=\beta^{(m)}+i \gamma^{(m)}$ as zeros of $\zeta^{(m)}(s)$. Let $0<U \leqslant T$. Then, we have

$$
\sum_{\substack{T<\gamma^{(m)}<T+U \\ \beta^{(m)}<\frac{1}{2}}}\left(\frac{1}{2}-\beta^{(m)}\right) \leqslant \sum_{\substack{T<\gamma<T+U \\ \beta>\frac{1}{2}}}\left(\beta-\frac{1}{2}\right)+O(U) .
$$

[^0]Theorem 2. Let $T^{a} \leqslant U \leqslant T, a>\frac{1}{2}$. Then, we have

$$
\sum_{\substack{T<\gamma^{(m)}<T+U \\ \beta^{(m)}<\frac{1}{2}}}\left(\frac{1}{2}-\beta^{(m)}\right)=O(U) .
$$

Theorem 3. For $T^{a} \leqslant U \leqslant T, a>\frac{1}{2}$, we have

$$
2 \pi \sum_{\substack{T<\gamma^{(m)}<T+U \\ \beta^{(m)}>\frac{1}{2}}}\left(\beta^{(m)}-\frac{1}{2}\right)=m U \log \log T+O(U)
$$

We note that Theorems 1-3 complement Theorems 3, 4 in [8]
J. B. Conrey proved that at least $2 / 5$ of the zeros of the Riemann zeta function are simple and on the critical line in [2]. He refined the method of Levinson [7] and used a result of Deshouillers and Iwaniec [4] on averages of Kloosterman sums to obtain the mean square of the Riemann zeta function accompanied with a mollifier of length $T^{4 / 7}$. The main theorem of Conrey is following:
Theorem A (Conrey). Let $B(s)=\sum_{k \leqslant y} \frac{b(k)}{k^{s+R / L}}$ be a mollifier of length $y=T^{\theta}$, where $b(k)=\mu(k) P\left(\frac{\log y / k}{\log y}\right), P(x)$ is a polynomial with $P(0)=0, P(1)=1$, $0<R \ll 1, L=\log T, 0<\theta<\frac{4}{7}$. Let $V(s)=Q\left(-\frac{1}{L} \frac{d}{d s}\right) \zeta(s)$ for some polynomial $Q(x)$. Then, we have

$$
\int_{2}^{T}\left|V B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right|^{2} d t \sim c(P, Q, R) T \quad(T \rightarrow \infty)
$$

where
$c(P, Q, R)=|Q(0)|^{2}+\frac{1}{\theta} \int_{0}^{1} \int_{0}^{1} e^{2 R y}\left|Q(y) P^{\prime}(x)+\theta Q^{\prime}(y) P(x)+\theta R Q(y) P(x)\right|^{2} d x d y$.
Based on Theorem A, we are able to deduce interesting results about zeros of $\zeta^{(m)}(s)$.
Theorem 4. Let $m \geqslant 1, \epsilon>0$. Then we have

$$
\sum_{\substack{\beta^{(m)}>\frac{1}{2} \\ 0<\gamma^{(m)}<T}} 1 \geqslant \mu_{m} \frac{T \log T}{2 \pi}\left(1+o_{m}(1)\right) \quad(T \rightarrow \infty),
$$

where $\rho^{(m)}=\beta^{(m)}+i \gamma^{(m)}$ are zeros of $\zeta^{(m)}(s)$. The coefficient μ_{m} satisfies $\mu_{m} \geqslant$ $1-\epsilon+O_{\epsilon}\left(m^{-1}\right)$ as $m \rightarrow \infty$.

It is expected that all the zeros of the Riemann zeta function are simple. (See [3] for a reference.) A related conjecture is that $N_{d}(T)=N(T)$ for any $T>0$ where $N(T)$ is the number of zeros $\rho=\beta+i \gamma$ in $0<\gamma \leqslant T$ with multiplicity, and $N_{d}(T)$ is the number of distinct zeros in $0<\gamma \leqslant T$. Regarding this matter, we have the following result.

Theorem 5.

$$
\kappa_{d}=\liminf _{T \rightarrow \infty} \frac{N_{d}(T)}{N(T)}>0.70
$$

We note that this improves D. W. Farmer's result $\kappa_{d} \geqslant 0.63952$ in [5].

2. Lemmas

We start with the following.
Lemma 1. Let $m=1,2,3, \ldots, \chi(s)=2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s)$ and $s=\sigma+i t$ $(\sigma, t \in \mathbb{R})$. Then, we have

$$
\frac{\chi^{(m)}}{\chi}(s)=(-\log |t|)^{m}+O\left(\log ^{m-1}|t|\right)
$$

for $|t| \geqslant t_{0}$ on any fixed vertical strip $a \leqslant \sigma \leqslant b$.
Proof of Lemma 1. From the Sterling formula, we have

$$
\frac{\Gamma^{\prime}}{\Gamma}(s)=\log |t|+O(1) ; \quad \frac{d^{m}}{d s^{m}}\left(\frac{\Gamma^{\prime}}{\Gamma}(s)\right)=O\left(t^{-m}\right) \quad(m=1,2,3, \ldots) .
$$

Thus we have

$$
\frac{\chi^{\prime}}{\chi}(s)=-\frac{\Gamma^{\prime}}{\Gamma}(1-s)+\log 2 \pi+\frac{\sin \frac{\pi s}{2}}{\cos \frac{\pi s}{2}}=-\log |t|+O(1) .
$$

Suppose Lemma 1 is true for $m \leqslant k$. Then, we have

$$
\begin{aligned}
\frac{\chi^{(k+1)}}{\chi}(s) & =\left(\frac{\chi^{(k)}}{\chi}(s)\right)^{\prime}+\frac{\chi^{(k)}}{\chi}(s) \frac{\chi^{\prime}}{\chi}(s) \\
& =O\left(\log ^{k}|t|\right)+\left((-\log |t|)^{k}+O\left(\log ^{k-1}|t|\right)\right)(-\log |t|+O(1)) \\
& =(-\log |t|)^{k+1}+O\left(\log ^{k}|t|\right)
\end{aligned}
$$

By induction, we have proved the lemma.
Lemma 2. Fix a nonnegative integer m. There is $t_{1}>0$ such that $\chi^{(m)}(s)$ has no zero or pole in $|\operatorname{Im} s| \geqslant t_{1}, a \leqslant \operatorname{Re} s \leqslant b$.

Proof of Lemma 2. By the definition of $\chi(s)=2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s)$, we know that $\chi(s)$ is meromorphic on the whole complex plane with poles at $s=1,3,5,7, \cdots$, and zeros at $s=0,-2,-4, \cdots$. Thus, the Lemma 2 is true for $m=0$. For the case $m>0$, we use the Lemma 1

$$
\chi^{(m)}(s)=\chi(s) \frac{\chi^{(m)}}{\chi}(s)=\chi(s)\left(-\log ^{m}|t|\right)\left(1+O\left(\log ^{-1}|t|\right)\right)
$$

for $|\operatorname{Im} s|=|t| \geqslant t_{0}$. Thus, we prove the lemma.

Lemma 3. Let $-2 \leqslant a_{j} \leqslant 2, b_{j}, c_{j} \geqslant 0,0<p<1$. Then, we have

$$
\int_{-2}^{2}\left|\sum_{j} \frac{c_{j}}{x-a_{j}+i b_{j}}\right|^{p} d x \leqslant \frac{8}{1-p}\left|\sum_{j} c_{j}\right|^{p}
$$

For Lemma 3, see [8, Lemma 4.1] or [6, Chap. 4].

3. Proofs of Theorems 1, 2, and 3

Proof of Theorem 1. We begin with the functional equation of the Riemann zeta function $\zeta(1-s)=\chi(1-s) \zeta(s)$. By differentiating m times, we have

$$
\zeta^{(m)}(1-s)=\chi^{(m)}(1-s) \zeta(s)+\sum_{j=0}^{m-1}\binom{m}{j}(-1)^{m-j} \chi^{(j)}(1-s) \zeta^{(m-j)}(s)
$$

Let $J_{m}(s)$ be

$$
\begin{equation*}
J_{m}(s)=\zeta(s)+\sum_{j=0}^{m-1}\binom{m}{j}(-1)^{m-j} \frac{\chi^{(j)}}{\chi^{(m)}}(1-s) \zeta^{(m-j)}(s) \tag{3.1}
\end{equation*}
$$

We know that there is $A_{m}>\frac{1}{2}$ such that $\zeta^{(m)}(s)$ has no zero on $\operatorname{Re} s \geqslant A_{m}$. Consider the rectangle with vertices $\frac{1}{2}+i(T+U), \frac{1}{2}+i T, A_{m}+i T, A_{m}+i(T+U)$. Since $\zeta^{(m)}(1-s)=\chi^{(m)}(1-s) J_{m}(s)$, all the zeros of $J_{m}(s)$ in the rectangle are the same as the zeros of $\zeta^{(m)}(1-s)$, and no poles there by Lemma 2. Now we apply the Littlewood Lemma [10, Chap. 9.9] to get

$$
\begin{align*}
\frac{1}{2 \pi} \int_{T}^{T+U} \log \left|\frac{J_{m}\left(\frac{1}{2}+i t\right)}{\zeta\left(\frac{1}{2}+i t\right)}\right| d t & =\sum_{\substack{T<\gamma^{(m)}<T+U \\
\beta^{(m)}<\frac{1}{2}}}\left(\frac{1}{2}-\beta^{(m)}\right) \\
& -\sum_{\substack{T<\gamma<T+U \\
\beta>\frac{1}{2}}}\left(\beta-\frac{1}{2}\right)+O(U / \log T)+O(\log T) . \tag{3.2}
\end{align*}
$$

We consider the integral of the above formula. We note that the simple inequality

$$
\left|1+\sum_{j} z_{j}\right| \leqslant 1+\sum_{j}\left|z_{j}\right| \ll \exp \left(\sum_{j}\left|z_{j}\right|^{m_{j}}\right)
$$

holds for any fixed real $m_{j}>0$, where the number of terms in the summations is finite. From this inequality and Lemma 1 together with definition of $J_{m}(s)$, we readily have

$$
\begin{equation*}
\int_{T}^{T+U} \log \left|\frac{J_{m}\left(\frac{1}{2}+i t\right)}{\zeta\left(\frac{1}{2}+i t\right)}\right| d t \leqslant C_{m} \frac{1}{\sqrt{\log T}} \sum_{j=1}^{m} \int_{T}^{T+U}\left|\frac{\zeta^{(j)}}{\zeta}\left(\frac{1}{2}+i t\right)\right|^{\frac{1}{2 j}} d t \tag{3.3}
\end{equation*}
$$

for some $C_{m}>0$. We need still a claim to complete the proof of Theorem 1.

Claim. For any positive integer j, we have

$$
\int_{T}^{T+U}\left|\frac{\zeta^{(j)}}{\zeta}\left(\frac{1}{2}+i t\right)\right|^{\frac{1}{2 j}} d t \ll U \sqrt{\log T}
$$

Proof of Claim. We recall that in [1], the number of zeros of $\zeta^{(k)}(s)$ with $0<\gamma^{(k)}<T$ is

$$
\begin{equation*}
\frac{T}{2 \pi} \log \frac{T}{4 \pi e}+O_{k}(\log T) \tag{3.4}
\end{equation*}
$$

Let n be a large positive integer. For $|t-n| \leqslant 1,0<\sigma<1, k=0,1,2, \cdots$, we have

$$
\frac{\zeta^{(k+1)}}{\zeta^{(k)}}(s)=\sum_{\left|\gamma^{(k)}-n\right|<2} \frac{1}{s-\rho^{(k)}}+O(\log n)
$$

Then, by this, (3.4) and Lemma 3, we have

$$
\begin{aligned}
\int_{n-\frac{1}{2}}^{n+\frac{1}{2}}\left|\frac{\zeta^{(k+1)}}{\zeta^{(k)}}\left(\frac{1}{2}+i t\right)\right|^{\frac{1}{2}} d t & \ll \int_{n-\frac{1}{2}}^{n+\frac{1}{2}}\left|\sum_{\left|\gamma^{(k)}-n\right|<2} \frac{1}{\frac{1}{2}+i t-\rho^{(k)}}\right|^{\frac{1}{2}} d t+\sqrt{\log n} \\
& \ll \sqrt{\log n}
\end{aligned}
$$

From this, we have

$$
\int_{T}^{T+U}\left|\frac{\zeta^{(k+1)}}{\zeta^{(k)}}\left(\frac{1}{2}+i t\right)\right|^{\frac{1}{2}} d t \ll U \sqrt{\log T}
$$

By this and Hölder's inequality, we have

$$
\begin{aligned}
\int_{T}^{T+U}\left|\frac{\zeta^{(j)}}{\zeta}\left(\frac{1}{2}+i t\right)\right|^{\frac{1}{2 j}} d t & =\int_{T}^{T+U}\left|\left(\frac{\zeta^{\prime}}{\zeta} \cdot \frac{\zeta^{\prime \prime}}{\zeta^{\prime}} \cdots \frac{\zeta^{(j)}}{\zeta^{(j-1)}}\right)\left(\frac{1}{2}+i t\right)\right|^{\frac{1}{2 j}} d t \\
& \ll U \sqrt{\log T}
\end{aligned}
$$

We complete the proof of Claim.
By Claim, (3.2) and (3.3), Theorem 1 follows immediately.
Proof of Theorem 2. By Selberg [9], if $U \geqslant T^{a}, a>\frac{1}{2}$, then

$$
\sum_{\substack{T<\gamma<T+U \\ \beta<\frac{1}{2}}}\left(\frac{1}{2}-\beta\right)=O(U) .
$$

From this and Theorem 1, Theorem follows.

Proof of Theorem 3. We know in [8, Theorem 3] that for $0<U<T$, we have

$$
\begin{aligned}
2 \pi \sum_{T \leqslant \gamma^{(m)} \leqslant T+U}\left(\beta^{(m)}-\frac{1}{2}\right)= & m U \log \log \frac{T}{2 \pi}+U\left(\frac{1}{2} \log 2-m \log \log 2\right) \\
& +O\left(U^{2} /(T \log T)+\log T\right)
\end{aligned}
$$

By this and Theorem 2, we complete the proof of Theorem 3.

4. Proofs of Theorems 4 and 5

Proof of Theorem 4. Apply the Littlewood Lemma to deduce

$$
\frac{1}{2 \pi} \int_{2}^{T} \log \left|J_{k} B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right| d t=\sum_{\substack{\beta^{(k)}<\frac{1}{2}+\frac{R}{L} \\ 0<\gamma^{(k)}<T}}\left(\frac{1}{2}+\frac{R}{L}-\beta^{(k)}\right)+O(T / L)
$$

where $R>0, L=\log T$ and $J_{k}(s)$ in (3.1), and $B(s)$ in Theorem A. From this, we have

$$
\sum_{\substack{\beta^{(k)} \leq \frac{1}{2} \\ 0<\gamma^{(k)}<T}} 1 \leqslant \frac{L}{2 \pi R} \int_{2}^{T} \log \left|J_{k} B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right| d t+O(T)
$$

By applying Jensen's inequality to this inequality, we have

$$
\begin{equation*}
\sum_{\substack{\beta^{(k)} \leqslant \frac{1}{2} \\ 0<\gamma^{(k)}<T}} 1 \leqslant \frac{T L}{4 \pi R} \log \left(\frac{1}{T} \int_{2}^{T}\left|J_{k} B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right|^{2} d t\right)+O(T) \tag{4.1}
\end{equation*}
$$

We let $V_{k}(s)$ as

$$
V_{k}(s)=\left(1+\sum_{j=1}^{k}\binom{k}{j} \frac{1}{L^{j}} \frac{d^{j}}{d s^{j}}\right) \zeta(s)=\left(1+\frac{1}{L} \frac{d}{d s}\right)^{k} \zeta(s)=Q_{k}\left(-\frac{1}{L} \frac{d}{d s}\right) \zeta(s),
$$

where $Q_{k}(x)=(1-x)^{k}$. Then by Lemma 1 and integration by parts we have

$$
\begin{equation*}
\int_{2}^{T}\left|J_{k} B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right|^{2} d t \sim \int_{2}^{T}\left|V_{k} B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right|^{2} d t \tag{4.2}
\end{equation*}
$$

By Theorem A, we have

$$
\int_{2}^{T}\left|V_{k} B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right|^{2} d t \sim c\left(P, Q_{k}, R\right) T
$$

where

$$
c(P, Q, R)=1+\frac{1}{\theta} \int_{0}^{1} \int_{0}^{1} e^{2 R y}\left|Q(y) P^{\prime}(x)+\theta Q^{\prime}(y) P(x)+\theta R Q(y) P(x)\right|^{2} d x d y
$$

By this and (4.1)-(4.2), we have

$$
\begin{equation*}
\sum_{\substack{\beta^{(k)} \leq \frac{1}{2} \\ 0<\gamma^{(k)}<T}} 1 \leqslant \inf \frac{\log c\left(P, Q_{k}, R\right)}{2 R} \frac{T L}{2 \pi}\left(1+o_{k}(1)\right), \tag{4.3}
\end{equation*}
$$

where the infimum takes over all polynomials P satisfying $P(0)=0, P(1)=1$. Since we are taking infimum over certain polynomial, we can choose a continuous function $P(x)=\frac{\sinh \lambda x}{\sinh \lambda}$ since $P(0)=0$ and $P(1)=1$. Then we have $\int_{0}^{1} P(x)^{2} d x=$ $\frac{1}{2 \lambda}\left(1+O\left(\lambda e^{-2 \lambda}\right)\right)$, and $\int_{0}^{1} P^{\prime}(x)^{2} d x=\frac{\lambda}{2}\left(1+O\left(\lambda e^{-2 \lambda}\right)\right)$. Thus, we have

$$
\begin{aligned}
\inf _{P} c\left(P, Q_{k}, R\right) \leqslant & 1+\int_{0}^{1} e^{2 R y} Q_{k}(y)\left(Q_{k}^{\prime}(y)+R Q_{k}(y)\right) d y \\
& +\frac{\lambda}{2 \theta}\left(1+O\left(\lambda e^{-2 \lambda}\right)\right) \int_{0}^{1} e^{2 R y} Q_{k}(y)^{2} d y \\
& +\frac{\theta}{2 \lambda}\left(1+O\left(\lambda e^{-2 \lambda}\right)\right) \int_{0}^{1} e^{2 R y}\left(Q_{k}^{\prime}(y)+R Q_{k}(y)\right)^{2} d y
\end{aligned}
$$

By taking

$$
\lambda=\theta \sqrt{\frac{\int_{0}^{1} e^{2 R y}\left(Q_{k}^{\prime}(y)+R Q_{k}(y)\right)^{2} d y}{\int_{0}^{1} e^{2 R y} Q_{k}(y)^{2} d y}}
$$

we get the minimal value of the right hand side in the previous inequality. Since

$$
\begin{aligned}
\int_{0}^{1} e^{2 R y} Q_{k}(y)^{2} d y & =\frac{1}{2 k}\left(1+O\left(k^{-1}\right)\right), \\
\int_{0}^{1} e^{2 R y} Q_{k}^{\prime}(y) Q_{k}(y) d y & =\frac{1}{2}\left(1+O\left(k^{-1}\right)\right), \\
\int_{0}^{1} e^{2 R y} Q_{k}^{\prime}(y)^{2} d y & =\frac{k}{2}\left(1+O\left(k^{-1}\right)\right),
\end{aligned}
$$

we have $\lambda=k \theta\left(1+O\left(k^{-1}\right)\right)$, and

$$
\inf _{P} c\left(P, Q_{k}, R\right) \leqslant 2+O\left(k^{-1}\right)
$$

as $k \rightarrow \infty$. By this together with (4.3) and (3.4), we conclude that for any fixed $R>0$

$$
\sum_{\substack{\beta^{(k)}>\frac{1}{2} \\ 0<\gamma^{(k)}<T}} 1 \geqslant \mu_{k} \frac{T L}{2 \pi}\left(1+o_{k}(1)\right),
$$

where $\mu_{k}=1-\frac{\log 2}{2 R}+O_{R}\left(\frac{1}{k}\right)$ as $k \rightarrow \infty$. We complete the proof of Theorem 4.

Proof of Theorem 5. Let $H(s)=\frac{s(s-1)}{2} \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right)$. Then, we have the Riemann ξ-function $\xi(s)=H(s) \zeta(s)$. Consider the function $f(s)=H(s)^{-1}\left\{\left(g+g_{0}\right) \xi(s)+\right.$ $\left.\frac{g_{1}}{L} \xi^{\prime}(s)\right\}$, where $L=\log T, g, i g_{0}, g_{1} \in \mathbb{R}$. (We use the same notations as in [2].) We apply the Littlewood lemma as before to obtain

$$
\begin{equation*}
\sum_{\substack{f B(\beta+i \gamma)=0 \\ \beta \geqslant \frac{1}{2}-\frac{R}{L} \\ 0<\gamma \leqslant T}}\left(\beta-\frac{1}{2}+\frac{R}{L}\right)=\frac{1}{2 \pi} \int_{1}^{T} \log \left|f B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right| d t+O(T / L) \tag{4.4}
\end{equation*}
$$

with the mollifier $B(s)$ introduced in Theorem A. For the error term $O(T / L)$, we need some condition of g_{j} that will be discussed at the end of the proof. We note that simple zeros of $\xi(s)$ are not zeros of $f(s)$, besides multiple zeros of $\xi(s)$ are zeros whose multiplicities decrease by one. From symmetry of zeros of $\xi(s)$ to $1 / 2$, the left hand side of (4.4) is not less than $\frac{R}{L}\left(N(T)-N_{d}(T)\right)$. By Jensen's inequality, we can deduce that

$$
N(T)-N_{d}(T) \leqslant \frac{T L}{4 \pi R} \log \left(\frac{1}{T} \int_{2}^{T}\left|f B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right|^{2} d t\right)+O(T)
$$

or

$$
\kappa_{d} \geqslant 1-\frac{1}{2 R} \log \left(\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{2}^{T}\left|f B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right|^{2} d t\right)
$$

All we need is to get an asymptotic formula for the mean square of $f B$. We have

$$
\begin{aligned}
f(s) & =\left(g+g_{0}\right) \zeta(s)+\frac{g_{1}}{L}\left(\frac{H^{\prime}}{H}(s) \zeta(s)+\zeta^{\prime}(s)\right) \\
& =\left(Q_{1}\left(\frac{\log \frac{s}{2 \pi}}{2 L}+\frac{1}{L} \frac{d}{d s}\right) \zeta(s)\right)\left(1+O\left(|t|^{-1}\right)\right)
\end{aligned}
$$

where $Q_{1}(x)=g+g_{0}+g_{1} x$. Using the last two equations, integration by parts leads us to

$$
\kappa_{d} \geqslant 1-\frac{1}{2 R} \log \left(\limsup _{T \rightarrow \infty} \frac{1}{T} \int_{2}^{T}\left|V B\left(\frac{1}{2}-\frac{R}{L}+i t\right)\right|^{2} d t\right)
$$

where $V(s)=Q\left(-\frac{1}{L} \frac{d}{d s}\right) \zeta(s)$, and $Q(x)=Q_{1}\left(\frac{1}{2}-x\right)=g+g_{0}+\frac{1}{2} g_{1}-g_{1} x$. By Theorem A, we have

$$
\kappa_{d} \geqslant 1-\frac{1}{2 R} \log (c(P, Q, R))
$$

The condition $Q(0)=1$ is required when we apply the Littlewood lemma to derive (4.4). Then we have $Q(x)=1-g_{1} x$. In [2, p.10] Conrey made an optimal choice of this case. If we choose $g_{1}=1.02, R=1.2, \theta=\frac{4}{7}$, we have $\frac{\log c}{R}=0.598 \ldots$. Therefore, we conclude that $\kappa_{d}>0.70$.

References

[1] B.C. Berndt, The number of zeros for $\zeta^{(k)}(s)$, J. London Math. Soc. (2) 2 (1970), 577-580
[2] J.B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. reine angew. Math. 399 (1989), 1-26
[3] J.B. Conrey, A. Ghosh, and S.M. Gonek, Simple zeros of the Riemann zetafunction, Proc. London Math. Soc. (3) 76 (1998), 497-522
[4] J.M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219-288
[5] D.W. Farmer, Counting distinct zeros of the Riemann-zeta function, Electron. J. Combin. 2 (1995), Research Paper 1, approx. 5 pp.
[6] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. Vol. 26, 1940.
[7] N. Levinson, More than One Third of Zeros of Riemann's Zeta-Function are on $\sigma=1 / 2$, Adv. Math. 13 (1974), 383-436
[8] N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 133 (1974), 49-65
[9] A. Selberg, On the zeros of Riemann's zeta function, Skr. Norske Vid. Akad. Oslo, (1942) no. 10.
[10] E.C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Oxford University Press, Oxford, 1986

Addresses: Haseo Ki and Yoonbok Lee: Department of Mathematics, Yonsei University, Seoul 120-749, Korea.
E-mail: haseo@yonsei.ac.kr, leeyb@yonsei.ac.kr
Received: 30 May 2011

[^0]: This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government(MOST) (No. R01-2007-000-20018-0)

 2010 Mathematics Subject Classification: primary: 11M06; secondary: 11M26

